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Up-to-date information regarding impervious surface is valuable for urban planning and management.)e objective of this study
is to develop neural computing models used for automatic impervious surface area detection at a regional scale. To achieve this
task, advanced optimizers of adaptive moment estimation (Adam), a variation of Adam called Adamax, Nesterov-accelerated
adaptive moment estimation (Nadam), Adam with decoupled weight decay (AdamW), and a new exponential moving average
variant (AMSGrad) are used to train the artificial neural network models employed for impervious surface detection. )ese
advanced optimizers are benchmarked with the conventional gradient descent with momentum (GDM). Remotely sensed images
collected from Sentinel-2 satellite for the study area of Da Nang city (Vietnam) are used to construct and verify the proposed
approach. Moreover, texture descriptors including statistical measurements of color channels and binary gradient contour are
employed to extract useful features for the neural computing model-based pattern recognition. Experimental result supported by
statistical test points out that the Nadam optimizer-based neural computing model has achieved the most desired predictive
accuracy for the data collected in the studied region with classification accuracy rate of 97.331%, precision� 0.961, recall� 0.984,
negative predictive value� 0.985, and F1 score� 0.972. )erefore, the model developed in this study can be a helpful tool for
decision-makers in the task of urban land-use planning and management.

1. Introduction

Urban impervious surface, developed by anthropogenic ac-
tivities, is one of the most crucial land cover forms. )e
impenetrable surface areas consist of buildings, roads, parking
lots, sidewalks, pavements, and many others. )ese surfaces
prevent the absorption of water into the soil. Previous works
have pointed out the impact of impervious surface areas on
water quality and the frequency/intensity of downstream
runoff [1–5]. )erefore, they have been identified as a key
indicator used in evaluating urbanization influences on
surrounding natural environment and ecosystem [6].

Due to such reasons, up-to-date information regarding
impervious surface is of paramount importance for sup-
porting urban land management/planning, detection of

unplanned built-up areas, study of regional land-use pattern,
and ecosystemmonitoring [5, 7–10]. In developing countries
including Vietnam, the conventional approach for obtaining
such information is field survey. Nevertheless, this approach
is very time-consuming and requires considerable effort in
data collection, processing, and storing. )erefore, a quick
and cost-effective method for substituting this conventional
approach is a practical need for municipal land-use
managers.

In recent years, remote sensing technology and pro-
cessing of satellite images have been increasingly applied to
tackle various challenging problems in a wide span of do-
mains including agriculture [11–13], natural hazard pre-
vention [14–17], civil engineering [18–20], and
environmental engineering [21–23].
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Following this trend of research, scholars and practi-
tioners have increasingly relied on remote sensing and
geographic information system (GIS) technologies to im-
prove the productivity and accuracy of the impervious
surface detection task [24, 25]. )ese technologies have been
proven to be viable tools for surveying urban landscapes
which are rapidly changing and providing timely infor-
mation regarding urban growth [26–29]. Based on remotely
sensed images, statistical and machine learning models can
be constructed for automatic impervious surface extraction
[8].

Lo [30] developed a computer-basedmodel for analyzing
remote sensing data obtained from Landsat image; this
model only relied on spectral information of image pixels to
derive land form categories. Zha et al. [29] performed built-
up areas mapping with the utilization of normalized dif-
ference vegetation index and normalized difference built-up
index; the proposed model analyzed Landsat )ematic
Mapper images and achieved an accuracy of 92.6%. A
multivariate statistical analysis approach has been put for-
ward in [28] for characterizing urban growth; this approach
could reduce the modeling error to less than 10%. Yang et al.
[5] employed a combination of Landsat ETM+ and high-
resolution imagery to construct a decision tree-based im-
pervious surface mapping. Multilayer perceptron neural
network and support vector machine have been used in [6]
to classify image samples obtained from Landsat-5 TM
Imager.

Zhang et al. [31] integrated spectral information and
multivariate texture to extract numerical features from re-
motely sensed image; the one-class support vector machine
is then used for pattern classification. Zhang et al. [32]
investigated the capability of random forest approach for
impervious surface estimation with a combined utilization
of synthetic aperture radar and optical remote sensing
images. A backpropagation neural network has been con-
structed by Patel and Mukherjee [33] to extract the im-
pervious features using Landsat )ematic Mapper data. Son
et al. [34] introduced an impervious surface fraction algo-
rithm (ISFA) for automatic impervious surface extraction;
this algorithm is applied with Landsat data and attains an
accuracy of 92.8%. Gupta et al. [7] compared the perfor-
mances of supervised maximum likelihood algorithms, in-
dex-based classification, and neural classification and points
out that the neural classification model achieves the most
desired outcome.

It can be seen from the literature that most of the
previous works have employed themedium resolution open-
source image dataset such as Landsat )ematic Mapper to
extract impervious surface [35]. Because of the complex
texture of urban landscape, these coarse resolution images
feature certain limitations on impervious surface mapping.
Xu et al. [36] investigated the use of the 10m resolution
Sentinel-2A dataset for impervious area extraction and
pointed out the superiority of high-resolution data over the
conventional 30m resolution Landsat dataset. Misra et al. [8]
attempted to employ high-resolution image obtained from
Sentinel-2 to improve the quality of impervious surface
detection result; the authors rely on spectral angle mapper,

support vector machine, and neural network to carry out
pattern recognition task.

Among the machine learning approaches employed in
remote sensing and GIS field, neural computing models have
been extensively employed and remain effective tools for
recognizing patterns in remotely sensed images [37–44]. It is
because neural computational models with their capability
of universal function approximator are capable of learning
and recognizing complex patterns [45]. Nevertheless, the
employed neural computing approaches have mainly relied
on the conventional gradient descent for model training
[7, 8, 37, 46]. Although this conventional training method
can help to attain acceptable results in many application
cases, it also suffers from slow convergence rate and trapping
in local optimal [47]. )ese facts definitely reduce the
generalization and accuracy of prediction models con-
structed by neural computational approaches. )erefore,
there is a pressing need to investigate and apply advanced
training algorithms to mitigate the disadvantages of the
conventional gradient descent.

In recent years, various advanced gradient-based opti-
mization algorithms have been proposed and used for
training neural computing models. However, few research
works have investigated these state-of-the-art algorithms in
constructing neural computing models used for remote
sensing-based impervious surface detection. )erefore, this
study is an attempt to fill this gap in the current literature.
)e advanced optimizers of adaptive moment estimation
(Adam) [48], a variation of Adam called Adamax [48],
Nesterov-accelerated adaptive moment estimation (Nadam)
[49], Adam with decoupled weight decay (AdamW) [50],
and a new exponential moving average variant (AMSGrad)
[51] are employed for automatic impervious surface
extraction.

In addition, Da Nang city (Vietnam) has been selected as
the study area. Image texture analysis technique including
statistical measurements of color channels [52] and binary
gradient contour [53] are used to extract useful features from
remotely sensed images obtained from Sentinel-2 satellite.
)e extracted features are then employed by neural com-
puting models for automatic impervious surface detection in
the study area. )erefore, one major contribution of the
current study is to establish an advanced hybridization of
machine learning and image processing used for constructing
an impervious surface map for the study area of Da Nang city.

)e subsequent sections of the article are organized as
follows: the research methodology is reviewed in the second
section. )e proposed neural computing model trained by
the aforementioned advanced optimizers used for imper-
vious surface area detection is presented in the next section,
followed by the fourth section which reports experimental
results. Several concluding remarks on the current study are
stated in the final section.

2. Research Methodology

2.1. General Description of the Study Area. Da Nang city is
located in the Central Vietnam (refer to Figure 1). Its latitude
is between 15°15′20″N and 16°14′10″N; its longitude is from
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107°18′30″E to 108°20′00″E [54]. It is a port city located on
the coast of the East Sea. In 2015, Da Nang had a population
of 1,046,876 and an area of 1,285.4 km2 [55]. )is city is
divided into 8 districts: 6 urban districts and 2 rural districts
[56].

Da Nang is ranked as the fourth largest city by pop-
ulation in Vietnam and serves as an economic base in the
service and industrial sectors in Central Vietnam. Due to
such reasons, the population of this city is rising rapidly
from approximately 673,000 in 1997 to about 1 million in
2014 [57]. )is population growth leads to a significant
urban expansion. )erefore, Da Nang city is selected as the
study area in this article.

2.2.'e Image Data Used. )e image data obtained from the
Sentinel-2 onMarch 13, 2020, is used in this study to perform
impervious surface extraction.)e bands of 4 (red), 3 (green),
and 2 (blue) with spatial resolution of 10m are selected to
compose the image of the study area. )e size of each image
file (i.e., bands 2, 3, and 4) is 235,484KB. A full-scene map of
DaNang city (5559× 3444 pixels) is presented in Figure 2. It is
noted that these Sentinel-2’s bands have been opened in
Sentinel Application Platform (SNAP) software package [58].
)e original Sentinel-2’s bands obtained from USGS [59] are

converted to TIF format using the geometric operation of
resampling supported by the SNAP software package. For
more details of the SNAP software documentation, readers
are guided to articles provided in [60]. Moreover, the used
map projection of the obtained images is Universal Transverse
Mercator (UTM) within Zone 48N–Datum World Geodetic
System (WGS) 84.

Based on the original composed image, the contrast
enhancement technique of histogram equalization (refer to
Figure 3) is employed to create a better image for subsequent
analysis. )e purpose of histogram equalization is to con-
struct an image with equally distributed brightness levels
[61]. )is image processing technique meliorates the global
contrast of the original image and highlights the image
texture. In addition, to facilitate the process of impervious
surface detection, pixels at mountainous regions covered by
cloud and large beach areas are cast out by masking oper-
ation [62]. In addition, the normalized difference vegetation
index (NDVI) [63] is computed to remove large water bodies
from the study area. Via experimentation with the collected
image, pixels belonging to large water bodies are associated
with negative NDVI values and can be effectively excluded.
)eNDVI computation requires the band 4 (red) and band 8
(near-infrared band); it is obtained via the following
equation:

Figure 1: )e study area.
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NDVI �
NIR − B4
NIR + B4

, (1)

where NIR and B4 denote a near-infrared band and band 4,
respectively.

2.3. Image Texture Analysis

2.3.1. Statistical Measurements of Image Bands. For the
purpose of impervious surface detection, the statistical
measurements of bands 4 (red), 3 (green), and 2 (blue) are

employed in this study. It is noted that this research per-
forms impervious surface detection for each image patch of
10×10 pixels. )us, to derive statistical measurements, the
first-order histogram of an image patch S denoted as P (I) is
computed as follows [52, 64]:

Pb(I) �
NI,b

PN
, (2)

where b denotes a band index, NI,b is the number of pixels
having the value of I, and PN denotes the number of pixels
within an image patch.

Figure 3: )e map of the study area enhanced by histogram equalization.
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Figure 2: Color composite of Sentinel-2 bands 4 (red), 3 (green), and 2 (blue) of the study area (Da Nang city, Vietnam).
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Accordingly, the mean (μb), standard deviation (σb),
skewness (Sb), kurtosis (Kb), entropy (Eb), and range (Rb) are
computed as follows [52, 64]:

μb � 􏽘
NL−1

i�0
Ii,b × Pb(I),

σb �

�������������������

􏽘

NL−1

i�0
Ii,b − μb􏼐 􏼑

2
× Pb(I)

􏽶
􏽴

,

Sb �
􏽐

NL−1
i�0 Ii,b − μb􏼐 􏼑

3
× Pb(I)

σ3b
,

Kb �
􏽐

NL−1
i�0 Ii,b − μb􏼐 􏼑

4
× Pb(I)

σ4b
,

Eb � − 􏽘
NL−1

i�0
Pb(I) × log2 Pb(I)( 􏼁,

Rb � Max Ib( 􏼁 − Min Ib( 􏼁,

(3)

where Ii,b � 0, 1, 2, . . ., 255. For 8-bit image, NL� 256
represents the number of discrete intensity values.

2.3.2. Binary Gradient Contour (BGC) for Texture
Discrimination. Texture is a crucial tool for visual per-
ception in computer vision. Since image patches of im-
pervious surface and pervious surface can have different
properties of coarseness, roughness, directionality, con-
trast, and regularity, using texture analysis can be helpful
to delineate them. )is study employs the BGC technique
[53] for the task of texture discrimination. )e BGC
combines the analyses of local structures and occurrences
to derive texture features. Notably, this method has the
advantages of low computational expense and invariant to
monotonic illumination changes [65]. It also possesses
good discriminative powers demonstrated in previous
studies [53, 66].

Essentially, the BGC carries out a pairwise comparison of
adjacent pixels located in one or more closed paths along the
periphery of a neighborhood of the size 3× 3 pixels [65].
Fernandez et al. [53] put forward three versions of BGC
which are the single-loop (BGC1), double-loop (BGC2), and
triple-loop (BGC3) descriptors. To ease the description of
these descriptors, a square image patch Sm,n is denoted as
follows:

S �

Im−1,n−1 Im−1,n Im−1,n+1

Im,n−1 Im,n Im,n+1

Im+1,n−1 Im+1,n Im+1,n+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where Im,n denotes the central pixel.
Based on the definition of S, the single-, double-, and

triple-loop BGC formulas are expressed as follows [53]:

BGC1 � 􏽘
7

n�0
λ In − I(n+1)mod8􏼐 􏼑 × 2n

− 1,

BGC2 � 15 × 􏽘
3

n�0
λ I2nmod8 − I2(n+1)mod8􏼐 􏼑 × 2n

+ 􏽘
3

n�0
λ I2n+1 − I(2n+3)mod8􏼐 􏼑 × 2n

− 16,

BGC3 � 􏽘
7

n�0
λ I3nmod8 − I3(n+1)mod8􏼐 􏼑 × 2n

− 1,

where λ(x) �
1, if x≥ 0,

0, if x< 0.
􏼨

(5)

2.4. Artificial Neural Network (ANN) for Pattern
Classification. A general structure of an ANN for two-class
pattern recognition tasks is presented in Figure 4.)ismodel
typically contains an input layer, a hidden layer, and an
output layer [67]. In this study, the input layer receives
signals in the form of texture information. )e hidden layer
consists ofM neurons which process the texture information
to yield the input of the softmax activation function. )e
usual activation function used by the neurons in the hidden
layer is the log-sigmoid function. )e softmax activation
function converts its input signals to class probabilities
within the range of 0 and 1. It is noted that interactions
among neurons are expressed by connection weights. )ese
sophisticated interactions permit the overall neural com-
puting model to learn and infer complex mapping rela-
tionships [68].

)e knowledge learnt by a neural computing model is
stored in matrices of connection weights. Herein, WL0L1
denotes the matrix of connection weights between the input
and hidden layer.WL1L2 represents that between the hidden
and the softmax layer. Let X ∈ RD denote the matrix of input
feature. )e computation process of an ANN model can be
compactly defined as follows:

f(X) � δ b1 + WL1L2 × fA b0 + WL0L1 × X( 􏼁( 􏼁􏼂 􏼃, (6)

where b0 and b1 denote two bias vectors of the input and
hidden layers, respectively, fA represents the activation
function, and δ represents the softmax activation function.

)e softmax activation function is given by

δ(z) �
exp zi( 􏼁

􏽐
CN−1
i�0 exp zi( 􏼁

, (7)

where CN� 2 denotes the number of output classes.

2.5. 'e Employed Network Training Methods

2.5.1. 'e Network’s Cost Function. To construct a neural
computing model used for impervious surface detection, its
model parameters must be identified. Herein, given a set of
training data samples, the network parameters including the
two matrices of WL0L1 and WL1L2 can be adapted via the
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framework of error backpropagation [69, 70] with mini-
batch mode [71]. For the task of data classification, the cross
entropy cost function is often used as the objective function
(E) for training a neural computing model [72]. )e cross-
entropy function is given by

E � −
1

Nd

􏽘

Nd

n�1
Tln(Y) +(1 − T)ln(1 − Y), (8)

where Nd denotes the number of data samples; T and Y
represent the actual and predicted class labels, respectively.

2.5.2. 'e Network’s Optimizers

Gradient Descent withMomentum (GDM).)e conventional
method of gradient descent with momentum (GDM) is
widely employed for training neural networks and is used as
the benchmark method in this study. Via the GDM, the
weights of a neural computing model are adapted as follows:

wt+1 � wt − αL ×
dE

dwt

+ λM × wt, (9)

where wt and wt+1 are the previous and updated network
weights, E represents the objective function, and αL and λM

are the learning rate and the momentum term, respectively.
Adaptive Moment Estimation (Adam). )e Adam, intro-
duced by Yoshua and Yann [48], can be considered as a
general algorithm for first-order gradient-based optimiza-
tion of stochastic objective functions. One notable advantage
of this optimizer is that it is capable of adaptively fine-tuning
the learning rate parameter during the training process. )e
Adam relies on information obtained from the average of the
secondmoments of the gradients.)is optimizer also utilizes
an exponentially decaying average of past gradients. In

addition, this optimizer requires an initial setting of three
hyperparameters: the step size α and the two exponential
decay rates (β1 � 0.9 and β2 � 0.9999). When the gradient of
model parameters is computed, the optimized parameters of
a neural computing model are adapted via [48]

wt � wt−1 − α ×
􏽢mt

��
vt

√
+ ε

, (10)

where 􏽢mt and 􏽢vt denote the bias-corrected first moment
estimate and the bias-corrected second raw moment esti-
mate, respectively. Adamax. )e Adamax [48] is a variant of
the Adam in which the update rule for model weights is to
scale their gradients inversely proportional to a Lp norm of
their current and previous gradients. )e neural network’s
weights are updated as follows:

wt � wt−1 −
α

1 − βt
1

×
mt

max β2ut−1, gt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

, (11)

where ut � 0 at t� 0; ut represents the biased second raw
moment estimate. Nesterov-Accelerated Adaptive Moment
Estimation (Nadam). )e Nadam optimizer, described in
[49], attempts to incorporate Nesterov-accelerated adaptive
moment estimation into the Adam. )e major advantage of
this integrated approach is that the employed adaptive
moment estimation helps to perform highly accurate step in
the gradient direction via updates of model parameters with
the momentum step before the computation of the gradient
[73]. )e update rule of the Nadam is stated as follows
[49, 73]:

wt � wt−1 − α ×
mt��
􏽢vt

􏽰
+ ε

, (12)

where
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Figure 4: General structure of the employed ANN model used for two-class pattern recognition.
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mt � 1 − β1,t􏼐 􏼑􏽢gt + β1,t+1 􏽢mt,

􏽢mt �
mt

1 − 􏽑
t+1
i�1β1i

,

􏽢gt �
gt

1 − 􏽑
t+1
i�1β1i

.

(13)

Adam with Decoupled Weight Decay (AdamW). )e
AdamW [50] optimizer integrates weight decay into the
original Adam. )e weight decay is a widely used approach
for regularizing the network weights. It is because large
weights may lead to an overfitted model. Accordingly, the
update rule of the AdamW algorithm is given by

wt � wt−1 − α ×
􏽢mt��

􏽢vt

􏽰
+ ε

+ λwt−1􏼠 􏼡, (14)

where λ denotes a hyperparameter. A New Exponential
Moving Average Variant (AMSGrad). )e AMSGrad opti-
mizer [51] attempts to improve the convergence of the Adam
optimizer by the employment of long-term memory of past
gradient. To avoid poor convergence and trapping in local
optima, Reddi et al. [51] argues that the maximum of past
squared gradients vt should be used for parameter update
instead of the exponential average employed by the Adam
optimizer. )e following equation is used to update the
neural network’s parameter:

wt � wt−1 − α ×
mt��
􏽢vt

􏽰
+ ε

, (15)

where 􏽢vt denotes the updated bias-corrected 2nd raw mo-
ment estimate.

3. The Proposed Neural ComputingModel with
Advanced Optimizers for Automatic
Impervious Surface Detection

)is section of the article presents the general description of
the proposed neural computational method employed for
automatic impervious surface detection. )e proposed
model is an integration of image texture analysis, neural
network-based pattern recognition, and advanced opti-
mizers used for neural network training. An overview of the
data processing and the training phase of the proposed
neural computing model used for impervious surface de-
tection is demonstrated in Algorithm 1. )e general
structure of the newly developed model is presented in
Figure 5. It is noted that the proposed neural computational
model used for impervious surface detection has been de-
veloped in Visual C#.NET environment (Framework 4.6.2)
and performed with the ASUS FX705GE-EW165T (Core i7
8750H, 8GB Ram, 256GB solid-state drive).

)e model operation can be divided into four steps:

(i) Data preprocessing
(ii) Image data sampling

(iii) Image texture computation
(iv) Neural computing model training and prediction

3.1. Data Preprocessing. In this step, the original Sentinel-2’s
bands are opened in the SNAP software package and con-
verted to TIFF format. )e image process technique of
histogram equalization is employed to enhance the contrast
of the original image. As mentioned earlier, the NDVI is also
calculated using the obtained bands to cast out large water
bodies from the study area.

3.2. Image Data Sampling. To establish the neural network
model for automatic impervious surface area detection, it is
required to prepare a training dataset with assigned ground
truth labels.)is study has sampled pervious and impervious
areas within the map of the study area (refer to Figure 6).
Each sample with the size of 100×100 pixels is used to create
nonoverlapped image patches with the size of 10×10 pixels.
In total, there are 3,000 image patches that are generated
from image samples. To ensure a balanced dataset, the
numbers of the negative (pervious surface) and positive
(impervious surface) samples are both 1,500. Based on these
image patches, the image texture computation methods can
be carried out to extract useful feature for the pattern
recognition phase.

3.3. Image Texture Computation. Using image samples
generated from the previous step, the texture analysis
methods using statistical measurements of color channels
and the BGC can be performed. )e texture computation
process converts image samples of the negative (pervious
surface) and the positive (impervious surface) classes into
numerical features. )ese numerical features are subse-
quently used for the task of pattern recognition performed
by the neural computing models. )e statistical measure-
ments of the three color channels include themean, standard
deviation, skewness, kurtosis, entropy, and range indices.
Since the number of the employed bands obtained from the
Sentinel-2 is 3, there are 6× 3�18 features attained from
statistical measurements of color channels (refer to
Figure 7).

In addition, the BGC is performed with the three ver-
sions of single-loop (BGC1), double-loop (BGC2), and triple-
loop (BGC3). Each of them produces a histogram which
describes the texture information of image samples. )is
study computes the measurements of mean, standard de-
viation, skewness, kurtosis, and entropy from each histo-
gram. Hence, the BGC texture descriptors yield 5× 3�15
features (refer to Figure 8).

)us, the total number of features extracted from the
used texture descriptors is 33. Moreover, to facilitate the data
classification based on the employed neural computing
model, the texture-based features have been preprocessed by
the Z-score data normalization. )e Z-score equation is
given by
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3.1 Histogram
equalization

3.1 Original
map

Statistical
properties of

Sentinel-2 bands

Binary gradient
contours

3.2 Training image
samples

3.2 Data
sampling

GDM

Adam

Adamax

Nadam

AdamW

AMSGrad

Optimizer
selection

3.3 Image texture
computation

3.2 Testing
samples Impervious

surface detection
results

3.4 Neural computing
model prediction

3.4 Neural computing
model training

3.3 Image texture
computation

Figure 5: )e proposed neural computing model for impervious surface detection.

//Retrieve remote sensing data and data preprocessing
Obtain spectral bands of Sentinel-2 for the study area
Open spectral bands in Sentinel Application Platform (SNAP)
Image enhancement via histogram equalization
Normalized difference vegetation index (NDVI) computation
Removal of large water bodies using the computed NDVI
//Generate dataset for the two classes of impervious and pervious surfaces
//Image data sampling
Create image dataset PosSet for impervious class
Create image dataset NegSet for pervious class
//Image texture computation
For each image in PosSet
Image texture computation using the following:
(i) Statistical measurements of bands
(ii) BGC

End for
For each image in NegSet
Image texture computation using the following:
(i) Statistical measurements of bands
(ii) BGC

End for
Construct numerical dataset D containing texture features and class labels
//Neural computing model training and evaluation
Set the total number of model evaluation times RN� 20
Establish a set of optimizers SO � GDM,Adam,AdaMax,Nadam,AdamW,AMSGrad{ }

For r� 0 to RN-1
Randomly extract 70% of the dataset to form a training dataset
Select an optimizer from SO
Perform model training
Evaluating the model training performance

End for

ALGORITHM 1: )e data processing and the training phase of the proposed neural computing model used for impervious surface detection.
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XZN �
Xo − mX

sX

, (16)

where Xo and XZN denote the original and the standardized
feature, respectively; mX and sX represent the mean and the
standard deviation of the original feature, respectively.

3.4. Neural Computing Model Training and Prediction. As
stated earlier, a dataset including 3,000 instances and 33
features has been prepared to train and verify the neural
computing approach used for impervious surface detection.
Each instance of the dataset has the class label of either
pervious (denoted as 0) or impervious (denoted as 1). Each

data record contains texture characteristic of an image re-
gion within the map of the study area. As mentioned earlier,
the statistical measurements of color channels and statistical
measurements of the three BGC variants (BGC1, BGC2, and
BGC3) are used as texture descriptors.

)e neural computing model is used to generalize a de-
cision boundary that can distinguish data instances of the two
categories of pervious and impervious surfaces. Accordingly,
the original dataset has been randomly split into two mutual
exclusive sets: a training set (70%) and a testing set (30%). )e
first set is used for model construction. )e latter set is used to
evaluate the model’s predictive capability. It is noted that the
neural computing models in this study are trained with the
mini-batch mode [74]. Accordingly, the training data are split

Image Feature (F) computed by statistical measurements of color channels 

234.15 239.49 249.13 32.24 29.93 16.64 
F7 F8 F9 F10 F11 F12 

–1.77 –2.15 –3.22 5.43 6.85 13.35 
F13 F14 F15 F16 F17 F18 
3.25 2.27 0.98 165.00 143.00 121.00 

F1 F2 F3 F4 F5 F6 

(a)

Image Feature (F) computed by statistical measurements of color channels 
F1 F2 F3 F4 F5 F6 

23.21 34.07 18.10 13.77 16.14 12.82 
F7 F8 F9 F10 F11 F12 

1.42 0.03 0.66 13.83 3.22 2.70 
F13 F14 F15 F16 F17 F18 
2.86 3.10 1.86 172.00 128.00 74.00 

(b)

Figure 7: Illustration of features computed by statistical measurements of color channels: (a) an impervious surface and (b) a pervious
surface.

(a)

(b)

Figure 6: Demonstration of the collected image samples: (a) pervious class and (b) impervious class.
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into small batches and these batches are used to calculate the
model error and the gradients of the neural computing models’
parameters.

)e training process of the neural computing model
aims at adapting the two matrices of WL0L1 and WL1L2 that
specify the model structure. )e size of the first matrix,
which is the connection weight between the input and the
hidden layer, is M x (NI+ 1) matrix where M and NI rep-
resent the number of neurons in the hidden layer and the
number of input features, respectively. Herein,NI � 33 which
is equal to the number of features extracted from the
employed texture descriptors.

It is noted that the selection of the tuning parameters of the
neural computing model in this study is based on recom-
mendation of previous works and experimental trials using the
collected dataset. Based on the suggestion of Heaton [75] and
Tien Bui et al. [44], the number of neurons in the hidden layer
in this study is set to be (2/3)NI + NO, where NO� 2 denotes
the number of the output classes. In addition, the log-sigmoid is

chosen as the activation function since it is commonly used for
constructing shallow neural network models used for pattern
classification [76, 77]. )e softmax activation function is
employed in the final layer to yield class probabilities within the
range of 0 and 1 [67, 78]. Moreover, the number of training
epochs is also required to be set appropriately. It is worth
noticing that this tuning parameter may strongly affect the
training outcome. An insufficient number of epochs can result
in an underfitted model. Meanwhile, an excessive number of
epochs may lead to an overfitted model. In this study, via
several trial-and-error experiments with the collected dataset,
the suitable number of training epoch is found to be 100.

When the number of neurons in the hidden layer is de-
termined, the size of the matrices that contain connection
weights can be specified. Herein, the size of the WL1L2, which
stores connection weights between the hidden and output layer
isNOx (M+1).)us, the total number of variables needed to be
identified by the employed optimizers isNR x NI+NO x NR+2.
In this study, the optimizers of GDM, Adam, Adamax, Nadam,

Image Feature (F) computed by the BGC texture descriptor
F19 F20 F21 F22 F23 

1,513.94 4,015.05 –0.34 0.11 40.53 
F24 F25 F26 F27 F28 

1,506.90 3,996.13 –0.34 0.11 39.26 
F29 F30 F31 F32 F33 

1,500.43 3,979.17 –0.34 0.11 40.47 

(a)

Image Feature (F) computed by the BGC texture descriptor
F19 F20 F21 F22 F23 

1,482.51 3,931.85 –0.34 0.11 40.88 
F24 F25 F26 F27 F28 

1,493.42 3,960.45 –0.34 0.11 39.02 
F29 F30 F31 F32 F33 

1,483.41 3,934.08 –0.34 0.11 40.60 

(b)

Figure 8: Illustration of features computed by the BGC texture descriptor: (a) an impervious surface and (b) a pervious surface.

Table 1: Training performance.

Models Statistics
Performance measurement indices

CAR (%) TP TN FP FN Precision Recall NPV F1 score

GDM Mean 94.210 999.800 978.600 50.650 70.950 0.952 0.939 0.933 0.944
Std 3.613 28.037 82.229 31.922 86.497 0.030 0.060 0.081 0.030

Adam Mean 97.771 1,008.450 1,044.750 36.850 9.950 0.965 0.990 0.991 0.977
Std 0.348 11.859 12.825 7.164 3.186 0.007 0.003 0.003 0.004

Adamax Mean 97.340 1,008.500 1,035.650 42.700 13.150 0.959 0.987 0.987 0.973
Std 0.392 18.629 15.415 5.780 3.991 0.006 0.004 0.004 0.004

Nadam Mean 97.967 1,019.050 1,038.250 36.250 6.450 0.966 0.994 0.994 0.979
Std 0.367 14.116 13.634 6.898 2.636 0.006 0.003 0.003 0.004

AdamW Mean 97.793 1,014.100 1,039.550 40.050 6.300 0.962 0.994 0.994 0.978
Std 0.310 12.992 12.698 6.289 3.480 0.006 0.003 0.003 0.003

AMSGrad Mean 98.117 1,016.450 1,044.000 29.250 10.300 0.972 0.990 0.990 0.981
Std 0.465 13.959 14.601 7.175 5.178 0.007 0.005 0.005 0.005
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AdamW, and AMSGrad are used to search for the most ap-
propriate values of the two matrices of WL0L1 and WL1L2.

4. Experimental Results

As stated earlier, to train and verify the neural computing
model used for impervious surface area detection, the
extracted dataset has been divided into two sets of training
(70%) and testing (30%) datasets. In addition, to alleviate the
undesired effect of randomness on data sampling and to
accurately assess the generalization capability of the newly
developed model, the training/testing data sampling processes
have been performed 20 times. In each time, 30% of the
dataset, which corresponds to 900 instances, is randomly
drawn out to form the testing dataset. )e rest of the dataset
including 2100 instances is used for model training.

Based on the model configuration in the previous sec-
tion, the employed neural computing model is an artificial
neural network consisting of 33 neurons in the hidden layer.
)e log-sigmoid is used as the activation function in the
hidden layer. In the output layer, the softmax function is
utilized to derive the probability of the two class labels of
impervious surface and pervious surface.

In addition, to evaluate the prediction results of the
employed neural computing models, classification accuracy
rate (CAR), precision, recall, negative predictive value
(NPV), and F1 score are calculated as follows [79]:

CAR �
TP + TN

TP + TN + FP + FN
× 100%,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

NPV �
TN

TN + FN
,

F1 score �
2TP

2TP + FP + FN
,

(17)

where TP, TN, FP, and FN represent true-positive, true-
negative, false-positive, and false-negative instances,
respectively.

)e outcomes of the artificial neural network models
optimized by the used optimizers obtained from the training
and testing phases are reported in Tables 1 and 2. It is ob-
servable that the neural computing models optimized by the
Nadam have achieved the most desired performance with
CAR� 97.331%, precision� 0.961, recall� 0.984, NPV� 0.985,
and F1 score� 0.972. As can be seen from Tables 1 and 2, the
prediction performances obtained from the training phase
(CAR� 97.967%) and testing phase (CAR� 97.311%) of the
Nadam-basedmodel are relatively close to each other.)is fact
indicates that the Nadam-optimized neural computing model
used for impervious surface detection does not suffer from
overfitting issue. )e experimental results also demonstrate
that the selected number of training epochs is reasonable and
help to prevent both overfitting and underfitting. )e Adam
optimizer is the second best approach (CAR� 97.050%),
followed by the AdamW (CAR� 97.028%), Adamax
(CAR� 96.572%), AMSGrad (CAR� 96.556%), and GDM
(CAR� 93.389%). )e model result comparison is also
graphically presented by Figures 9 and 10.

Table 2: Testing performance.

Models Statistics
Performance measurement indices

CAR (%) TP TN FP FN Precision Recall NPV F1 score

GDM Mean 93.389 424.700 415.800 24.850 34.650 0.944 0.930 0.922 0.935
Std 3.428 23.046 41.248 15.203 35.373 0.035 0.055 0.081 0.027

Adam Mean 97.050 435.550 437.900 19.150 7.400 0.958 0.983 0.983 0.970
Std 0.522 11.182 11.388 4.542 3.216 0.010 0.007 0.007 0.005

Adamax Mean 96.572 427.800 441.350 21.000 9.850 0.953 0.977 0.978 0.965
Std 0.728 17.189 16.487 6.025 2.903 0.013 0.007 0.006 0.008

Nadam Mean 97.311 427.250 448.550 17.450 6.750 0.961 0.984 0.985 0.972
Std 0.420 12.980 11.923 4.444 3.064 0.010 0.007 0.006 0.005

AdamW Mean 97.028 424.600 448.650 21.250 5.500 0.952 0.987 0.988 0.969
Std 0.520 11.061 11.897 4.898 2.110 0.011 0.005 0.005 0.005

AMSGrad Mean 96.556 435.800 433.200 18.500 12.500 0.959 0.972 0.972 0.966
Std 0.840 12.659 14.020 4.955 5.005 0.011 0.011 0.011 0.008

98.00

97.00

96.00

95.00

94.00

93.00

92.00

91.00

CAR (%)

GDM Adam Adamax Nadam AdamW AMSGrad

Figure 9: Model comparison with CAR (%).
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Figure 10: Model comparison with the indices of precision, recall, NPV, and F1 score.

Models GDM Adam Adamax Nadam AdamW AMSGrad 

GDM x 0.00009 0.00009 0.00009 0.00009 0.00016 

Adam 0.00009 x 0.00685 0.16618 0.98260 0.06688 

Adamax 0.00009 0.00685 x 0.00063 0.07101 0.91076 

Nadam 0.00009 0.16618 0.00063 x 0.09263

0.08328

0.00426 

AdamW 0.00009

0.00016

0.98260

0.06688

0.07101

0.91076

0.09263 

0.00426

x 0.08328 

x AMSGrad

(a)

Models GDM Adam Adamax Nadam AdamW AMSGrad 

GDM x –– –– –– –– ––

Adam ++ x ++ – + + 

Adamax ++ –– x –– – +

Nadam ++ + ++ x + ++ 

AdamW ++ – + – x + 

AMSGrad ++ – – –– – x 

(b)

Figure 11: Results of theWilcoxon signed-rank test: (a) results of p values and (b) test outcomes.Note.)e symbols ++, +, --, and – denote a
significant win, a win, a significant loss, and a loss.
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Figure 12: Training progress comparison.
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Original map Impervious cell detection Impervious surface map

Figure 13: Demonstrations of the model classification outcomes with small-scale maps. Note. A red cell and a white cell denote impervious
and pervious areas, respectively.
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Furthermore, to confirm the statistical difference of each
pair of the neural computing models used for impervious
surface detection, the Wilcoxon signed-rank test with sig-
nificance level (p value)� 0.05 is used. )e test results are
provided in Figure 11. Observed from the test outcomes, all
of the advanced optimizers including Adam, Adamax,
Nadam, AdamW, and AMSGrad significantly outperformed
the conventional GDM. )e Nadam as the best approach
achieves three significant wins and two wins. Notably, the
benchmark method of GDM gets five significant losses. )e
average convergence records of all the employed optimizers
are also provided in Figure 12.

)e experimental results have demonstrated the supe-
riority of the Nadam optimizer in constructing the neural
computing model-based impervious surface detection for
the study area. )e outstanding performance of the Nadam
algorithm can be explained by the fact that this advanced
optimizer is a combination of the powerful Adam and
Nesterov-accelerated gradient (NAG) approaches. )e
Adam optimizer has a significant advantage of computing
adaptive learning rates for each parameter of the neural
computing model [73]. Moreover, since Nesterov mo-
mentum provides a correction factor to the standard method
of momentum, the NAG often results in good training
performance [74]. )e Nadam algorithm harnesses the
advantages of the Adam and NAG approaches. )erefore,
this optimizer has achieved the most desired performance
for the collected dataset.

Since the Nadam-optimized neural computing model,
denoted as Nadam-NCM, has achieved an outstanding ac-
curacy of 97.311%, this model can be employed to accomplish
the objective of impervious surface mapping in a reliable
manner. Figure 13 demonstrates the application of the Nadam-

based model in detecting impervious surface for small-scaled
maps.)e impervious surfacemap of the study area is provided
in Figure 14. Based on the classification result, the impervious
surface areas account for roughly 18.25% of the study area.

5. Concluding Remarks

Up-to-date information regarding the impervious surface
areas is crucial for the task of land-use planning, moni-
toring, and management. )is study investigates the em-
ployment of neural computing models trained by the
advanced optimizers used for automatic impervious sur-
face area detection. )e conventional GDM algorithm and
the advanced optimizers of the Adam, Adamax, Nadam,
AdamW, and AMSGrad are employed to train the neural
computing models used for the pattern recognition task of
interest. Experimental results supported by the Wilcoxon
signed-rank test points out that the Nadam-optimized
neural computing model has achieved the most desired
predictive accuracy with CAR � 97.311%. )erefore, this
model can potentially serve as an effective tool for
extracting built-up impervious surfaces at regional scale.
Future extensions of the current work may include the
following:

(i) )e application of the Nadam-optimized neural
computing model in impervious surface extraction
for other study areas

(ii) Investigation of capabilities of other advanced
optimizers in training neural network models

(iii) Exploring the effect of different neural network
structures (e.g., different activation functions and
number of neurons in the hidden layer) on the

N

S

EW

0 2 4 6 8 10

0 3 6 9 12 15
miles

km

Map scale 1:250,000

Figure 14:)e map illustrates the impervious surface area for Da Nang city area.Note. A red cell and a white cell denote an impervious and
pervious area, respectively.
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accuracy of the impervious surface detection
problem

(iv) Incorporating state-of-the-art regularization
techniques (e.g., dropout regularization) into
the training process of the neural computing
models

(v) Investigating the possibility of using metaheuristic
algorithms to meliorate the model training
performance

(vi) )e employment of other advanced texture de-
scriptors for improving the classification accuracy
rate

(vii) Incorporation of statistical and metaheuristic-
based feature selection methods into the current
model to further enhance the prediction accuracy

(viii) Investigation of capabilities of other advanced
machine learning models (e.g., deep learning and
Markov models) for impervious surface extraction

(ix) Developing intelligent models for predicting time
series of remotely sensed impervious surface data
with other advanced neural computing models
including recurrent neural network and long
short-term memory.
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[53] A. Fernández, M. X. Álvarez, and F. Bianconi, “Image clas-
sification with binary gradient contours,” Optics and Lasers in
Engineering, vol. 49, pp. 1177–1184, 2011.

[54] MPI,DaNang City Ministry of Planning and Investment, MIP,
Winnipeg, Canada, 2020, http://wwwmpigovvn/Pages/
tinhthanhchitietaspx?idTinh)anh�41.

[55] N. Dang, T. T. V. Le, V. C. M. Tran, and M. Yasuhiro,
“Scenario analysis on operation efficiency for waste collection
and transport: a case study in da Nang city,” Vietnam Journal
of Environmental and Social Sciences, vol. 5, no. 1, 2017.

[56] T. T. Phan Hoang and T. Kato, “Measuring the effect of
environmental education for sustainable development at el-
ementary schools: a case study in Da Nang city, Vietnam,”
Sustainable Environment Research, vol. 26, no. 6, pp. 274–286,
2016.

[57] D. Rockwood and D. Q. Tran, “Urban immigrant worker
housing research and design for Da Nang, Viet Nam,” Sus-
tainable Cities and Society, vol. 26, pp. 108–118, 2016.

[58] ESA, Sentinel Application Platform (SNAP) the European
Space Agency, ESA, Paris, France, 2020, http://stepesaint/
main/toolboxes/snap/.

[59] (2020) Earth Explorer US Department of the Interior, https://
earthexplorerusgsgov/.

[60] ESA, Documentation European Space Agency, ESA, Paris,
France, 2020, http://stepesaint/main/doc/tutorials/.

[61] M. Sonka, V. Hlavac, and R. Boyle, Image processing, Analysis,
and Machine Vision, Cengage Learning, Boston, MA, USA,
2013.

[62] T. Lillesand, R. W. Kiefer, and J. Chipman, Remote Sensing
and Image Interpretation, John Wiley & Sons, Hoboken, NJ,
USA, 2015.

[63] J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering,
“Monitoring vegetation systems in the great plains with
ERTS,” in Conference Proceedings of the 'ird ERTS Sym-
posium, NASA SP-351, pp. 309–317, Washington, DC, USA,
1973.

[64] N.-D. Hoang, “Image processing based automatic recognition
of asphalt pavement patch using a metaheuristic optimized
machine learning approach,” Advanced Engineering Infor-
matics, vol. 40, pp. 110–120, 2019.

[65] A. Humeau-Heurtier, “Texture feature extractionmethods,”A
Survey IEEE Access, vol. 7, pp. 8975–9000, 2019.

[66] I. El Khadiri, M. Kas, Y. El Merabet, Y. Ruichek, and
R. Touahni, “Repulsive-and-attractive local binary gradient
contours: New and efficient feature descriptors for texture
classification,” Information Sciences, vol. 467, pp. 634–653,
2018.

[67] C. C. Aggarwal, Neural Networks and Deep Learning,
Springer, Berlin, Germany, 2018.

[68] S. O. Haykin, Neural Networks and Learning Machines,
Pearson, London, UK, 2008.

[69] T. Hegazy, P. Fazio, and O. Moselhi, “Developing practical
neural network applications using back-propagation,” Com-
puter-Aided Civil and Infrastructure Engineering, vol. 9,
pp. 145–159, 1994.

[70] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,”Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[71] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller,
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