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Luı́s Jiménez-Cabello1 and Javier Ortego1

Available online at www.sciencedirect.com

ScienceDirect
African horse sickness (AHS) is a devastating disease caused

by African horse sickness virus (AHSV) and transmitted by

arthropods between its equine hosts. AHSV is endemic in sub-

Saharan Africa, where polyvalent live attenuated vaccine is in

use even though it is associated with safety risks. This review

article summarizes and compares new strategies to generate

safe and effective AHSV vaccines based on protein, virus like

particles, viral vectors and reverse genetics technology.

Manipulating the AHSV genome to generate synthetic viruses

by means of reverse genetic systems has led to the generation

of potential safe vaccine candidates that are under

investigation.
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Introduction
African horse sickness virus (AHSV) causes lethal disease

in horses and is transmitted by hematophagous biting

midges of the genus Culicoides [1,2]. AHSV infects mainly

equids, causing high mortality rates up to 90% in horses,

while mules and donkeys are less susceptible [3]. The

virus belongs to genus Orbivirus, family Reoviridae, and

nine serotypes (AHSV-1 to AHSV-9) have been identified

upon the specificity of their reactions with neutralizing

antibodies (NAbs) [4,5]. AHSV virion is a non-enveloped

isometric particle composed of three concentric protein

layers surrounding 10 lineal double-stranded RNA

genome segments [6]. Together with the seven structural
www.sciencedirect.com 
viral proteins (VP), the genome encodes other five non-

structural (NS) proteins [6–8].

Despite endemicity of AHSV is constrained to Sub-

Saharan Africa, the virus has caused devastating losses

in indigenous horses outside of its current endemic zone

during epidemics in Middle East, India, Pakistan, North

Africa and Europe caused by multiple serotypes [9].

Recently (February the 24th, 2020), new outbreaks of

AHSV-1 with an unknown origin have been documented

in racehorses in Thailand, with 191 confirmed cases and

175 deaths, and a 91.62% of fatality rate, being the first

AHSV outbreak described in this country (https://www.

oie.int/wahis_2/public/wahid.php/Reviewreport/Review?

page_refer=MapFullEventReport&reportid=33768).

The increasing global trade and the climate changes may

facilitate the spread of vector-borne diseases, as shown by

recent outbreaks of Bluetongue and Smallenberg viruses

and demonstrating the rising viral transmission by Culi-
coides in non-endemic areas [10,11]. This suggests that

AHSV can also emerge outside of Africa, causing huge

direct and economic losses in horse industry as occurred

in the past [12]. This scenario requires the development

of an effective and safe vaccine capable to protect equids

against all AHSV serotypes.

New approaches in vaccine generation
against AHSV
Currently, the control of AHSV in endemic African

countries relies on a polyvalent live attenuated vaccine

(LAV) administering seven serotypes in two doses;

AHSV-5 and AHSV-9 are not included in the vaccine

since cross-protection with serotypes 8 and 6 respectively

has been documented [3,13]. Of concern, LAVs are

associated with reversion to virulence, vector’s

transmission, absence of DIVA (Differentiating Infected

from Vaccinated Animals) capacity, teratogenicity,

and gene reassortment that lead to the establishment

of new genetic variants [3,14–18]. To address the need

for safe and more effective vaccines, several candidates

have been evaluated including subunit vaccines, virus

like particles (VLPs), avian reovirus muNS protein

microspheres (MS), recombinant poxviruses and

reverse genetic approaches [19–27,28��,29��,30–36,37�]
(Table 1).

The VP2 capsid protein is the most variable AHSV

antigen and determines virus serotype [38]. As VP2 is
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Table 1

Main approaches to develop vaccine candidates against AHSV

Vaccine candidate Article Level of protection or immune responses in animal

models or host

Subunit VP2, alone or in

combination with VP5 and VP7

(AHSV-4 or 5)

Roy et al.; Martinez-Torrecuadrada et al.;

Scanlen et al.; Aksular et al. [23,26,31,69]

Protection in mice and horses against homologous

challenge

Multiserotype cocktail of VP2

(serotypes 2, 4, 5, 6, 9)

Kanai et al. [32] Low cross-neutralizing antibody response for

genetically related AHSV-8

Plant-produced single or quimeric

VLPs

Dennis et al.; Kutkowska et al. [34,36] NAbs levels induced in horses similar to those

obtained with AHSV LAVs

ALVAC canarypox-VP2/VP5 (AHSV-

4)

Guthrie et al. [30] Horses were protected against homologous challenge

upon immunization with adjuvant

MVA-VP2 (AHSV-4) Castillo-Olivares et al.; Calvo-Pinilla [20,41] No viremia or clinical signs after challenge with

homologous serotype in mice

MVA-VP2 (AHSV-9) Alberca et al. [22] Full protection against lethal challenge with

homologous AHSV serotype

Cocktail of MVA-VP2 Manning et al. [27] Simultaneous vaccination with MVA-VP2 of two

serotypes (4 and 9) triggered NAbs against a third

serotype (AHSV-6)

DNA/MVA or MVA/MVA-VP2/NS1

(AHSV-4)

De la Poza [24] Reduced viremia upon infection with heterologous

serotype (AHSV-9) in mice

muNS/MVA-NS1 (AHSV-4) Marı́n-López et al. [37�] No viremia or clinical signs after challenge with

heterologous AHSV-9 in mice

RG ECRA-AHSV-1 with Seg 2 of

AHSV-4

Lulla et al. [58��] Survival in absence of body weight loss after AHSV-4

challenge in mice

Multiserotype cocktail ECRA-AHSV-

1/4/6/8

Lulla et al. [29��] Partial protection of ponies against AHSV-4 challenge

RG DISA AHSV-5 Van Rijn [28��] DISA AHSV-5 partially protected ponies after

homologous challenge
the main target for virus neutralizing antibodies (NAbs)

[38,39] that are related with protection [40–42], several

potential vaccines under investigation rely in the induc-

tion of VP2 NAbs; however these do not offer full cross-

protection among serotypes. Subunit vaccines based on

VP2 produced by baculovirus expression system have

been analyzed either singly or in combination with

VP5 and VP7 inducing protective immunity against

homologous AHSV-4 [23,26,31]. A multiserotype cocktail

of subunit VP2 vaccine (serotypes 2, 4, 5, 6, 9) was tested

in guinea pigs eliciting a low cross-neutralizing antibody

response for genetically related AHSV-8 [32]. In addition,

recombinant baculovirus expression systems that allowed

the assembly of VLPs have been reported [33–36]. Cur-

rently, transient expression in plants is being used for a

relatively easy production of VLPs. A plant-produced

AHSV-5 VLP vaccine was shown to induce comparable

NAbs levels to those obtained with AHSV LAV against

serotype 5 [33,36]. Sera from horses immunized with

AHSV-5 VLPs also elicited similar antibody titres towards

AHSV-8. In further studies, plant-produced triple chime-

ric AHSV-1/AHSV-3/AHSV-6 VLPs, composed of a com-

bination of capsid proteins, induced moderate NAbs titres

against AHSV-6 in horses [34].

Otherwise, promising poxvirus vaccines have targeted

protective humoral and cellular immune responses

against AHSV. ALVAC canarypox expressing AHSV-4

VP2 and VP5, formulated with adjuvant protected horses
Current Opinion in Virology 2020, 44:49–56 
against the homologous AHSV serotype [30]. Another

poxvirus, modified Vaccinia virus Ankara (MVA) expres-

sing AHSV-4 VP2 [21] elicited protective immunity

against homologous AHSV in mice upon heterologous

regimen (DNA prime/MVA boost) [24] or alone (one or

two doses of MVA) [20,23]. In horses, prime/boost with

MVA expressing VP2 from serotype 9 provided sterilizing

protection against a lethal dose of AHSV-9 without any

adjuvant in the vaccine composition [22]. Interestingly,

simultaneous vaccination with MVA-VP2 of serotypes

4 and 9 triggered NAbs against serotype 6 [43�]. After

four months, vaccination with MVA-VP2 (AHSV-5) of

previously immunized horses induced an anamnestic

response towards AHSV-5, 4, 6 and 9 as well as the

cross-reactive AHSV-8.

As antigenic variability of AHSV is the main hurdle of

cross-protective immunity, several studies have been

focused on NS1 protein with a highly conserved amino

acid sequence among all serotypes (97.26–99.82%

sequence identity). Importantly, CD8 T-cell epitopes

have been identified in NS1 in mice and they are con-

served among AHSV serotypes [44]. As cross-reactive

T-cell responses are critical for multiserotype protection,

vaccines based on NS1 have been analyzed. Immuniza-

tion with DNA/MVA expressing AHSV-4 NS1 or two

doses of MVA-NS1 reduced viremia in mice after chal-

lenge with a heterologous serotype, AHSV-9 [24]. In a

more recent work, NS1 from AHSV-4 was incorporated
www.sciencedirect.com
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into avian reovirus muNS protein microspheres (MS-

NS1) and combined to MVA-NS1 to test protective

immunity in mice. This combinatorial immunization

afforded sterilizing protection after infection with heter-

ologous serotype 9 and it would be a promising universal

vaccine against AHSV [37�].

Reverse genetics AHSV systems
Since the first reverse genetics (RG) system was designed

to generate synthetic poliovirus from cDNA [45], this

experimental approach has gathered an increasingly inter-

est over the years among the virology community. RG

techniques have become one of the most powerful tools to

decipher key viral aspects such as structure, pathogenicity

and immunogenicity, working as an alternative for vac-

cine development platforms in parallel.

RG systems exist for all major groups of animal RNA

viruses. For picornavirus, coronavirus, flavivirus or arter-

ivirus, positive-strand RNA virus RG systems are mainly

focused on delivery of either transcribed genomic RNA

into the cell cytoplasm or cDNA under the control of a viral

transcription promoter such as T7 or CMV [46]. Negative-

stranded and double-stranded RNA viruses, like para-

myxovirus, orthomyxovirus, rotavirus or reovirus, usually

require additional helper constructs to introduce the RdRP

and other proteins essential for genomic replication [46].

Regarding the family Reoviridae, several plasmid-based or

RNA transcript-based RG systems have been depicted

[47,48�,49,50�,51–55]. The most significant reoviruses

causing diseases in ruminants and equids are BTV and

AHSV, respectively. Their ten-segmented dsRNA gen-

omes have turned out to be a challenging factor for RG

systems development, although RG strategies for BTV

have been successfully implemented [47,54]. In the case

of AHSV, a few RG approaches have been developed so far.

The capability of isolating AHSV core proteins, which

makes generation of core transcripts possible, was

exploited to establish a double-transfection RG system

[56�]. In consequence, reassortant AHSV viruses can be

obtained in as much as the serotype specificity of the

rescued viruses relies on the RNA transcripts used in the

second transfection event. Moreover, not only core tran-

scripts can be utilized but plasmids including T7-derived

segments also enable recovery of AHSV virions [56�].

Four whole plasmid-based RG systems have been pro-

posed and evaluated with considerable success. Trans-

fection of BSR-T7 cell line with plasmids containing a

full-length cDNA copy of single AHSV-4 genome seg-

ments under control of the T7 RNA polymerase promoter

and enclosed at 30 end with the hepatitis delta virus

(HDV) ribozyme led to rescue of competent AHSV-4

(Figure 1a). Nonetheless, optimized virus rescue can be

attained by transfection of double expression plasmids
www.sciencedirect.com 
either in BSR-T7 cell line (Figure 1b) or in BSR (alter-

natively L929 cells) (Figure 1c) as long as plasmids

expressing T7 polymerase are used [48�]. Finally, as

previously described for BTV [57], a RG system strategy

based on the combination of six expression plasmids

encoding VP1, VP3, VP4, VP6, NS1 and NS2, along with

transfection of a complete set of T7 transcripts

(Figure 1d) allows to rescue reassortant or mutated viruses

[50�]. However, viral titers (<106 PFU/mL) achieved by

using this RG system are limited for molecular manipula-

tions. An almost identical double transfection approach

was applied to produce replicative-incompetent AHSV

particles by means of transfection of a multistop segment

9 (encoding VP6 and NS4) and an additional expression

plasmid encoding for VP7, combined with the utilization

of a complementing BSR-VP6 cell line [58��]. Selection of

AHSV-1 expression plasmids besides diverse combina-

tions of capped T7 RNA transcripts yielded higher viral

titers for AHSV-1 and reassortant-defective AHSV var-

iants [58��]. Oftentimes, a similar RG strategy has been

successfully applied for the study of the role and locali-

zation of different AHSV proteins, showing that NS3

protein is dispensable for attenuated virus recovery

[28��,59,60] or evidencing the interaction of NS1, NS2

and NS4 with host cell nuclear components [61].

Reverse genetics systems for AHSV vaccine
development
The use of RG technology has constituted the base for

the development of new generation modified live atten-

uated vaccines (MLAVs), through targeted modifications

and directed attenuation. Several MLAVs have been

generated and tested as vaccine candidates [62–64].

Two different approaches have been addressed in order

to develop vaccine candidates against AHSV, following

similar strategies previously designed to generate BTV

MLVAs [65,66]: Entry Competent Replication-Abortive

(ECRA) viruses (formerly known as Disabled Infectious

Single Cycle (DISC) vaccines) and Disabled Infectious

Single Animal (DISA) vaccine strains (Figure 2).

ECRA viruses are deficient in VP6 and cannot complete

the whole replication cycle due to the lack of function of

VP6 as part of the transcriptase and packaging complex.

However, they still initiate the replication cycle and

synthesize a single round of viral mRNAs following entry

and express viral proteins in normal cells. In contrast, for

vaccine production, the in trans expression of VP6 in a

helper cell line is required, to allow viral growth [66]. For

AHSV, ECRA-AHSV viruses have been generated for all

the nine serotypes by introducing multiple stop codons in

the coding region of segment S9, then disrupting the

expression of VP6 and also NS4 protein (encoded in the

same segment) [58��]. Previous works reported that NS4

is not essential for BTV replication in vitro but antago-

nizes Interferon-I expression in vivo [67,68] so, likely, the

absence of NS4 would positively affect the immune
Current Opinion in Virology 2020, 44:49–56
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Figure 1
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Representation of different developed plasmid-based RG strategies for AHSV.

The T7 RNA polymerase promoter is represented in green, the ORF of AHSV segments are colored blue and the hepatitis delta virus (HDV)

ribozyme is emphasized in red. The CAG promoter is showed in yellow. (a) Ten plasmids containing the AHSV cDNA segments are co-transfected

into BSR cells that express constitutively the T7 polymerase (BSR-T7). The viral positive-sense mRNAs with native 50 and 30 ends are produced

due to cytoplasmic transcription of transfected cloned cDNAs. (b) Only five plasmids encoding the viral genome via transcription cassettes

containing two AHSV cDNA segments are co-transfected into BSR-T7 cells in an identical procedure to that for the previous ten-plasmids RG

system. (c) T7 polymerase is encoded in the plasmid that includes the AHSV segments 2 and 6 (S2-S6) under control of a CMV promoter. Co-

transfection of this set of 5 plasmids is conducted in cells that do not express constitutively the T7 polymerase (BSR or L929). (d) A double

transfection procedure is performed using BSR cells. First, transfection of six expression plasmids containing AHSV cDNA segments 1, 3, 4, 5,

8 and 9 is performed. A second transfection event of a whole set of ten T7 transcripts representing all AHSV dsRNA segments results in virus

rescue. Expression plasmids enhance virus recovery events as it optimizes the formation of the primary replication complex. In all previous cases,

once the virus is recovered, BSR cells are used for viral amplification and isolation is conducted by plaque assay.
response by DISC vaccination for AHSV (although it has

to be determined). Based on stability and level of viral

replication, AHSV-1 was selected as a backbone for use in

an RG system. Protective efficacy studies using ECRA-

AHSV-1 variants (AHSV-1 and 4, exchanging Seg 2 of

AHSV-4 in AHSV-1 backbone) were performed in the

IFNAR(�/�) mouse model [58��]. Safety of these candi-

dates was tested after immunization (107PFU), showing

no clinical signs and viremia. After a prime-boost immu-

nization (107 PFU) and challenge with AHSV-1 or AHSV-

4, ECRA-AHSV immunized animals led to a significant

reduction of AHSV RNA levels in mouse organs and

blood for both AHSV-1 or 4, and complete survival in

absence of body weight loss was observed in immunized

mice challenged with AHSV-4. In subsequent studies,

two different vaccine regimes, a monovalent (ECRA-

AHSV-4) vaccine and a multivalent cocktail vaccine of
Current Opinion in Virology 2020, 44:49–56 
4 different AHSV serotypes (ECRA-AHSV-1/4/6/8)

(107 PFU each) were assessed in ponies followed by

AHSV-4 challenge [29��]. Specific VP7 and neutralizing

antibodies were detected in immunized animals before

challenge. After infection, partial clinical protection

based on survival, clinical signs and viremia levels was

observed in immunized animals when compared with

non-immunized ones, which presented higher levels of

viremia and developed the typical clinical signs of AHS

disease as hyperthermia, respiratory distress, edema of

the eyelids or pulmonary edema among others.

Another strategy based on RG has been generated for

vaccine design against AHSV, the Disabled Infectious

Single Animal (DISA) vaccine strains. These viruses lack

the functional gene of the non-structural protein NS3/

NS3a, then interrupting viral egress, inhibiting the
www.sciencedirect.com
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Figure 2
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Schematic representation of the modified live attenuated vaccines (MLVAs) based on RG systems against AHSV.

ECRA (Entry-competent Replication-Abortive) vaccines, formerly known as DISC (Disabled Infectious Single Cycle) vaccines, are deficient in VP6

and NS4, both encoded in segment 9. As a consequence, the replication cycle cannot be completed, although expression of viral proteins leads

to an immune response. DISA (Disabled Infectious Single Animal) vaccines are based on attenuated viruses lacking the non-structural protein

NS3/NS3a, encoded by segment 10. Therefore, viral egress is interrupted, inhibiting viraemia and allowing only local replication. The delayed

egress of new viral particle results into a more prolonged antigen exposure and induces a potent immune response.
presence on virus in blood and allowing only local

replication in infected cells; reducing the risk of propa-

gation or transmission by midge vectors during feeding

[59]. RG-generated DISA-AHSV-4, with a total deletion

of NS3/3a, was used for horse immunization (n = 2) fol-

lowing a prime/boost regimen (4 � 104TCID50) [28��].
No adverse reactions were detected in vaccinated ani-

mals. Seroconversion was observed, showing the peak of

VP7 antibodies after boost (35 dpv). After challenge with

AHSV-4, a horse developed severe clinical signs and high

fever and viremia, and finally was euthanized. The sec-

ond horse developed mild edema of the supraorbital

fossae, slightly elevated body temperature and viremia,

becoming negative at 28 dpi and survived. In the same

study, DISA-AHSV-5, with an in-frame deletion of amino

acid codon 25–101 in the S10 (77aa deletion in NS3/3a),

was used to test safety (2 � 107.7TCID50) and efficacy

(2 � 105 TCID50) in ponies. After confirming the

absence of side effects, clinical signs and viremia, and

the presence of AHSV VP7 specific antibodies, immu-

nized ponies were challenged with AHSV-5. Three out of

four immunized animals survived to the infection and

showed a delay in viremia, with lower titers compared to

control ponies. Thus, DISA vaccine partially protected

against AHS although did not induce measurable NAbs
www.sciencedirect.com 
titers. The better results obtained in the latter experi-

ment compared to that performed in horses might be due

to the differences in vaccine�s doses and strains, virulence

between strains used for the challenge or susceptibility to

AHSV between horses and ponies.

Conclusion
Several research groups have developed promising vac-

cine candidates against AHSV. These approaches show

improvements compared to marketed vaccines such as

safety and allow a DIVA strategy. AHSV vaccines based

on poxvirus recombinant vectors, such as MVA and

canarypox [22,30], have displayed high levels of protec-

tion with absent of clinical signs and viremia in immu-

nized horses. Although further optimization of reverse

genetics vaccines is needed to abolish viremia completely

in vaccinated animals, reverse genetics technology to

create ECRA and DISA AHSV vaccines looks promising.

Further research will be necessary to determine the

optimal dose requirement and to perform a deep charac-

terization of immune responses elicited for these vac-

cines. As the activation of cytotoxic CD8 T cells and other

subsets of immune cells have been shown to have a key

role in the virus clearance, cell-mediated immunity by

AHSV RG vaccines need to be elucidated in the future. In
Current Opinion in Virology 2020, 44:49–56
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any case, having reverse genetics systems that allow the

rapid development of safe and effective vaccines against

the different serotypes of the virus by single S2[VP2]

exchange, makes these vaccine platforms promising

AHSV vaccine candidates for all current AHSV serotypes.
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