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Drug-induced nephrotoxicity remains a common problem after exposure to medications and diagnostic
agents, which may be heightened in the kidney microenvironment and deteriorate kidney function. In
this study, the toxic effects of fourteen marked drugs with the individual chemical structure were eval-
uated in kidney cells. The quantitative structure–activity relationship (QSAR) approach was employed to
investigate the potential structural descriptors of each drug-related to their toxic effects. The most rea-
sonable equation of the QSAR model displayed that the estimated regression coefficients such as the
number of ring assemblies, three-membered rings, and six-membered rings were strongly related to toxic
effects on renal cells. Meanwhile, the chemical properties of the tested compounds including carbon
atoms, bridge bonds, H-bond donors, negative atoms, and rotatable bonds were favored properties and
promote the toxic effects on renal cells. Particularly, more numbers of rotatable bonds were positively
correlated with strong toxic effects that displayed on the most toxic compound. The useful information
discovered from our regression QSAR models may help to identify potential hazardous moiety to avoid
nephrotoxicity in renal preventive medicine.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Toxic nephropathy is an important topic and relatively general
term of kidney damage to cause acute and chronic renal failure by
toxic effects of chemicals [1], and the mechanisms of nephrotoxic-
ity include inflammation, tubular cell toxicity, and crystal
nephropathy [2]. Nephrotoxicity is frequently induced by a wide
spectrum of therapeutic drugs and environmental pollutants [3].
The nephrotoxicity of kidney disease can be classified into two
types: Acute kidney injury (AKI) and chronic kidney disease
(CKD) [4]. The AKI is characterized by rapid impairment of kidney
function and is defined as an increase in serum creatinine concen-
tration and duration � 7 days, leading to an acute decreased
glomerular filtration rate (GFR) [5]. Clinically, untreated AKI will
lead to CKD and quickly develop to end-stage renal disease (ESRD)
in most cases. The CKD is defined as abnormal kidney function or
glomerular filtration rate (GFR) less than 60 mL/min/1.73 m2,
albuminuria > 30 mg/24 h, and presence of kidney damage marker
for three months [6]. In other cases, the progression of CKD to ESRD
is closely related to the accumulation of toxic metabolites in the
patient’s blood [7]. The underlying condition such as renal fibrosis,
kidney tubular damage, vascular insufficiency, glomerular hyper-
tension, and vascular endothelial cell damage may cause the AKI
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progression into CKD [8]. Therefore, both AKI and CKD are unifying
and can be considered as risk factors for each other.

Recent reports have indicated that drug-induced nephrotoxicity
may cause by cumulative dose-dependent toxicity and is recog-
nized as a contributor to kidney injury resulting in AKI and CKD
[9]. Clinically, numerous drugs are used to treat multiple diseases
that have the nephrotoxic impact on the nephron directly [10],
the common problems include renal dysfunction [11], fluid-
electrolyte disorders [12], and sepsis [13] after exposure to
nephrotoxic drugs during therapy. The nephrotoxic drugs can
cause damage to tubules and nephrons by entering proximal tubu-
lar cells through cellular uptake or apical drug transport [14].
Drug-induced kidney disease (DIKD) is an origin of kidney disease
that constitutes a major cause of AKI and CKD in current clinical
practice [15]. Several prospective studies of AKI have demon-
strated that approximately 14–26% of critically ill patients with
AKI diagnoses were treated with nephrotoxic drugs [16,17]. There-
fore, the prevention of drug-related nephrotoxicity before starting
the treatment is an important issue to avoid or diminish renal tox-
icity. Herein, we focused on toxicity assessment to investigate the
chemical information about toxic substances that cause adverse
effects on kidney cells.

In consideration of unethical animal procedures, alternatives to
animal testing could be used to avoid the drawbacks of animal
experiments [18]. According to the 3Rs principle published by Rus-
sell and Burch, the efforts to reduce, refine and replace animal tests
were developed in recent years to perform more humane animal
research [19]. In order to reduce the number of experimental ani-
mals, various alternative methods of experimental animals have
been suggested including computer-based models [20], cells and
tissue cultures [21], invertebrates [22], alternative organisms
[23], and microorganisms [24]. The aforementioned methods pro-
vide good strategies to overcome the major concern of ethics.
Besides, the advantages associated with the alternative methods
in the assessment of hazardous chemicals are cost-effectiveness,
time efficiency, and less ethical concern [25]. In some cases, com-
bining in silico and in vitro approaches have the potential to esti-
mate the likelihood of hazardous compounds statistically [26–
28]. Therefore, we focused on the relationship between the toxin
structures and their nephrotoxicity in this study. The quantitative
structure–activity relationship (QSAR) is one of the computer-
based drug design methods employed in pharmaceutical sciences
and lead optimization [29], which is also called indirect drug
designing in the field of computational modeling [30]. The QSAR
can provide predictive models based on mathematical methods
that can be employed to study the design of known types of chem-
ical compounds to reach an improved activity [31]. In general, the
QSAR techniques were regarded as a cost-effective tool in precau-
tion of the toxicants for human health and environmental safety
[32,33]. However, there are still very few studies focused on the
nephrotoxic using in silico model such as QSAR modeling in pre-
dicting human nephrotoxicity for drug development [34]. To iden-
tify for investigation of therapeutic drugs with non-nephrotoxic,
we aim to investigate the relationship between chemical structure
and its nephrotoxicity.

Here, we explored the potential of developing predictive QSAR
models for a series of toxic chemicals acting as inhibitors of renal
cells. A series of fourteen different compounds were evaluated
for the activity on the HK-2 cell line. Meanwhile, identification of
the potential chemical addends on the chemicals was investigated
using QSAR models. The QSAR models were constructed with the
GA algorithm to construct the relationship between structural
changes and nephrotoxicity, which can be applied to predict the
nephrotoxicity for new chemical compounds and provide a new
guideline for the development of non-nephrotoxic drugs. The
information from the experimental data and equations of predic-
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tive computer models might guide the potential functional groups
on chemicals that are related to toxic nephropathies of kidney
cells.

2. Materials and methods

2.1. Cell cultures and test compounds

The human kidney proximal tubular epithelial cell line HK-2
was purchased from American Type Culture Collection
(CRL2190). Cells were cultured keratinocyte serum-free (KCSF)
medium containing bovine pituitary extract (40 lg/mL) and
recombinant epidermal growth factor (5 ng/mL) (Gibco BRL, Grand
Island, NY, USA). The cultured cells were maintained in a humidi-
fied 5% CO2 chamber at 37℃. The cultured medium replacement
was performed two times every week. A density around 1 � 105

for HK-2 cell lines was respectively seeded in each well of 96-
well plates then maintained in the humidified incubator for 24 h
before treatment with test compounds. All dissolve solutions of
Thapsigargin, 4-Deoxy Nivalenol, Ochratoxin A, Ochratoxin B,
Fusarenon X, 15-O-Acetyl-4-deoxynivalenol, Cinacalcet, Tacroli-
mus, Mitomycin C, Pantoprazole (Cayman Chemical, Ann Arbor,
MI, USA), Aristolochic acid I (Sigma-Aldrich Corp., St. Louis, MO,
USA), Cisplatin, Amphotericin B, and Cyclosporine A (MedChemEx-
press, Monmouth Junction, NJ, USA) were prepared before cell via-
bility assay.

2.2. Cell viability assay

Sulforhodamine B (SRB) assay was used to evaluate the biolog-
ical activity of HK-2 for test compounds. After 24 h incubation time
with each test compound in 96-well plates, cells were washed with
Phosphate buffered saline (PBS) solution two times and then fixed
with a trichloroacetic acid solution for 1 h. The supernatant was
removed, and each well was washed two times before SRB staining
(Sigma-Aldrich Corp.) After 1 h staining, the residual dye was
removed and then washed two times with 1% acetic acid. Subse-
quently, Tris-buffer (20 mM) was added to each well and then
the absorbance of the colored solution was measured at a test
wavelength of 562 nm via an absorbance microplate reader
(Molecular Devices, Sunnyvale, CA, USA).

The percentage of cell viability was calculated according to the
following equation:

Cell viability% ¼ AbsSample� AbeBlank
AbsControl� AbsBlank

� 100% ð1Þ

where AbsSample indicates the optical density of cells with tested
compounds, AbsControl means the optical density of control cells,
and AbsBlank is the absorbance of PBS.

2.3. Construction of QSAR models

A set of 14 compounds with measured bioactivity data (IC50 val-
ues) were utilized for the QSAR model generation. The 2D structure
of each molecule was created using BIOVIA Discovery Studio (BIO-
VIA, USA), and the molecular properties of the compounds were
calculated with the Calculate Molecular Properties module of Dis-
covery Studio software. Before the process of the QSAR model
study, all of the IC50 values (in lM) were converted to pIC50 values
using eq 2:

pIC50 = � log IC50 � 106 ð2Þ
The genetic function approximation (GFA) algorithm was used

to generate equations of the QSAR model, which contains molecu-
lar descriptors correlating with the activity values. The GFA algo-



Fig. 1. The chemical structure of compounds 1–14 used in cell viability assay on HK-2 cells.
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rithm was employed to select suitable properties related to the
activity value. The detailed settings of QSAR model generation
were displayed in Table S1.

2.4. Statistical analysis

The experimental data were displayed as the means ± standard
deviation (SD), and the differences between each group were mea-
sured by one-way analysis of variance. Each experimental data was
performed independently three times for reproducibility. The
value of cross-validation (q2) to evaluate the accuracy of each QSAR
model was measured by the following equation:

q2 ¼ 1� PRESS
TSS

ð3Þ

where PRESS indicated the predicted residual error sum of squares,
and the TSS means the total sum of squares of the differences.
3. Results

3.1. Cell viability

The molecular structures of fourteen chemical compounds used
to determine the biological inhibitory effects for HK-2 cells are
shown in Fig. 1. The standard deviation (SD) of each measured
half-lethal inhibition concentration (IC50) value was estimated
from three independent experimental groups via SRB assay. The
calculated IC50 values for HK-2 cells treated with the aforemen-
tioned fourteen compounds are listed in Table 1. After treatment
with the fourteen chemical compounds for 24 h, the cell viability
of HK-2 cells decreased in a dose-dependent. Compounds 1 and 5
displayed significant cytotoxicity on HK-2 cells, which have IC50

values of 0.18 lM and 0.35 lM, respectively (Fig. 2). Compounds
6, 10, and 13 are more effective than the other compounds, and
their IC50 values have unit digits for HK-2 cells (Fig. 3). Compounds
2, 3, 4, 8, 9, 10, 12, and 14 have slightly inhibitory effects among
the tested chemical compounds, and the estimated bioactivity
value has micromolar of tens digit. However, the IC50 value of com-
pound 11 is 299.6 lM due to low toxicity (Fig. 3).

3.2. QSAR modeling

The measured IC50 values of HK-2 cells were regarded as the
activity to generate three different simple linear regression models
Table 1
The biological activity of HK-2 cells after exposure to various chemicals for 24 h. The
cell viability was measured by SRB assay.

Comp. Name CAS IC50 (lM)

1 Thapsigargin 67526–95-8 0.18
2 4-Deoxy Nivalenol 51481–10-8 12.31
3 Ochratoxin A 303–47-9 46.15
4 Ochratoxin B 4825–86-9 37.86
5 Fusarenon X 23255–69-8 0.35
6 15-O-Acetyl-4-deoxynivalenol 88337–96-6 3.77
7 Aristolochic acid I 313–67-7 102.60
8 Cinacalcet 226256–56-0 17.14
9 Tacrolimus 104987–11-3 49.39
10 Mitomycin C 50–07-7 5.04
11 Pantoprazole 102625–70-7 299.60
12 Cisplatin 15663–27-1 25.45
13 Amphotericin B 1397–89-3 3.70
14 Cyclosporine A 59865–13-3 38.27
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for the fourteen chemical compounds. The molecular descriptors
were generated from the QSAR analyzing tools of BIOVIA Discovery
Studio. The potent molecular descriptors of the aforementioned
chemicals related to pIC50 values were identified via the GFA algo-
rithm. The chemical structures and the measured IC50 values used
for the model generation are listed in Table 2. The equation of the
suggested QSAR model is described as follows:

Predicted IC50 = -3.0506—0.1228 � CCount + 0.014105
� NumBridgeBonds + 0.94643 � NumHDonors
+ 0.15129 � NumNegativeAtoms � 2.7209
� NumRingAssemblies + 2.7209 � NumRings3
+ 2.9782 � NumRings6 + 0.87064 � NumRotatableBonds

ð4Þ
The least-squares fitting R2, adjusted R2, and cross-validated

correlation coefficient q2 values were three criteria for QSAR model
validation. The top 1 equation of the QSAR model, which had R2 of
0.9988, adj R2 of 0.9968, and q2 of 0.9582, were defined as a rea-
sonable model due to the best match between the predicted and
experimental activity as displayed in Fig. 4. In order to evaluate
the effectiveness of QSAR models constructed by the data set of
all test compounds, the top ten QSAR models with acceptable
statistics for both training and test sets were displayed in
Table S2. To develop an external validation of QSAR models, the
dataset was randomly split into training (70% = 10 chemicals)
and external (30% = 4 chemicals) subsets [35,36]. The best reason-
able QSAR model contained training and test compounds are plot-
ted in Figure S1.

The value of cross-validation q2 beyond 0.6 indicated the indi-
vidual generated equations of the HK-2 cells with accuracy. The
residual errors between the predicted and observed values of all
chemical compounds were summarized in Table 3. The data
showed that each value of the residual error was below 0.1, which
illustrated the recommended QSAR model with high predicted
power.
3.3. Quantitative descriptors of the QSAR equation

As for the best reasonable equation of the toxicity for HK-2 cells,
the molecular descriptors of the fourteen chemical compounds rel-
ative to bioactivities of HK-2 cells include C_Count, Num_Bridge-
Bonds, Num_H_Donors, Num_NegativeAtoms,
Num_RingAssemblies, Num_Rings3, Num_Rings6, and
Num_RotatableBonds. In order to investigate relation, the quanti-
tative data of the aforementioned descriptors for the fourteen
chemical compounds are computed and displayed in Table 4. Here,
C_Count means the number of carbon atoms in the structure of a
chemical compound. Num_BridgeBonds indicates bonds in a
bridgehead ring system and is defined as how many rings share
one bond in common. Num_H_Donors is the number of hydrogen
bond donors including heteroatoms (Oxygen, Nitrogen, Sulfur, or
Phosphorus) to form hydrogen bonds. Num_NegativeAtoms
means the number of atoms with a negative charge.
Num_RingAssemblies is defined as the number of fragments
remaining when all non-ring bonds are removed from a chemical
structure. For instance, the two ring assemblies indicate two ben-
zene rings joined directly by single bonds, while one ring assembly
has one or without benzene rings. Num_Rings3 is defined as the
number of three-membered rings in one organic compound.
Num_Rings6 indicates the number of six-membered rings among
the structure of a chemical compound. As for the last descriptor,



Fig. 2. The effects of compounds 1–8 on the viability of HK-2 cells after treatment with compounds in dose-dependent manner measured by the SRB assay for 24 h. Data of
cell viability were shown as the mean ± SD of three independent experiments. Cell viability % = [(mean optical density of the sample � blank)/ (mean optical density of the
control � blank)] � 100%.
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Fig. 3. The effects of compounds 9–14 on the viability of HK-2 cells after treatment with compound measured by the SRB assay for 24 h.
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Num_RotatableBonds is the number of single bonds between
heavy atoms that are attached to only hydrogens.

4. Discussion

Animal ethics and animal consciousness has been considered an
important issue in recent years [37]. To avoid unethical proce-
dures, in vitro cell-based methods and in silico approaches are use-
ful strategies of alternatives to minimize the experimental animals
used in the assessment of kidney toxicity to reduce costs and time.
The QSAR method can provide a useful strategy to identify key fea-
tures based on the relationship between the Physico-chemical
properties of each chemical and their biological activities for the
investigation of nephrotoxic. The GA algorithm applied in QSAR
1881
studies can generate interpretable equations with numerical esti-
mation to link molecular descriptors to the biological activity,
which has been applied in various areas of drug design such as
leading drug optimization [38] and predictive toxicology [39].

In comparison with early reports, 3D-QSAR and 4D-QSAR
approaches were regarded as useful strategies to construct phar-
macophore features, and the most frequently used methods
include Comparative Molecular Field Analysis (CoMFA), Compara-
tive Molecular Similarity Indices Analysis (CoMSIA) and GRID/
GOLPE program. The regression of the 3D-QSAR approach was
applied using a partial least squares (PLS) algorithm to establish
the optimal number of descriptors in structure-based pharma-
cophore modeling under PHASE software [40,41]. To build the
4D-QSAR model, the electron-conformational genetic algorithm



Table 2
Top ten QSAR models generated by genetic function approximation (GFA) algorithm for HK-2 cells and ranked by values of correlation coefficient (r2).

Index QSAR models r2 r2 (adj) q2 p-
value

1. GFATempModel_1 = 3.0506–0.1228 * C_Count + 0.014105 * Num_BridgeBonds + 0.94643 * Num_H_Donors + 0.15129 *
Num_NegativeAtoms � 2.7209 * Num_RingAssemblies + 2.7209 * Num_Rings3 + 2.9782 * Num_Rings6 + 0.87064 *
Num_RotatableBonds

0.9988 0.9968 0.9582 7.61E-
07

2. GFATempModel_2 = -3.2614–0.12267 * C_Count + 0.14995 * Num_BridgeHeadAtoms + 0.9651 * Num_H_Donors + 0.22799 *
Num_NegativeAtoms � 2.5999 * Num_RingAssemblies + 2.6853 * Num_Rings3 + 2.9419 * Num_Rings6 + 0.87257 *
Num_RotatableBonds

0.9982 0.9954 0.8957 1.85E-
06

3. GFATempModel_3 = -2.6452–0.10623 * C_Count � 0.045306 * N_Count + 0.92158 * Num_H_Donors + 0.11012 *
Num_NegativeAtoms � 2.5817 * Num_RingAssemblies + 2.6126 * Num_Rings3 + 2.799 * Num_Rings6 + 0.8085 *
Num_RotatableBonds

0.9977 0.9941 0.8721 3.56E-
06

4. GFATempModel_4 = -3.9427–0.05922 * H_Count � 0.20301 * IsChiral + 0.14684 * Num_BridgeHeadAtoms + 0.9517 *
Num_H_Donors � 2.5379 * Num_RingAssemblies + 3.0888 * Num_Rings3 + 2.828 * Num_Rings6 + 0.84963 *
Num_RotatableBonds

0.9977 0.9939 0.9703 3.78E-
06

5. GFATempModel_5 = -1.7591–0.14381 * C_Count + 0.97518 * Num_H_Donors � 2.9476 * Num_RingAssemblies + 0.72947 *
Num_Rings + 1.7158 * Num_Rings3 � 0.94125 * Num_Rings5 + 2.2146 * Num_Rings6 + 0.82905 * Num_RotatableBonds

0.9976 0.9938 0.8242 3.93E-
06

6. GFATempModel_6 = -4.2701–0.12096 * C_Count + 0.06777 * O_Count + 0.032085 * Num_AromaticBonds + 0.97449 *
Num_H_Donors � 2.6918 * Num_RingAssemblies + 3.195 * Num_Rings3 + 3.1125 * Num_Rings6 + 0.88274 *
Num_RotatableBonds

0.9976 0.9937 0.8598 4.17E-
06

7. GFATempModel_7 = -3.0312–0.1573 * C_Count � 0.048019 * N_Count + 0.0026228 * Molecular_Mass + 0.95237 *
Num_H_Donors � 2.7969 * Num_RingAssemblies + 2.6027 * Num_Rings3 + 3.0261 * Num_Rings6 + 0.84102 *
Num_RotatableBonds

0.9975 0.9936 0.9237 4.40E-
06

8. GFATempModel_8 = -3.7494 + 0.14322 * O_Count � 0.0059193 * Molecular_Mass + 0.07357 * Num_AromaticBonds + 0.83293
* Num_H_Donors � 2.0552 * Num_RingAssemblies + 3.4906 * Num_Rings3 + 2.4363 * Num_Rings6 + 0.76509 *
Num_RotatableBonds

0.9973 0.993 0.9751 5.36E-
06

9. GFATempModel_9 = -2.8723–0.11324 * C_Count + 0.078083 * O_Count � 0.066154 * HBA_Count + 0.85671 *
Num_H_Donors � 2.424 * Num_RingAssemblies + 2.7191 * Num_Rings3 + 2.7878 * Num_Rings6 + 0.81744 *
Num_RotatableBonds

0.997 0.9923 0.778 6.81E-
06

10. GFATempModel_10 = -3.2288–0.05648 * H_Count + 0.01213 * Num_BridgeBonds + 0.98205 * Num_H_Donors � 0.084766 *
Num_H_Donors_Lipinski � 2.5418 * Num_RingAssemblies + 2.8971 * Num_Rings3 + 2.6477 * Num_Rings6 + 0.79772 *
Num_RotatableBonds

0.997 0.9923 0.9578 6.82E-
06

Fig. 4. Correlation between the actual and predicted activities of HK-2 cells from
the recommended QSAR model.
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(EC-GA) method was used to identify pharmacophore groups and
bioactivity prediction based on electronic structure and conforma-
tional parameters [42,43]. However, 3D or 4D QSAR requires a rel-
atively large and chemically diverse training set, and the predictive
ability of QSAR was limited by the determination of quantum
chemical calculation in three-dimensional space [44–46].

In other cases, the QSAR model with the predictive ability pro-
vides toxicological guidance on unknown hazardous substances
[47]. However, the potential molecular descriptors of the nephro-
toxic drugs are still under investigated. Therefore, we investigated
fourteen marked drug and their nephrotoxicity to generate reason-
able QSAR models for hazardous properties identification in this
1882
study. As for the result of QSAR modeling, we analyzed the descrip-
tors suggested from the ten different generated equation models
responsible for the toxic effects of HK-2 cell. According to the best
reasonable linear regression model of HK-2 cells, the suggested
molecular descriptors were C_Count, Num_BridgeBonds,
Num_H_Donors, Num_NegativeAtoms, Num_RingAssemblies,
Num_Rings3, Num_Rings6, and Num_RotatableBonds. We noted
that descriptors such as Num_RingAssemblies, Num_Rings3, and
Num_Rings6 with high value of the estimated regression coeffi-
cients among the best reasonable equation, and the value of the
above three coefficients are � 2.7209, 2.7209, and 2.9782, respec-
tively. Therefore, these three properties were regarded as critical
features and be used to further study the difference among all
tested compounds.

Comparing the numerical properties of the fourteen com-
pounds, compound 1 had a similar quantitative value of suggested
descriptors to compound 14. These two compounds with similar
numbers of Num_RingAssemblies, Num_Rings3, and Num_R-
ings6. However, the compound 1 have more inhibitory effects than
compound 14 due to the difference in C_Count, Num_H_Donors,
and Num_RotatableBonds descriptors. The compound 1 has less
numbers of carbon atoms and H-bond donors than compound 14.
In contrast, compounds 1 have more numbers of rotatable bonds
than compound 14, suggesting that Num_RotatableBonds
descriptors is favored property while C_Count and Num_H_Do-
nors are disfavor properties to increase the toxic effects. In an ear-
lier report, Yinping Shi et al. indicated that molecular weight,
molecular polar surface area, AlogP, number of hydrogen bond
acceptors, molecular solubility, the number of rotatable bonds,
and the number of aromatic rings were critical physical–chemical
properties in the identification of nephrotoxic drugs [48]. In com-
parison with the aforementioned properties, our suggested equa-
tion of the QSAR model had identical or similar features such as
rotatable bonds, organic rings, and hydrogen bonds. In addition,
Yinping Shi et al.’s study demonstrated that chemical hydrogen



Table 3
The predicted data from the recommended equation of QSAR model.

Comp. Bioactivity (lM) Actual value (pIC50) Predicted value (pIC50) Residual error

1 0.18 6.74 6.75 0
2 12.31 4.91 4.9 0.01
3 46.15 4.34 4.38 �0.05
4 37.86 4.42 4.38 0.04
5 0.35 6.46 6.4 0.06
6 3.77 5.42 5.45 �0.03
7 102.6 3.99 3.99 0
8 17.14 4.77 4.78 �0.02
9 49.39 4.31 4.33 �0.02
10 5.04 5.3 5.35 �0.06
11 299.6 3.52 3.49 0.04
12 25.45 4.59 4.59 0.01
13 3.7 5.43 5.43 0
14 38.27 4.42 4.41 0.01

Table 4
The quantitative values of the chemical descriptors from the recommended equation of QSAR model.

Comp. Activity Molecular property

IC50

(lM)
pIC50 C_Count Num_BridgeBonds Num_H_Donors Num_NegativeAtoms Num_RingAssemblies Num_Rings3 Num_Rings6 Num_RotatableBonds

1 0.18 6.74 34 0 2 0 1 0 0 17
5 0.35 6.46 17 9 3 0 1 1 2 3
13 3.7 5.43 47 40 11 1 2 0 2 3
6 3.77 5.42 17 9 2 0 1 1 2 3
10 5.04 5.3 15 0 4 0 1 1 1 4
2 12.31 4.91 15 9 3 0 1 1 2 1
8 17.14 4.77 22 0 1 0 2 0 3 7
12 25.45 4.59 0 0 2 2 1 3 0 0
4 37.86 4.42 20 0 2 1 2 0 3 5
14 38.27 4.42 62 0 5 0 1 0 0 15
3 46.15 4.34 20 0 2 1 2 0 3 5
9 49.39 4.31 44 25 3 0 2 0 3 7
7 102.6 3.99 17 0 0 2 1 0 3 3
11 299.6 3.52 16 0 2 0 2 0 2 7
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bonding ability is an important feature responsible for toxicity and
bioactivity. Meanwhile, their data indicated that the number of
hydrogen bond acceptors was obviously related to nephrotoxicity
but the number of hydrogen bond donors was not. Interestingly,
the number of hydrogen bond donors was also considered a disfa-
vor property based on the analyzed results. Therefore, our sug-
gested molecular properties might have responsible for
nephrotoxic structures.

Note that compounds 9, 11, and 13 each have similar values of
Num_RingAssemblies, Num_Rings3, and Num_Rings6 descrip-
tors. For the less toxic effects of compounds 9 and 11, the com-
pound 13 has more numbers of carbon atoms, H-bond donors,
and bonds in bridgehead ring systems than compound 11. Interest-
ingly, the compound 13 has one Num_NegativeAtoms descript
than compounds 9 and 11, indicating that the negative atommight
be the critical property increased significantly the toxic effect for
HK-2 cells.

Among our tested drugs, the compounds 2, 5 and 6 have similar
moiety on chemical structure. Regarding the compounds with
more numbers of C_Count, Num_H_Donors, and Num_Rotat-
ableBonds descriptors, compound 5 had more toxic effects on
HK-2 cells than compounds 2 and 6. The compound 5 and 6 have
seventeen carbon atoms and three rotatable bonds, while com-
pounds 2 has fifteen carbon atoms and one rotatable bond. The
finding indicated that a greater number of carbon atoms and rotat-
able bonds may increase the toxic effect on renal cells.

It should be emphasized that we report the first attempt to link
the experimentally revealed toxic effects of marked drugs to the
peculiarities of their molecular properties based on QSAR analysis.
The QSAR model developed in this study provide very useful infor-
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mation on relationships between the chemical structure of the
marked drugs and their toxic effects, which can help to analyze
the nephrotoxicity for more therapeutic drug.
5. Conclusion

To assess kidney toxicity, the equations of QSAR modeling were
generated based on fourteen therapeutic drugs and their inhibitory
effects discovered critical structural features on the renal cells. The
aim of this study is not only employing the in vitro cell-based stud-
ies, but also include the in silico methods as supporting tools that
used for identification of the potential toxicity from chemical prop-
erties. According to the suggested equation of QSAR models, the
most toxic compound 1 with more numbers of rotatable bonds
had stronger toxicity effects on HK-2 cells. In addition, increase
in the number of bridge bond, H-bond donors, and negative atoms
in the structures of the test compounds could promote the toxic
effect. The current study demonstrated that the current used drug
with no common structure can be observe a tendency on nephro-
toxic effect based on QSAR modeling, which may help to provide
useful information on discovery of hazardous property for renal
preventive medicine in the future.
CRediT authorship contribution statement

Hung-Jin Huang: Conceptualization, Methodology, Data cura-
tion, Writing – review & editing. Yu-Hsuan Lee: Conceptualization,
Methodology. Chu-Lin Chou: Conceptualization, Methodology.
Cai-Mei Zheng: Conceptualization, Writing – review & editing,



Hung-Jin Huang, Yu-Hsuan Lee, Chu-Lin Chou et al. Computational and Structural Biotechnology Journal 20 (2022) 1876–1884
Supervision.Hui-Wen Chiu: Conceptualization, Writing – review &
editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This study was supported by the Ministry of Science and Tech-
nology, Taiwan (MOST 108-2314-B-039-061-MY3, MOST 109-
2314-B-038-078-MY3, MOST 110-2314-B-038-140 and MOST
110-2314-B-038-075-MY3) and China Medical University, Tai-
chung, Taiwan (CMU110-N-20).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.04.013.

References

[1] Wang X, Yang S, Li S, Zhao L, Hao Y, et al. Aberrant gut microbiota alters host
metabolome and impacts renal failure in humans and rodents. Gut 2020;69
(12):2131.

[2] Al-Kuraishy HM, Al-Gareeb A, Hussien NR. Betterment of diclofenac-induced
nephrotoxicity by pentoxifylline through modulation of inflammatory
biomarkers. Asian J Pharm Clin Res 2019;12(3):433–7.

[3] Zhao Y-Y, Lin R-C, Chapter Three - Metabolomics in Nephrotoxicity, in: G.S.
Makowski (Ed.) Adv Clin Chem, Elsevier2014, pp. 69-89.

[4] Sri Laasya TP, Thakur S, Poduri R, Joshi G. Current insights toward kidney
injury: Decrypting the dual role and mechanism involved of herbal drugs in
inducing kidney injury and its treatment. Curr Opin Biotechnol
2020;2:161–75.

[5] Uber AM, Sutherland SM. Nephrotoxins and nephrotoxic acute kidney injury.
Pediatr Nephrol 2020;35(10):1825–33.

[6] Georgianos PI, Agarwal R. Hypertension in chronic kidney disease (CKD):
Diagnosis, classification, and therapeutic targets. Am J Hypertens 2020;34
(4):318–26.

[7] Lim YJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic Toxins in the
Progression of Chronic Kidney Disease and Cardiovascular Disease:
Mechanisms and Therapeutic Targets. Toxins 2021;13(2).

[8] Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, et al. Acute
kidney injury. Nat Rev Dis Primers 2021;7(1):52.

[9] Rolland A-L, Garnier A-S, Meunier K, Drablier G, Briet M. Drug-Induced Acute
Kidney Injury: A Study from the French Medical Administrative and the French
National Pharmacovigilance Databases Using Capture-Recapture Method. J
Clin Med 2021;10(2).

[10] Patel JB, Sapra A. Nephrotoxic Medications, StatPearls, StatPearls Publishing
Copyright � 2022. FL: StatPearls Publishing LLC., Treasure Island; 2022.

[11] Okoro RN, Farate VT. The use of nephrotoxic drugs in patients with chronic
kidney disease. Int J Clin Pharm 2019;41(3):767–75.

[12] Verzicco I, Regolisti G, Quaini F, Bocchi P, Brusasco I, et al., Electrolyte
Disorders Induced by Antineoplastic Drugs, Front Oncol 2020;10.

[13] Petejova N, Martinek A, Zadrazil J, Kanova M, Klementa V, et al. Acute kidney
injury in septic patients treated by selected nephrotoxic antibiotic agents—
pathophysiology and biomarkers—A review. Int J Mol Sci 2020;21(19).

[14] Perazella MA. Drug-induced acute kidney injury: diverse mechanisms of
tubular injury. Curr Opin Crit Care 2019;25(6).

[15] Liu C, Yan S, Wang Y, Wang J, Fu X, et al. Drug-Induced hospital-acquired acute
kidney injury in China: A multicenter cross-sectional survey. Kidney Dis-Basel
2021;7(2):143–55.

[16] Awdishu L, Mehta RL. The 6R’s of drug induced nephrotoxicity. BMC Nephrol
2017;18(1):124.

[17] Hoste EAJ, Bagshaw SM, Bellomo R, Cely CM, Colman R, et al. Epidemiology of
acute kidney injury in critically ill patients: the multinational AKI-EPI study.
Intensive Care Med 2015;41(8):1411–23.

[18] Huang H-J, Lee Y-H, Hsu Y-H, Liao C-T, Lin Y-F, et al. Current strategies in
assessment of nanotoxicity: alternatives to in vivo animal testing. Int J Mol Sci
2021;22(8).

[19] Alves VM, Auerbach SS, Kleinstreuer N, Rooney JP, Muratov EN, et al. Curated
data in — trustworthy in silico models out: the impact of data quality on the
reliability of artificial intelligence models as alternatives to animal testing.
Altern Lab Anim 2021;49(3):73–82.

[20] Zheng Z, Arp HPH, Peters G, Andersson PL. Combining in silico tools with
multicriteria analysis for alternatives assessment of hazardous chemicals:
1884
accounting for the transformation products of decaBDE and its alternatives.
Environ Sci Technol 2021;55(2):1088–98.

[21] Kuhlmann C, Schenck TL, Tluczynski K, Aszodi A, Metzger P, et al. Experimental
approach to nasal septal cartilage regeneration with adipose tissue-derived
stem cells and decellularized porcine septal cartilage. Xenotransplantation
2021;28(2):e12660.

[22] Falk MJ. The pursuit of precision mitochondrial medicine: Harnessing
preclinical cellular and animal models to optimize mitochondrial disease
therapeutic discovery. J Inherit Metab Dis 2021;44(2):312–24.

[23] Cadena M, Ning L, King A, Hwang B, Jin L, et al. 3D Bioprinting of neural tissues.
Adv Healthc Mater 2021;10(15):2001600.

[24] Leoni C, Gattulli BAR, Pesole G, Ceci LR, Volpicella M. Amylomaltases in
extremophilic microorganisms. Biomolecules 2021;11(9).

[25] Rim K-T. In silico prediction of toxicity and its applications for chemicals at
work. Toxicol Environ Health Sci 2020;12(3):191–202.

[26] Benfenati E, Chaudhry Q, Gini G, Dorne JL. Integrating in silico models and
read-across methods for predicting toxicity of chemicals: A step-wise strategy.
Environ Int 2019;131:105060.

[27] Kosugi Y, Hosea N. Prediction of oral pharmacokinetics using a combination of
in silico descriptors and in vitro ADME properties. Mol Pharm 2021;18
(3):1071–9.

[28] Wang D, Rietdijk MH, Kamelia L, Boogaard PJ, Rietjens IMCM. Predicting the
in vivo developmental toxicity of benzo[a]pyrene (BaP) in rats by an in vitro–
in silico approach. Arch Toxicol 2021;95(10):3323–40.

[29] Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, et al. Artificial
intelligence to deep learning: machine intelligence approach for drug
discovery. Mol Divers 2021;25(3):1315–60.

[30] Mao J, Akhtar J, Zhang X, Sun L, Guan S, et al. Comprehensive strategies of
machine-learning-based quantitative structure-activity relationship models.
iScience 2021;24(9):103052.

[31] Huang H-J, Chetyrkina M, Wong C-W, Kraevaya OA, Zhilenkov AV, et al.
Identification of potential descriptors of water-soluble fullerene derivatives
responsible for antitumor effects on lung cancer cells via QSAR analysis.
Comput Struct Biotechnol J 2021;19:812–25.

[32] Huang T, Sun G, Zhao L, Zhang N, Zhong R, et al. Quantitative structure-activity
relationship (QSAR) studies on the toxic effects of nitroaromatic compounds
(NACs): A systematic review. Int J Mol Sci 2021;22(16).

[33] Gu L, Lu J, Li Q, HuangW, Wu N, et al. Synthesis, extracorporeal nephrotoxicity,
and 3D-QSAR of andrographolide derivatives. Chem Biol Drug Des 2021;97
(3):592–606.

[34] Lee S, Kang Y-M, Park H, Dong M-S, Shin J-M, et al. Human nephrotoxicity
prediction models for three types of kidney injury based on data sets of
pharmacological compounds and their metabolites. Chem Res Toxicol 2013;26
(11):1652–9.

[35] Mathioudakis NN, Abusamaan MS, Shakarchi AF, Sokolinsky S, Fayzullin S,
et al. Development and validation of a machine learning model to predict near-
term risk of iatrogenic hypoglycemia in hospitalized patients. JAMA Network
Open 2021;4(1). e2030913-e2030913.

[36] Gholamy A, Kreinovich V, Kosheleva O, Why 70/30 or 80/20 relation between
training and testing sets: A pedagogical explanation, 2018.

[37] Devolder K, Yip LJ, Douglas T. The Ethics of creating and using human-animal
chimeras. ILAR J 2019;60(3):434–8.

[38] Huang H-J, Kraevaya OA, Voronov II, Troshin PA, Hsu S-H. Fullerene derivatives
as lung cancer cell inhibitors: investigation of potential descriptors using QSAR
approaches. Int J Nanomedicine 2020;15:2485–99.

[39] Gajewicz-Skretna A, Furuhama A, Yamamoto H, Suzuki N. Generating accurate
in silico predictions of acute aquatic toxicity for a range of organic chemicals:
Towards similarity-based machine learning methods. Chemosphere
2021;280:130681.

[40] Durdagi S, Erol I, Salmas RE, Patterson M, Noskov SY. First universal
pharmacophore model for hERG1 K+ channel activators: acthER. J Mol Graph
Model 2017;74:153–70.

[41] Salmas RE, Stein M, Yurtsever M, Seeman P, Erol I, et al. The signaling pathway
of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA)
and the construction of pharmacophore models for D2R ligands. J Biomol
Struct Dyn 2017;35(9):2040–8.

[42] Sahin K, Saripinar E, Durdagi S. Combined 4D-QSAR and target-based
approaches for the determination of bioactive Isatin derivatives. SAR QSAR
Environ Res 2021;32(10):769–92.

[43] Sahin K, Saripinar E. A novel hybrid method named electron conformational
genetic algorithm as a 4D QSAR investigation to calculate the biological
activity of the tetrahydrodibenzazosines. J Comput Chem 2020;41
(11):1091–104.

[44] Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, et al. QSAR
Modeling: Where Have You Been? Where Are You Going To? J Med Chem
2014;57(12):4977–5010.

[45] Jagiello K, Grzonkowska M, Swirog M, Ahmed L, Rasulev B, et al. Advantages
and limitations of classic and 3D QSAR approaches in nano-QSAR studies based
on biological activity of fullerene derivatives. J Nanopart Res 2016;18(9):256.

[46] Andrade CH, Pasqualoto KFM, Ferreira EI, Hopfinger AJ. 4D-QSAR: perspectives
in drug design. Molecules 2010;15(5).

[47] Chinen K, Malloy T. QSAR Use in REACH analyses of alternatives to predict
human health and environmental toxicity of alternative chemical substances.
Integr Environ Assess Manag 2020;16(5):745–60.

[48] Shi Y, Hua Y, Wang B, Zhang R, Li X. In silico Prediction and insights into the
structural basis of drug induced nephrotoxicity. Front Pharmacol 2022;12.

https://doi.org/10.1016/j.csbj.2022.04.013
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0005
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0005
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0005
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0010
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0010
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0010
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0020
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0020
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0020
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0020
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0025
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0025
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0030
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0030
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0030
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0035
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0035
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0035
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0040
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0040
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0045
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0045
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0045
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0045
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0050
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0050
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0055
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0055
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0070
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0070
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0070
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0075
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0075
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0080
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0080
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0080
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0085
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0085
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0090
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0090
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0090
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0095
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0095
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0095
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0100
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0100
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0100
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0100
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0105
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0105
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0105
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0105
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0110
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0110
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0110
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0110
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0115
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0115
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0115
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0120
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0120
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0125
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0125
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0130
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0130
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0135
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0135
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0135
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0140
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0140
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0140
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0145
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0145
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0145
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0150
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0150
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0150
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0155
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0155
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0155
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0160
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0160
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0160
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0160
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0165
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0165
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0165
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0170
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0170
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0170
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0175
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0175
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0175
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0175
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0180
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0180
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0180
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0180
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0190
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0190
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0195
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0195
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0195
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0200
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0200
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0200
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0200
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0205
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0205
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0205
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0210
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0210
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0210
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0210
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0215
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0215
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0215
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0220
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0220
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0220
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0220
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0225
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0225
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0225
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0230
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0230
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0230
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0235
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0235
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0240
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0240
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0240
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0245
http://refhub.elsevier.com/S2001-0370(22)00131-3/h0245

	Investigation of potential descriptors of chemical compounds on prevention of nephrotoxicity via QSAR approach
	1 Introduction
	2 Materials and methods
	2.1 Cell cultures and test compounds
	2.2 Cell viability assay
	2.3 Construction of QSAR models
	2.4 Statistical analysis

	3 Results
	3.1 Cell viability
	3.2 QSAR modeling
	3.3 Quantitative descriptors of the QSAR equation

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


