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Abstract
We undertook genomic analyses of Japanese patients with stage I esophageal squa-
mous cell carcinoma (ESCC) to investigate the frequency of genomic alterations and 
the association with survival outcomes. Biomarker analysis was carried out for patients 
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1  |  INTRODUC TION

Esophageal cancer is the sixth leading cause of cancer death world-
wide. Squamous cell carcinoma and adenocarcinoma are the main 
histological types. Esophageal squamous cell carcinoma accounts for 
the majority of the incidence of esophageal cancer in Asia, including 
China and Japan.1,2 Epidemiological studies have reported that the 
consumption of alcoholic beverages, tobacco smoking, and hot food 
and beverages could be risk factors for ESCC.3,4 Specific variants in the 
aldehyde dehydrogenase 2 family gene (ALDH2) and the acetaldehyde 
dehydrogenase gene (ADH1B) are also associated with a strong risk 
of ESCC.5 In addition, as ESCC develops through a multistep process 
beginning with dysplasia and progresses through carcinoma in situ 
to invasive carcinoma, the involvement of genomic alterations in the 
development of ESCC has been recognized.6 Previous reports have 
shown somatic mutations and CNVs in ESCC as follows: TP53, CCND1, 
PIK3CA, NOTCH1, ZNF750, FAM135B, FAT1, and FAT2.7- 9

At present, esophagectomy is the standard therapy for T1bN0 ESCC. 
We previously reported that definitive chemoradiotherapy showed a 
noninferior outcome, compared with an esophagectomy, in terms of 
OS in the JCOG0502 trial.10 After recurrence, however, the treatment 
options were limited and the prognosis was poor, even though the ini-
tial diagnosis had been T1bN0M0. The mean survival time of patients 
with recurrence after esophagectomy was reported to be 20 months.11 
Several clinicopathologic features have been associated with recurrence 
or metastatic risk in T1bN0M0 ESCC, including tumor size, tumor loca-
tion, tumor invasion depth, angiolymphatic invasion and tumor thickness, 

and complete negative aberrant p53 expression.12,13 In addition, previ-
ous reports have shown that genomic alterations were associated with 
prognosis. Shigaki et al reported that patients with PIK3CA mutations in 
exons 9 and/or 20 showed significantly better disease- free survival and 
OS outcomes than patients with the PIK3CA WT.14 Sawada et al reported 
that EP300 and TET2 mutations were associated with a poor prognosis.9 
However, these reports evaluated patients with various background fac-
tors and disease stages. Few reports have examined genetic alterations 
in only T1bN0M0 ESCC or have investigated the association between 
genomic alterations and survival outcomes. Information on genomic al-
terations with prognostic or predictive value could be useful not only for 
the selection of additional treatments based on the risk of recurrence, but 
may suggest novel therapeutic options for patients with ESCC.

Therefore, we analyzed genomic alterations using WES and in-
vestigated the association between these genomic alterations and 
prognosis in T1bN0M0 ESCC patients who enrolled in prospective 
clinical trial JCOG0502.

2  |  MATERIAL S AND METHODS

2.1  |  Study design and patient selection

JCOG0502A1 was a biomarker study using biosamples obtained 
from patients who enrolled in JCOG0502. JCOG0502 was a clinical 
trial comparing esophagectomy with definitive chemoradiotherapy 
for T1bN0M0 esophageal cancers and included both randomized 
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with clinical stage T1bN0M0 ESCC enrolled in JCOG0502 (UMIN000000551). Whole- 
exome sequencing (WES) was performed using DNA extracted from formalin- fixed, 
paraffin- embedded tissue of ESCC and normal tissue or blood sample. Single nucleo-
tide variants (SNVs), insertions/deletions (indels), and copy number alterations (CNAs) 
were identified. We then evaluated the associations between each gene alteration with 
a frequency of 10% or more and progression- free survival (PFS) using a Cox regres-
sion model. We controlled for family- wise errors at 0.05 using the Bonferroni method. 
Among the 379 patients who were enrolled in JCOG0502, 127 patients were success-
fully analyzed using WES. The median patient age was 63 years (interquartile range, 
57- 67 years), and 78.0% of the patients ultimately underwent surgery. The 3- year 
PFS probability was 76.3%. We detected 20 genes with SNVs, indels, or amplifications 
with a frequency of 10% or more. Genomic alterations in FGF19 showed the strongest 
association with PFS with a borderline level of statistical significance of P = .00252 
(Bonferroni- adjusted significance level is .0025). Genomic alterations in FGF4, MYEOV, 
CTTN, and ORAOV1 showed a marginal association with PFS (P < .05). These genomic 
alterations were all CNAs at chromosome 11q13.3. We have identified new genomic 
alterations associated with the poor efficacy of ESCC (T1bN0M0). These findings open 
avenues for the development of new potential treatments for patients with ESCC.
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arms and patient- preference arms. The key eligibility criteria for 
JCOG0502 were as follows: age between 20 and 75 years, diagno-
sis of histologically proven clinical stage IA (T1bN0) squamous cell 
carcinoma, adenosquamous cell carcinoma, or basaloid cell car-
cinoma in the thoracic esophagus (American Joint Committee on 
Cancer Staging Manual, 7th edition), and performance status of 0- 1 
according to the ECOG performance status scale. The major exclu-
sion criteria were as follows: double primary cancer, uncontrolled 
diabetes, recent myocardial infarction, unstable angina, and severe 
complications.

Written informed consent for this ancillary study was directly 
obtained from the patients in principle. However, if the patients were 
dead or lost to follow- up, the use of samples from these patients 
was approved by the Institutional Review Board, which privileged 
the opt- out for the patients, according to the Ethical Guidelines 
for Epidemiological Research issued by the Ministry of Education, 
Culture, Sports, Science and Technology and the Ministry of Health, 
Labour and Welfare of Japan.

The study protocol was approved by the JCOG Protocol Review 
Committee and by the review boards of all the participating 
institutions.

2.2  |  Sample collection

Tumor samples and histologically normal tissues or blood sam-
ples were obtained from 138 patients who had participated in 
JCOG0502A1. Tumor samples were collected from the surgical 
specimens or from biopsy samples obtained before surgery or de-
finitive chemoradiotherapy.

Tissue DNAs were extracted from sliced FFPE biopsy specimens 
and surgical tissue samples using the QIAamp DNA FFPE Tissue Kit 
(Qiagen), and DNAs were extracted from blood using the QIAamp 
DNA Blood Kit (Qiagen).

Blood samples were collected and centrifuged according to the 
manufacturer’s instructions and were used to separate the MCs; 
the separated plasma was frozen and stored at −80°C in the JCOG- 
Biobank Japan Biorepository (JCOG BioBank). The DNA of MCs was 
also extracted from PBMC samples obtained from each patient and 
stored at 4°C in the JCOG BioBank. Some of the stored MC DNA 
was used for this study.

2.3  |  Whole- exome sequencing and mutation calls

Extracted FFPE DNAs were evaluated using the PicoGreen dsDNA 
assay (Thermo Fisher Scientific) and the TaqMan Copy Number 
Reference qPCR assay (Thermo Fisher Scientific). The libraries were 
prepared with the KAPA HyperPrep Kit (Kapa Biosystems) using 10- 
50 ng FFPE DNAs according to the manufacturer’s protocol with 
some modifications after the fragmentation process (60 s × 3 cycles) 
using COVARIS. The exome capture was undertaken with SureSelect 
Human All Exon V5 (Agilent Technologies), and sequencing was 

carried out with Illumina HiSeq2500 SBS V4 (Illumina). Sequence 
reads were aligned to the human reference GRCh37 using bwa- 
0.7, and the sequencing average coverage was 116× for the tumor- 
specimen DNAs and 92× for normal tissue DNAs after duplication 
removal. Somatic mutation calls were performed using Genomon 
2.6.1 (https://genom on.readt hedocs.io/ja/lates t/). For reliable calls, 
we further selected mutations with variant allele frequencies of 10% 
or more.

2.4  |  Copy number analysis

Copy number alterations were called using cisCall (https://www.
cisca ll.org/), which is a calling tool specialized for FFPE samples.15 
During preprocessing, we removed the sequence adapters using 
cutadapt (https://cutad apt.readt hedocs.io/).16 Mapping and the re-
moval of duplications were performed internally using cisCall. From 
among the CNAs detected using cisCall, we further selected CNAs 
with log R ratios of |1.5| or more and that covered at least 80% and 
70% of a gene for amplifications and losses as stringent calls, re-
spectively. In the sensitivity analysis, we used a looser criteria of a 
log R ratio of |1.0| or more and amplification and loss coverages of 
at least 60%.

2.5  |  Tumor mutational burden

Tumor mutational burden was defined as the number of SNVs and 
indels per megabase of WES.

2.6  |  Statistical methods

The probability of PFS was estimated using the Kaplan- Meier method, 
and Greenwood’s formula was used to calculate the 95% CIs. A Cox 
regression model that included age (≤64 years, ≥65 years) and tumor 
size (≤4 cm, >4 cm) was used to estimate HRs and 95% CIs, P values 
for each gene with an alteration frequency of at least 10%, and TMB. 
Treatment arm was not included in the Cox regression model as no as-
sociation was observed in this population (univariate HR = 1.03; 95% 
CI, 0.49- 2.16). Gene alteration was defined as the presence of at least 
one SNV, indel, or CNA. Family- wise error for the gene- level analysis 
was controlled at 0.05 using the Bonferroni method.

3  |  RESULTS

3.1  |  Patient characteristics and PFS time in this 
study

Among the 379 patients who were enrolled in JCOG0502, 
WES was successfully carried out for 127 patients in this study, 
JCOG0502A1 (Figure 1). The clinicopathologic characteristics of 

https://genomon.readthedocs.io/ja/latest/
https://www.ciscall.org/
https://www.ciscall.org/
https://cutadapt.readthedocs.io/


    |  1021OSHIMA et Al.

all 379 patients who were enrolled in JCOG0502 and the 127 pa-
tients who successfully underwent WES in this study are listed 
in Table S1. In this study, 99 patients (78%) underwent surgery 
(surgery group), and 28 patients (22%) received definitive CRT 
(CRT group). The proportion of patients in the surgery group in 
this study tended to be larger than the proportion of patients who 
were enrolled in JCOG0502. The 3- year and 5- year PFS of all pa-
tients included in JCOG0502 and the 127 patients included in this 
study are summarized in Table S2.

3.2  |  Detection of genomic alterations

In the 127 ESCC samples, a total of 13 764 mutations, including 
12 963 SNVs and 801 indels, were detected using WES. These SNVs 
and indels contained 5126 nonsilent SNVs in 3990 genes and 206 
indels in 193 genes. The mean number of mutations was 108.4 per 
sample. We found that 60.6% (77/127) of ESCC had CNAs at the 
chromosome arm level. A total of 3666 amplifications among 2054 
genes and 2081 losses among 1232 genes were detected across the 
127 ESCC samples.

The most frequent genomic alterations were found in TP53 
(mutated in 35% of our cohort), followed by HIST2H2AA3 (CNAs 
[amp] in 19% and CNAs [loss] in 2%), HIST2H3A (CNAs [amp] in 19% 
and CNAs [loss] in 2%), HIST2H4A (CNAs [amp] in 17% and CNAs 
[loss] in 2%), ORAOV1 (CNAs [amp] in 17%), FADD (CNAs [amp] in 
15%), CCND1 (CNAs [amp] in 14%), PPFIA1 (CNAs [amp] in 13% and 
mutated in 1%), FGF19 (CNAs [amp] in 12%), LGALS7 (CNAs [amp] 
in 12%), MYEOV (CNAs [amp] in 12%), FGF4 (CNAs [amp] in 11%), 
LGALS7B (CNAs [amp] in 11%), MUC16 (mutated in 10%, CNAs [amp] 
in 1%), NKX2- 4 (CNAs [amp] in 8% and CNAs [loss] in 3%), TGIF2LY 
(mutated in 1%, CNAs [amp] in 2%, CNAs [loss] in 8%), ZNF750 (mu-
tated in 11%), and ANO1 (CNAs [amp] in 10%), and CTTN (CNAs 
[amp] in 10%) (Figure 2).

3.3  |  Associations between genomic 
alterations and PFS

We detected 20 genes with SNVs, indels, or CNAs (amp) with a 
frequency of at least 10% and analyzed the associations between 
these genomic alterations and PFS (Table 1). The Bonferroni 
method was applied to correct for the family- wise error, resulting 
in a significance level at .0025 (=.05/20). Genomic alterations in 
FGF19 showed the strongest association with PFS with borderline 
level of statistical significance (P = .00252). Marginal associations 
with PFS (P < .05) were observed for the following genomic altera-
tions: FGF4 (P = .0053), MYEOV (P = .0238), CTTN (P = .0296), and 
ORAOV1 (P = .0420). The Kaplan- Meier curves for these genomic 
alterations are shown in Figure 3. These genetic alterations are 
located within the chromosomal region 11q13.3 (Figure 4). We 
further investigated the association between these five genomic 
alterations and patient characteristics (Table S3). Genomic altera-
tions in FGF19 and CTTN were detected significantly more often 
in patients aged 65 years or older, compared with those younger 
than 65 years. These five genomic alterations were also detected 
more frequently in the CRT group than in the surgery group. 
Therefore, we undertook a sensitivity analysis using a Cox regres-
sion model that included treatment arm (surgery, CRT), as well as 
age (≤64 years, ≥65 years) and tumor size (≤4 cm, >4 cm). These 
five genomic alternations showed similar associations with PFS as 
follows: FGF19 (P = .0017), FGF4 (P = .0052), MYEOV (P = .0158), 
CTTN (P = .0244), and ORAOV1 (P = .0270). In addition, we ana-
lyzed the association between these genomic alterations and PFS 
in each treatment group (Table S4).

In a sensitivity analysis using data with looser criteria for CNA, 
we observed 125 genes with an alteration frequency of 10% or 
more. Genomic alterations in FGF19 and FGF4 were significantly as-
sociated with PFS (P = .00015 and .00006, respectively), and CTTN 
had a marginal association with PFS (P = .00694).

F I G U R E  1  Flow diagram for the Japan 
Clinical Oncology Group (JCOG) trial 
JCOG0502 and the present study. ESCC, 
esophageal squamous cell carcinoma



1022  |    OSHIMA et Al.

3.4  |  Detection of TMB and association with PFS

Median TMB was 0.84 mut/Mb (interquartile range, 0.31- 2.59 
mut/Mb). A TMB of 10 mut/Mb or higher was observed in four pa-
tients (3.1%). To explore the trend associations between TMB and 
PFS, we divided the patients into three groups: TMB <1 mut/Mb 
(n = 66), 1 mut/Mb ≤ TMB <3 mut/Mb (n = 34), and TMB ≥3 mut/
Mb (n = 27). The PFS of patients in the 1 mut/Mb ≤ TMB <3 mut/
Mb category and TMB ≥3 mut/Mb category was not significantly 
different from that of patients in the TMB <1 mut/Mb category 
(HR, 1.25; 95% CI, 0.63- 2.46; and HR, 0.85; 95% CI, 0.37- 1.93, re-
spectively) (Figure 5).

4  |  DISCUSSION

We examined genetic alterations in T1bN0M0 ESCC using WES and 
analyzed the association between genetic alterations and PFS, not OS, 
because the prognosis of patients with T1bN0M0 ESCC is so good, 
and only 10% of the patients had cancer- specific death. Our results 
showed that CNV amplification in FGF19, FGF4, MYEOV, CTTN, and 
ORAOV1 were associated with a poorer PFS in T1bN0M0 ESCC pa-
tients. Interestingly, these genetic alterations were located within chro-
mosomal region 11q13.3. To the best of our knowledge, this study is the 
first to analyze the association between genomic alterations and high- 
quality clinical data from a clinical trial for efficacy and safety in ESCC.

F I G U R E  2  Landscape of genomic alterations in 127 T1 esophageal squamous cell carcinoma patients. Top graph, number of genomic 
alterations per sample. Bottom graph, each genomic alteration for every sample including the total number of genomic alterations for each 
gene. Left values show the percentage of genomic alterations in every sample for each gene. The genomic alterations are shown in color as 
follows: green, single nucleotide variant (SNV)- insertion/deletion (INDEL); red, copy number alteration (CNA) amplification (Amp); blue, CNA 
loss. This figure was generated using the R ComplexHeatmap package51



    |  1023OSHIMA et Al.

Fibroblast growth factor 19 is a member of the hormone- like 
FGF family.17 Normally, FGF19 regulates bile acid synthesis, glu-
cose and lipid metabolism, and gallbladder volume.18 Fibroblast 
growth factor 19 induces the expression of profibrogenic and pro-
tumorigenic connective tissue growth factor in hepatocytes; thus, 
FGF19 contributes to hepatocarcinogenesis and leads to the devel-
opment of HCC.19 In addition, FGF19 has been shown to induce 
epithelial- mesenchymal transition, which is associated with the 
invasion and metastasis of tumor cells, through the FGF19/FGFR4 
signaling pathway in HCC and colorectal cancer cells.20,21 FGF19 
amplification and overexpression are reportedly associated with a 
poorer prognosis for several tumor types.22,23 However, there are 
few reports on the predictive role of FGF19 in ESCC. Our study 
indicated that FGF19 amplification was the alteration most strongly 
associated with a poor prognosis in T1bN0 ESCC. A previous re-
port showed that an anti- FGF19 mAb that selectively blocks the 
interaction between FGF19 and FGFR4 inhibited the growth of 
colon tumor xenografts in vivo and effectively neutralized circu-
lating FGF19 to prevent HCC tumor formation in FGF19 transgenic 
mice.24 These findings suggest that the inactivation of FGF19 might 
be a therapeutic target for ESCC.

Fibroblast growth factor 4 plays an important role in the 
growth and differentiation of human embryonic stem cells.25 FGF4 

amplification and overexpression have also been reported in vari-
ous tumors.26- 28 FGF3/FGF4 amplification was shown to mediate 
the overexpression of FGF3/FGF4 proteins in HCC, and FGF4 was 
partially involved in the sensitivity to sorafenib in an in vivo study.27 
A previous report found that high FGF4 expression was associated 
with advanced stage, aggressive histological subtype, and poorer 
prognosis in patients with ovarian cancer.28 Huang et al reported 
that FGF4 amplification was observed using FISH in 52.8% of pa-
tients with early and advanced ESCC. They reported that FGF4 am-
plification was an independent prognostic factor and might have the 
potential for the progression of ESCC clinical stage.29 We showed 
that CNA amplification in FGF4 was associated with a poor PFS in 
T1bN0 ESCC patients, although the frequency of patients with CNA 
amplification in FGF4 was 11%.

Cortactin binds and activates the actin- related protein com-
plex, regulating the formation of dynamic cortical actin- associated 
structures, and CTTN is known to play a critical role in tumor cell 
motility and invasion.30,31 An in vivo assay showed that the inhi-
bition of CTTN expression decreased the tumor growth and lung 
metastasis of ESCC cells.32 A previous report showed a significant 
association between the overexpression of CTTN and a shorter 
disease- specific survival period in ESCC patients with both early 
and advanced pathological stages.33 Although the role of CTTN in 
clinical treatments for ESCC patients has not yet been elucidated, 
we found that CNA amplification in CTTN was associated with 
poor PFS in T1bN0 ESCC patients. MYEOV has been reported to be 
overexpressed and to contribute to tumorigenesis and a poor prog-
nosis in several cancers, including ESCC.34,35 ORAOV1 enhances 
tumorigenicity and tumor growth and is associated with a poorly 
differentiated tumor histology in ESCC through proline metabolism 
and reactive oxygen species production.36 Previous reports have 
shown that ORAOV1 amplification or overexpression is associated 
with poor prognosis.36,37 Our results were consistent with these 
previous reports.

The 11q13 region could be central to ESCC development. The 
11q13 region contains several genes including FGF3, FGF4, CCND1, 
CTTN, FGF19, MYEOV, and SHANK2. The amplification of 11q13 has 
been reported in tumors, including ESCC, and several studies have 
shown associations with metastasis and poor survival.38- 40 A pre-
vious report showed that CTTN and CCND1 are frequently coam-
plified in ESCC and head and neck squamous cell carcinoma.41,42 
Ying et al reported that CCND1 amplification/overexpression was 
significantly associated with lymph node metastasis of ESCC.42 Of 
18 patients with CCND1 amplification, 9 patients (50%) had CTTN 
amplification in this study. However, of these 18 patients, all pa-
tients had ORAOV1 amplification, 13 patients (72%) had MYEOV 
amplification, 12 patients (67%) had FGF19 amplification, and 10 
patients (56%) had FGF4 amplification. Moreover, of all patients, 7 
patients (6%) had these five amplifications in FGF19, FGF4, MYEOV, 
CTTN, and ORAOV1. The results suggested that the interactions of 
several genetic alterations located on 11q13 might be associated 
with a poor PFS and the development of ESCC. In addition, FGF19 
and FGF4 has been shown to stimulate epithelial- mesenchymal 

TA B L E  1  Association between genomic alterations and 
progression- free survival in 127 patients with T1bN0M0 
esophageal squamous cell carcinoma

N HRa 95% CI P value

FGF19 15 3.10 1.49- 6.46 .0025

FGF4 14 2.94 1.38- 6.27 .0053

MYEOV 15 2.38 1.12- 5.05 .0238

CTTN 13 2.38 1.09- 5.18 .0296

ORAOV1 21 2.06 1.03- 4.14 .042

ANO1 13 1.86 0.81- 4.25 .1406

GABARAP 13 1.82 0.73- 4.57 .2004

CCND1 18 1.79 0.84- 3.79 .1306

FADD 19 1.74 0.83- 3.67 .143

PPFIA1 18 1.72 0.82- 3.62 .1535

TTN 13 1.16 0.45- 2.97 .758

ZNF750 14 1.03 0.40- 2.65 .9445

TP53 44 0.79 0.41- 1.52 .474

MUC16 14 0.75 0.27- 2.10 .5799

LGALS7B 14 0.56 0.17- 1.82 .3384

LGALS7 15 0.50 0.16- 1.63 .254

HIST2H2AA3 26 0.50 0.20- 1.29 .1537

HIST2H23A 26 0.50 0.20- 1.29 .1537

HIST2H4A 23 0.43 0.15- 1.22 .114

HIST2H2BE 13 0.34 0.08- 1.40 .1351

Abbreviation: CI, confidence interval.
aHazard ratios (HRs) were estimated using the Cox model with patient 
age and tumor size included as variables.



1024  |    OSHIMA et Al.

transition during tumor progression20,21,43 and MYEOV, CTTN, and 
ORAOV1 has been reported to play critical oncogenic functions 
in invasion and metastasis.31,36,44 It suggested that these amplifi-
cations in FGF19, FGF4, MYEOV, CTTN, and ORAOV1 might be bio-
markers at a premetastasis stage of cancer progression. We further 
showed the association between these genomic alterations and PFS 
in each treatment group. The results obtained from all populations 
in the surgery and CRT groups were similar with those from the 
patients in surgery group. The patients in the CRT group showed a 
trend for lower HRs compared with patients in the surgery group, 
except CTTN. However, the number of patients who received CRT 
is only 28 patients and it is difficult to conclude the biomarker spe-
cific within the patients with CRT. Therefore, we concluded that 
CNV amplification in FGF19, FGF4, MYEOV, CTTN, and ORAOV1 was 
a poor prognostic marker in T1bN0M0 ESCC patients.

High TMB leads to the creation of neoantigens and increases 
tumor immunogenicity; consequently, TMB has been reported as a 
biomarker for predicting the efficacy of ICIs in various tumors.45,46 
In esophageal cancer patients treated with ICIs, TMB- high (≥10 mut/
Mb) patients were not significantly associated with a better PFS or 
OS than other patients.47 Cui et al revealed that TMB- high (≥10 mut/
Mb) patients had a significantly worse OS than other patients (HR, 
1.87; 95% CI, 1.14- 3.08, P = .011).48 In the present study, patients 
with a higher TMB (TMB ≥3/Mb) tended to have a better PFS than 

those with a lower TMB (TMB <3/Mb), but the difference was not 
statistically significant. Whether a TMB- high status might be a pre-
dictive marker for survival among patients with ESCC remains un-
clear. In addition, the optimal TMB cut- off needs to be explored in 
future studies.

Our study had several limitations. First, we could only ob-
tain samples from 33.5% of the patients who were enrolled in the 
JCOG0502 trial, despite the high- quality clinical data obtained in 
this prospective study. Second, we might not have detected all the 
genetic alterations. The frequency of mutations in TP53, which is es-
sential in promoting the development of ESCC, has been reported to 
be 77%- 97% in ESCC patients, including those with T1 ESCC.9,49,50 
Our study showed that the rate of mutations in TP53 was only 35%. 
We analyzed archival FFPE tumor tissues, therefore the duration 
of preservation and method of fixation of our tissue samples might 
have influenced DNA quality. Finally, data on the expressions of pro-
teins derived from the genomic alterations detected in this study 
were unknown. The present results should be validated in other co-
horts and settings.

In conclusion, we found that genomic alterations in FGF19, 
FGF4, MYEOV, CTTN, and ORAOV1 were associated with poor PFS 
in patients with T1bN0M0 ESCC. These alterations could be novel 
targets for the development of new therapeutic agents for ESCC 
patients.

F I G U R E  3  Kaplan- Meier plots for progression- free survival (PFS) in 127 patients with T1bN0M0 esophageal squamous cell carcinoma. A, 
PFS curves of patients with WT (n = 112) and those with genomic alterations in FGF19 (n = 15). B, PFS curves of patients with WT (n = 113) 
and those with genomic alterations in FGF4 (n = 14). C, PFS curves of patients with WT (n = 112) and those with genomic alterations in 
MYEOV (n = 15). D, PFS curves of patients with WT (n = 114) and those with genomic alterations in CTTN (n = 13). E, PFS curves of patients 
with WT (n = 106) and those with genomic alterations in ORAOV1 (n = 21)
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