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Abstract
The urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) is already known to be a key collagen 
receptor involved in collagen internalization and degradation in mesenchymal cells and some macrophages. It is one of the 
four members of the mannose receptor family along with a macrophage mannose receptor (MMR), a phospholipase lipase 
receptor (PLA2R), and a dendritic receptor (DEC-205). As a clathrin-dependent endocytic receptor for collagen or large 
collagen fragments as well as through its association with urokinase (uPA) and its receptor (uPAR), uPARAP/Endo180 takes 
part in extracellular matrix (ECM) remodeling, cell chemotaxis and migration under physiological (tissue homeostasis and 
repair) and pathological (fibrosis, cancer) conditions. Recent advances that have shown an expanded contribution of this 
multifunctional protein across a broader range of biological processes, including vascular biology and innate immunity, are 
summarized in this paper. It has previously been demonstrated that uPARAP/Endo180 assists in lymphangiogenesis through 
its capacity to regulate the heterodimerization of vascular endothelial growth factor receptors (VEGFR-2 and VEGFR-3). 
Moreover, recent findings have demonstrated that it is also involved in the clearance of collectins and the regulation of the 
immune system, something which is currently being studied as a biomarker and a therapeutic target in a number of cancers.

Keywords  MRC2 · Cancer · Tissue remodeling · uPARAP/Endo180 · Collagen · Endocytic receptor

Introduction

In eukaryotic cells, the extracellular and subcellular localiza-
tion of a protein is tightly controlled and closely linked to 
its functions. In fact, distinct extracellular and intracellular 
compartments provide specific chemical environments (for 
instance pH and redox conditions) that are fundamental to 
potential interactions with partners or substrates. Accord-
ingly, the management of protein subcellular localization 
plays a vital role in protein regulation. In this context, endo-
cytosis is a key biological process, through which cells 
internalize macromolecules and cell surface proteins. The 
cellular uptake through one of the multiple endocytic path-
ways is followed by routing through the endosomal network 
to a final destination. Cargoes can be recycled back to the 

plasma membrane, sent to the trans-Golgi network (TGN) 
via retrograde traffic, or sorted to the lysosome where they 
are degraded [1, 2]. This endocytic process defines the qual-
ity of cell response to extracellular stimuli by regulating cell 
surface receptor clearance. It additionally contributes to tis-
sue remodeling and cell–matrix interaction through a con-
trolled uptake of extracellular matrix (ECM) components 
and integrins, their most abundant cell surface receptors 
[3]. As a major ECM constituent, different types of collagen 
are critical for tissue architecture, and form a scaffold for 
cell adhesion and migration. Together, these play a crucial 
role in regulating cell functions during embryonic develop-
ment and physiopathology. Among endocytic receptors, the 
urokinase plasminogen activator receptor-associated protein 
(uPARAP) or Endo180, the product of the MRC2 gene, is a 
master regulator of collagen turnover. However, beyond its 
collagen binding and internalization functions, it has been 
demonstrated that uPARAP is assigned other functions 
related to cell migration involved in tissue repair (wound 
healing) [4, 5], cancer progression [6, 7], and more recently 
in pathological lymphangiogenesis [8]. In this review, the 
main features of uPARAP/Endo180 will be presented along 
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with its newly identified functions which are subsequently 
discussed.

uPARAP/Endo180 discovery: two names, one 
protein

A study on membrane proteins, conducted by Isacke 
et al. in 1990, [9] discovered a 180 kDa protein in cul-
tured human fibroblasts thereafter referred to as p180. The 
largest part of this new protein (70% to 80% of the total) 
was found to be present in the membrane of intracellular 
vesicles, which suggested that this transmembrane protein 
undergoes internalization and de facto enters the endocy-
tosis circuit. It was observed that its membrane exposure 
could be restored, indicating that it was possible for p180 
to be internalized and then, at a later stage, recycled back 
to the surface. During this process, the protein remained 
unaltered, making it a constitutively internalized and recy-
cled protein. Similarities were then established with other 
well-known membrane proteins, such as the transferrin 
receptor (TfR), previously established as a prototype for 
clathrin-dependent endocytosis [10, 11]. The protein was 
initially synthesized as a 150 kDa single polypeptide back-
bone, then matured into its final 180 kDa protein form by 
glycosylation (N-linked carbohydrates) and the addition of 
neuraminidase sensitive terminal sialic acid residues. It is 
worth noting that no less than 75 kDa was exposed to the 
extracellular medium [9, 12]. This p180 protein was also 
found to be a substrate for the Protein Kinase C (PKC), 
targeting putative serine residues, as found on the TfR [13, 
14]. Consequently, K. Wu et al. [15] later identified the 
p180 murine ortholog, as a carbohydrate calcium-depend-
ent binding protein. Based on sequence similarities, it was, 
therefore, classified as a member of the mannose receptor 
(MR) family.

In 2000, further investigations of human p180 protein 
biological functions were conducted, simultaneously, by 
two independent research groups. Both studies shed light 
on the high sequence homology between human p180 
cDNA and its murine ortholog, confirming its classifica-
tion as a definitive and ultimate mannose receptor family 
member [12, 16]. The initial study investigated the cell 
distribution and endocytic properties of human p180, 
and renamed it Endo180. Gene mapping localized the 
Endo180 encoding gene on the human 17q chromosome 
which was seen to be expressed in macrophages, stromal 
and endothelial cells [12]. A second study reported that 
only a fraction of the protein was engaged in a trimolecu-
lar non-covalent complex formation with the urokinase 
plasminogen activator (uPA) and its receptor (uPAR), both 
related to the plasminogen activation cascade. For this rea-
son, it was renamed the urokinase-plasminogen activator 

receptor-associated protein (uPARAP). uPARAP/Endo180 
is a receptor in a majority of type V collagen and to a 
lesser extent for other collagen including types I and IV. 
After binding with uPARAP, collagen is endocytosed into 
clathrin-coated vesicles and routed to early endosomes 
where it is dissociated from its receptor, following which 
the uPARAP is recycled back to the cell surface, while 
the collagen fragments are directed towards the lysosomal 
compartment for degradation [16]. In addition to its com-
mon appellations, the protein may also be found under 
the name of CLEC13E, KIAA0709, CD280 or TEM9. 
Despite sharing some similarities with other MR family 
members, uPARAP/Endo180 displays unique properties 
related to cell membrane-associated protein trafficking and 
cell migration that are discussed as follows.

uPARAP/Endo180 domains and structure

Based on its protein sequence, uPARAP/Endo180 has been 
assigned to the clearly defined mannose receptor family, 
making it the final member of the group (Fig. 1). This endo-
cytic receptor family is made up of four type-1 transmem-
brane proteins: (i) the eponymous family founding mem-
ber, macrophage mannose receptor (MMR, encoded by the 
gene MRC1) [14, 15], (ii) the phospholipase A2 receptor 
(PLA2R, encoded by the gene PLA2R1) [16, 17], (iii) den-
dritic receptor (DEC-205/gp200-MR6, encoded by the gene 
LY75) [17, 18] and (iv) uPARAP/Endo180 (encoded by the 
gene MRC2) [19]. MMR and uPARAP/Endo180 are the 
most similar members of the group and share an ability to 
bind and internalize collagen [20]. From the N-terminus to 
C-terminus, their extracellular regions are made of a peptide 
signal, a cysteine-rich domain (Cys-R), a fibronectin type-
II (FNII) domain and several C-type lectin-like domains 
(CTLD) that are repeated 8 or 10 times in tandem. Within 
its transmembrane region, the cytoplasmic tail of uPARAP/
Endo180 is responsible for receptor internalization involv-
ing a critical dihydrophobic Leu1468/Val1469 motif mediat-
ing the recruitment of the receptor into clathrin-coated 
pits [21, 22]. Although conserved tyrosine in a consen-
sus sequence (FxNxxY) is crucial for the endocytosis of 
MMR, PLA2R and DEC-205, this residue has no effect on 
uPARAP/Endo180 internalization [21]. However, an acidic 
residue (E1464) is involved in uPARAP/Endo180, targeting 
endosomes. Given the lack of the three acidic motifs at the 
site (EDE present in DEC-205, a motif known to target pro-
tein to a late endosomal/lysosomal compartment), uPARAP/
Endo180 is targeted to early endosomes, as is the case for the 
MMR [21, 23]. uPARAP/Endo180 is rapidly recycled (5 to 
20 min) [7, 24] and is a relatively stable protein with an aver-
age half-life of 24 h [9]. Beyond the residues involved in pro-
tein internalization, the tail contains several phosphorylation 
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sites whose function remains unclear. Constitutively inter-
nalized, uPARAP/Endo180 is able to internalize its ligand, 
another characteristic it shares with the MMR, or it simply 
acts as a signaling pathway modulator as described below 
[22].

The four N-terminal domains (Cys-R, FNII, CTLD1 and 
CTLD2) form an area known as the ligand-binding region 
(LBR), which makes the protein able to bind collagens and 
carbohydrates (Fig. 1). The Cys-R domain of uPARAP/
Endo180 has a unique conformation that differentiates it 
from the typical β-trefoil fold characteristic of other MR 
family members [25]. Some studies using single parti-
cle electron microscopy revealed that this Cys-R domain 
intimately contacts the CTLD2 adopting either a L-shape, 
which moves the two domains closer together, or a more 
open conformation depending on the pH [26, 27]. One study, 
however, using small-angle X-ray scattering, challenged the 
existence of such a structural modification [28], while a sec-
ond study confirmed the findings, albeit to a lesser extent 

and with less impact of pH on the open conformation. In 
this study, both CTLD1 and CTLD2 domains adopt a char-
acteristic tridimensional CTLD structure at the cell surface 
(at neutral pH), with two Ca2 + in the CTLD2 and were, 
therefore, able to bind carbohydrate molecules [29] such as 
mannose, fucose and N-acetylglucosamine [30], as well as 
highly glycosylated collagens including type IV collagen 
[31]. Once it had been internalized in the cell by endosomes, 
uPARAP/Endo180 found itself in an acid environment with 
a low Ca2 + concentration and became protonated. This 
modification induced a CTLD2 conformational change and 
the release of the bound molecules. It is believed that other 
mechanisms of collagen release exist but this still needs to 
be elucidated [21, 29, 30].

The most conserved extracellular domain in the MR 
family is FNII, also present in some other proteins such as 
matrix metalloproteinases (MMPs: MMP-2 and MMP-9) 
[24]. It is the principal site of collagen binding in MMR 
and uPARAP/Endo180 [20]. Although the LBR structure is 
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Fig. 1   uPARAP/Endo180 belongs to the mannose receptor fam-
ily. Schematic representation of the fourth members of the mannose 
receptor family. They share common domains from N-terminal to 
C-terminal including a Cysteine-rich domain (CRD), a Fibronectin 
type-II domain (FNII), several C-type lectin-like domains (CTLDs), 
a transmembrane domain and a cytosolic tail. uPARAP/Endo180 can 

interact with collagens, collectins and sugars or glycosylated proteins 
through the ligand-binding region (LBR composed of CRD, FNII, 
CTLD1 and CTLD2) and with EMMPRIN (CD147) through CTLD4. 
uPARAP/Endo180 contains two acidic residues (L1468 and V1469) 
responsible for its internalization and another one (E1464) controlling 
its trafficking
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important for FNII function, it is not necessarily impacted by 
the conformational modification described above [28, 31]. 
Of the 28 existing collagen types, uPARAP/Endo180 is the 
one that is able to bind fibrillar collagens including types 
I, II and V through its FNII domain. Binding to the glyco-
sylated basement membrane-associated type IV collagen, 
on the other hand, is enhanced by the CTLD2 domain [24, 
31–34]. Interestingly, this FNII domain was also seen to be 
involved in the interaction between uPARAP/Endo180 and 
the uPAR/pro-uPA complex (see below). It is worth men-
tioning that interaction with type V collagen, prevented this 
complex formation [16]. Besides these important roles of 
FNII and CTLD2 domains of the LBR, CTLD4 contributed 
to the interaction of uPARAP/Endo180 with CD147/Basi-
gin/EMMPRIN, a member of the immunoglobulin super-
family participating in tumor development [35] (Fig. 1). 
These data highlight the capacity of uPARAP to interact 
with multiple cell-associated proteins.

uPARAP/Endo180: an endocytic receptor 
of collagen and collectins

The ECM turnover involved in homeostatic maintenance 
and tissue remodeling takes place under physiological 
(embryonic development, wound healing, tissue repair) and 
pathological conditions (cancer, inflammation) (Fig. 2), and 
uPARAP/Endo180 plays its part in this [36], also contribut-
ing to the intracellular degradation of collagen with its abil-
ity to internalize its fragments. Consistently internalized at 
the cell steady state, uPARAP/Endo180 is a key protein in 
the non-phagocytic collagen uptake pathway that routes it to 
the lysosomal compartment (Fig. 3). As mentioned above, 
the low endosomal pH triggers receptor-ligand disruption, 
leading to the receptor recycling back to the membrane and 
ligand degradation [37, 38]. The clathrin-dependent endocy-
tosis, through which uPARAP/Endo180 is transported into 
the cell, engulfs proteins resulting in an endocytic vesicle 
(endosome) with a diameter of less than 200 nm [39]. Col-
lagen fibrils are oversized and, therefore, cannot be carried 
into the cytosol in a clathrin-dependent way [40]. Due to 
this size constraint, collagen fibrils have to be processed 
beforehand and then cleaved into smaller units. Composed 
of insoluble fibres, collagens are resistant to most proteoly-
sis mechanisms. Only an insignificant number of MMPs 
(MMP1, 2, 8, 13, 16) and cathepsins (mainly cathepsin 
K) display collagenolytic activities. MT1-MMP (MMP14) 
also exerts a collagenolytic activity with a key role in the 
regulation of collagen homeostasis in mice [41, 42]. These 
enzymatic activities lead to increased protein solubility 
that promotes the accessibility of cleavage sites to other 
collagenases. Thereby reduced in moieties, collagen frag-
ments bound by the uPARAP/Endo180 LBR domain can 

be uptaken by the cell, routed first to the early endosomal 
compartment where they are dissociated from uPARAP/
Endo180, and then to the late endosome/lysosomal compart-
ment for intracellular degradation [24, 37, 38]. An alterna-
tive endocytic pathway of collagens relies on phagocyto-
sis, which is uPARAP/Endo180 independent (Fig. 3) [43]. 
The key roles of uPARAP/Endo180 in collagen remodeling 
under physiological and pathological conditions are exam-
ined as follows.

Intriguingly, it has recently been demonstrated that 
uPARAP/Endo180 participates in the uptake and intracel-
lular degradation of collectins, C-type lectins that contain 
triple-helical collagen-like domains. Collectins belong to the 
group of defense collagens such as mannose-binding lectin 
(MBL) and surfactant protein D (SP-D). Their expression is 
enhanced during infection, inflammation and fibrosis. Fol-
lowing tissue injury, collectins are temporarily deposited 
in extravascular sites where they manage (either promot-
ing or limiting) inflammation and immune response [44]. 
The capability of uPARAP/Endo180 to uptake collectins is 
remarkably not shared by the MMR, the alternative endo-
cytic receptor of collagen. The collectin uptake depends on 
specific residues within FNII domain that are not involved in 
collagen uptake and are absent in MMR. It can also rely on 
interaction with the CTLD2 for SP-D but not for MBL. This 
interesting study thus assigned a novel role for uPARAP/
Endo180 in immunity. The demonstration of uPARAP/
endo180-mediated clearance of collectins by fibroblasts 
in injured tissue, has extended the number of previously 
observed biological functions of this endocytic receptor to 
immune-regulatory roles [45, 46].

uPARAP/Endo180: a member 
of a trimolecular complex 
with the urokinase‑plasminogen activator 
(uPA) and its receptor (uPAR)

uPARAP/Endo180 acts, on certain cell types, as a co-receptor 
for the glycosyl phosphatidylinositol (GPI) anchored uPA-
uPAR complex [47]. The uPA plays an indirect role in ECM 
degradation by contributing to the plasminogen activation 
cascade, converting plasminogen into plasmin that in turn 
activates pro-uPA, leading to a positive feed-back loop [48, 
49]. Plasmin can, independently, breakdown numerous ECM 
components and further enhance degradation by activating 
several MMPs [50, 51]. This cascade of activation is nega-
tively controlled by plasminogen activator inhibitors (PAI-1 
and PAI-2), which inhibit uPA proteolytic activity and promote 
uPAR-uPA-PAI complex internalization [51–53]. In addition, 
uPARAP/Endo180 is requisite for the activation of signal-
ing pathways when migrating cells sense the uPA gradient. 
Its expression promotes uPA-mediated filopodia formation 
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and the chemotactic response towards an uPA gradient. The 
uPA-uPAR signaling pathway regulates the activation of two 
small Ras GTPases, Rac1 and Cdc42. Although the activation 
of this depends on uPARAP/Endo180 being expressed, it is 
independent of its internalization. Nonetheless, random cell 
motility evoked by uPARAP/Endo180 relies on receptor con-
stitutive internalization, while the chemotaxis does not [47]. 
This dissimilarity may be explained by the fact that uPAR 

constitutive endocytosis is a clathrin-independent mechanism, 
unlike uPARAP/Endo180 which is not [50]. The uPARAP/
Endo180, therefore, appears to be a versatile cell migration 
protein involved in ECM remodeling and in the regulation of 
uPAR/uPARAP-mediated cell chemotaxis (Fig. 3).
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uPARAP/Endo180, a regulator 
of a mechanotransduction pathway in cell 
contractility

The significance of uPARAP/Endo180 for mechanotrans-
duction pathways that promote cell contraction has been well 
documented and it relies on the endocytic localization of 
uPARAP. uPARAP/Endo180-containing endosomes regu-
late contractile signals though the small GTPase RhoA, 
which, in turn, activates Rho-Rho kinase (ROCK) that 
phosphorylates a myosin light chain 2 (MLC2). Activation 
of the Rho–ROCK–MLC2 pathway leads to cell tail retrac-
tion, cellular junction remodeling and accordingly promotes 
cell migration. Notably, this effect has been reported to be 
independent of uPA-uPAR-uPARAP/Endo180 trimolecular 
complex formation [54] (Fig. 3).

uPARAP/Endo180, a VEGFR‑2/VEGFR‑3 
pathway regulator in lymphatic endothelial 
cell migration

The expression of uPAPAR/Endo180 by blood endothe-
lial cells has already been identified in previous studies, 
although its role in vascular biology has only recently been 
documented. The results from this study unexpectedly 
revealed that uPARAP/Endo180 interferes with two vas-
cular endothelial growth factor receptors (VEGFR-2 and 
VEGFR-3) in lymphatic endothelial cells (LEC) [8]. These 
data shed new light on a crucial role for this endocytic recep-
tor in lymphangiogenesis in the formation of new lymphatic 
vessels associated with cancer progression and metastatic 
spread to lymph nodes and distant organs [55–59]. Vascular 
endothelial growth factor type C (VEGF-C) is the main lym-
phangiogenic factor that acts through its receptor (VEGFR-
3) and leads to cell proliferation and migration towards the 
VEGF-C secretion source [47, 60, 61]. Localized at the cell 
leading edge toward VEGF-C gradient, uPARAP/Endo180 
is essential for chemotactic response and cell guidance, as 
already described in non-lymphatic cell lines [47, 54, 62]. 
Silencing uPARAP/Endo180 in LEC was seen to drastically 
impair VEGF-C mediated cellular migration revealing that 

uPARAP/Endo180 may not regulate the direction of cell 
migration by itself, but, in fact, act as the first cog in the 
gearing represented here as an intracellular signaling net-
work. Interestingly, in VEGF-C-stimulated LECs, uPARAP/
Endo180 prevented the heterodimerization of VEGFR-2 and 
VEGFR-3. By acting as a gatekeeper between these two 
tyrosine kinase receptors, uPARAP/Endo180 contributes 
to modulating the downstream VEGFR-2 and VEGFR-3 
signaling pathways. The reduced VEGFR-2/VEGFR-3 het-
erodimerization induced by uPARAP/Endo180 decreased 
VEGFR-2 signaling which, in turn, promoted the VEGFR-
3-induced c-Jun N-terminal Kinase (JNK) Crk-II, and paxil-
lin signaling pathway. The intertwining of these three pro-
teins maintained the activate state of the Rho GTPase Rac, 
regulating cell migration (Fig. 3). Following deciphering 
of the uPARAP/Endo180 driven-cellular signaling path-
way, related-phenotypes in experimental in vivo models 
were observed. In uPARAP-/- mouse, the lymphangiogenic 
response was enhanced when compared to the wild-type lit-
termates, leading to an hyperbranched and dilated lymphatic 
vasculature with increased drainage capability [8].

uPARAP/Endo180 in health and aging

Controlled ECM degradation is of central importance during 
embryonic development, growth and tissue repair. Collagen 
degradation is governed by an extracellular MMPs-mediated 
proteolytic pathway and an intracellular lysosomal degrada-
tion depending on uPARAP/Endo180-mediated endocytosis. 
Together with MMPs, uPARAP/Endo180 plays a key role 
in collagen clearance in normal physiology (tissue homeo-
stasis and repair) [7, 63]. In healthy organisms, uPARAP/
Endo180 is expressed by a restricted number of cell types, 
being mainly produced by mesenchymal cell types (fibro-
blasts, chondrocytes, osteoblasts and osteocytes), some mac-
rophages and endothelial cells [12, 32, 64]. This receptor is 
largely limited to tissues characterized by an active matrix 
turnover such as the skin during wound healing [4] and in 
bone (Fig. 2), where uPARAP/Endo180 plays an important 
role in embryonic development and homeostasis. Mutations 
in the MRC2 gene (c.2904_2905delAG and c.1906 T > C) 
are responsible for the Crooked Tail Syndrome observed in 
Belgian Blue cattle, which are characterized by increased 
muscle mass, a thickset head, scoliosis and short, but 
straight, fore limbs, [65, 66]. In mice, uPARAP/Endo180 
genetic ablation leads to a significant decrease in the length 
of long bones associated with a trabecular bones reduction. 
Such impact is even more pronounced when associated 
with either a MMP-2 [67] or MT-MMP-1 [64] deficiency. 
In addition, implicated in this is uPARAP/Endo180, together 
with MMP-13 in the reversal phase of bone remodeling in 
humans [68] (Fig. 2). In mouse lungs, uPARAP/Endo180 

Fig. 3   The cellular functions of uPARAP/Endo180. uPARAP is 
involved in extracellular matrix (ECM) remodeling through direct 
binding of collagen to uPARAP. Collagen bound to CTLD2 is inter-
nalized by a clathrin-dependent endocytic process. Once in the early 
endosome, uPARAP is recycled to the membrane while the collagen 
is degraded in the lysosome. The uPARAP-uPA-uPAR complex ena-
bles the conversion of plasminogen to plasmin, which results in the 
degradation of ECM components. This trimolecular complex is also 
involved in cell motility via the activation of Rac1 and Cdc42, two 
small Ras GTPases. uPARAP prevents the heterodimerization of 
VEGFR-2/VEGFR-3 ensuring the maintenance and integrity of the 
lymphatic vasculature

◂
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deficiency leads to a higher pulmonary elastance related to 
impaired collagen internalization by pulmonary fibroblasts 
[69]. The collagen turnover decreases during the life span of 
mice and is associated with reduced cell-mediated collagen 
uptake and degradation by uPARAP/Endo180 with a reduc-
tion in expression from the MRC2 gene [70]. This impaired 
MRC2 expression contributes to age-related fibrosis (Fig. 2).

uPARAP/Endo180 in disease

Fibroblasts are the main producers of collagens, and their 
endocytic receptors are central to tissue fibrosis and tumor 
fibrosis, the production of which is referred to as the des-
moplastic reaction. An upregulation of uPARAP/Endo180 
production has been reported in activated fibroblasts adja-
cent to collagen deposition in the liver [71], kidneys [72] 
and pulmonary fibrosis [69]. In carcinoma, the most com-
mon type of cancer, uPARAP/Endo180 is not expressed by 
epithelial tumor cells, but, rather instead, by cancer-asso-
ciated fibroblasts (CAFs) within the tumor microenviron-
ment [6]. The CAF-related uPARAP/endo180 implications 
in collagen remodeling and cancer progression has been 
well documented in the MMTV-PyMT breast cancer model 
[73]. uPARAP/Endo180 expressed by stromal cells associ-
ated with the cross-linking of collagen fibers by stromal-
derived lysyl oxidase (LOX) regulates the migration of 
metastatic prostate cancer cells [74]. Interestingly, single-
cell sequencing data revealed that the collagen endocytic 
receptor is produced, for the most part, by a specific CAF 
subset characterized by the expression of matrix compo-
nents and matrix-modifying enzymes [75]. Findings from 
this study demonstrated the genetic ablation of uPARAP/
Endo180 affects CAF contractility and viability, thereby 
limiting tumor growth and metastasis (Fig. 2). These data 
further support the pro-tumorigenic effects of matrix remod-
eling a CAF subset [76]. This differentiates it from other 
cancers where uPARAP/Endo180 can be produced by the 
cancer cells themselves and is the case in sarcomas such as 
osteosarcoma [35], some glioblastoma subsets [77] and tri-
ple-negative basal-like breast cancers [78]. Interestingly, in 
these types of cancer, epithelial tumor cells subjected by the 
epithelial-to-mesenchymal transition (EMT) often express 
higher levels of uPARAP/Endo180 [78]. The uPARAP/
Endo180 expression could be dysregulated through the 
TGF-β pathway [77–80]. Importantly, and in contrast to its 
pro-tumor effect, uPARAP/Endo180 was seen to act as an 
EMT suppressor, when it binds the high glycosylated CD147 
by its CTLD4 (Fig. 1). Indeed, either a downregulation of 
uPARAP/Endo180 or CD147, an anti-uPARAP/Endo180 
antibody targeting CTLD4, or a dominant-negative GST-
CTLD4 chimeric protein, promoted epithelial cell scattering, 

decreased E-cadherin and disrupted the adherens junctions 
[35].

Conclusions and perspectives

Collectively, the data highlighted the pivotal role played 
by uPARAP/Endo180 in the extracellular matrix turnover, 
in fibrotic conditions and in the spread of malignant can-
cers [24, 73]. The significance of the soluble ectodomain 
of uPARAP/Endo180 as a biomarker for metastatic breast 
cancer has also been highlighted. The concentration of solu-
ble uPARAP/Endo180 in plasma was found to be higher in 
patients displaying metastatic breast cancer than in patients 
with localized breast cancer, but lower in patients treated 
with bisphosphonates. This finding suggests that it could 
be used to monitor the effectiveness of this treatment [81]. 
A clinical study is ongoing to assess the efficacy of soluble 
uPARAP/Endo180 in a number of body fluids and urinary 
tissue factors as biomarkers of early malignancy in pan-
creatic cystic lesions (NCT036793). Further investigations 
still need to be carried out to assess the clinical interest of 
uPARAP/Endo180 as a biomarker for various cancer types.

In a therapeutic context, a monoclonal neutralizing anti-
body targeting uPARAP/Endo180 (epitope located in FNII) 
showed anti-tumor efficacy against experimental osteosar-
coma (NCTC-2472 sarcoma) in mice. The strong protec-
tive effect observed in this model against bone destruction 
looks promising for establishing new treatment for this 
disease [82]. Another anti-uPARAP/Endo180 antibody 
(epitope located within the first three N-terminal domains 
of uPARAP, more particularly in either the CysR domain or 
CTLD1) has been conjugated to a drug (monomethyl aurista-
tin E) [83]. Interestingly, a specific cytotoxicity in uPARAP-
positive cancer cell lines of glioblastoma, sarcoma and 
leukemic origin was observed in vitro. The efficacy of this 
treatment was confirmed in vivo using a xenograft mouse 
model with human uPARAP-positive leukemic cells. Com-
plete recovery of all mice, with no recurrent tumor growth or 
any observable adverse event was observed following intra-
venous administration of the antibody–drug conjugate [83]. 
The key implication of uPARAP in bone remodeling also 
suggested that it could be a target in metastatic bone disease 
caused by the metastatic spread of a primary tumor (such 
as, for instance, breast, prostate, lung and renal cancers). A 
mathematical model for the dysregulation of the uPARAP/
Endo180 network (through a TGFβ signaling pathway in 
tumor and osteoblastic cells) has been developed to demon-
strate its implication in bone destruction. This model could 
assist in future drug development in the context of meta-
static bone disease [84]. The recently identified uPARAP/
Endo180-mediated fibroblast function in the turnover of col-
lectins supports the innovative concept that fibroblasts can 
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regulate the innate immune system by evacuating collectins 
from injured tissue [45]. This novel immunological function 
of uPARAP/Endo180 offers new opportunities to investigate 
uPARAP/Endo180 contribution in various pathological con-
ditions involving collectins (Fig. 2).

Beyond its role in collagen/collectin clearance, uPARAP/
Endo180 increasingly appears as a membrane-associated 
molecule that interacts with multiple molecular partners. 
The current list of its interactors extends from the initial 
uPA-uPAR complex to EMMPRIN, and VEGF receptors [8]. 
Its unexpected implication in vascular biology is now emerg-
ing with a key role in lymphatic endothelial cell sprouting 
during pathological lymphangiogenesis. This recent discov-
ery paves the way for future research in lymphatic biology 
and lymph node metastases. This protein could in particular 
offer new perspectives in the detection of and treatment of 
cancers and fibrotic disease. Further studies have yet to be 
carried out to take advantage of its potential in healthcare 
and, better understand and decipher its mechanism of action.
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