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Abstract

The progress of science increasingly relies on machine learning (ML) and machines work

alongside humans in various domains of science. This study investigates the team structure

of ML-related projects and analyzes the contribution of ML to scientific knowledge produc-

tion under different team structure, drawing on bibliometric analyses of 25,000 scientific

publications in various disciplines. Our regression analyses suggest that (1) interdisciplinary

collaboration between domain scientists and computer scientists as well as the engagement

of interdisciplinary individuals who have expertise in both domain and computer sciences

are common in ML-related projects; (2) the engagement of interdisciplinary individuals

seem more important in achieving high impact and novel discoveries, especially when a

project employs computational and domain approaches interdependently; and (3) the contri-

bution of ML and its implication to team structure depend on the depth of ML.

Introduction

Scientific knowledge shapes the foundation of the modern society, contributing to economic,

social, and technological progress [1, 2]. The progress of science relies on various technical

bases such as experimental techniques [3]. Among others, computational techniques play a

crucial role in various parts of scientific research [4, 5], and their role has been becoming more

fundamental especially with the advancement of artificial intelligence, or more specifically

machine learning (ML) [6].

Increasing examples have been reported in various domains, in which machines work

alongside humans to push forward the progress of science. For example, in life sciences, pro-

tein-protein interactions are predicted to understand disease mechanisms [7]; in chemistry,

optimal chemical reaction paths are predicted [8]; and in material sciences, physical properties

of new materials are predicted [9]. These examples are characterized by ML, in which well-

trained algorithms engage in complex tasks and directly contribute to making discoveries but

not only merely automating the work process.

As contemporary science is usually based on a team activity [10], the integration of

machines as creative agents can influence the optimal design of work and organizations [11–
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13]. While the interaction between human and machine has been studied at a micro (cogni-

tive) level [4] or a at a macro level [6], the literature has been rather silent as to the role of

machine in organization design [14]. Though a few studies described the patterns of collabora-

tion (e.g., international vs. domestic collaboration) in ML-related projects [15, 16], no previous

study to the best of our knowledge has investigated the impact of ML on the internal organiza-

tional design of scientist teams. This study thus aims to investigate the team structure of ML-

related projects and analyze the contribution of ML to scientific knowledge production under

different team structure.

To this end, we draw on bibliometric analyses. Our primary interest is how computational

science techniques are integrated into the fields of conventional domains of science ("domain
science" hereafter). Namely, our analysis includes six domains–agriculture, biology, chemistry,

material sciences, medicine, and physics. To highlight the role of machines, we exploit a com-

parative approach, contrasting (1) ML-related projects (combination of computational and

domain sciences) and (2) ML-unrelated projects (pure domain sciences). We collected approx-

imately 2,500 ML-related and 22,000 ML-unrelated scholarly publications. With bibliometric

and text analyses, we operationalized key variables of our interest. We investigated the quality

(citation impact and novelty) of publication output produced by research teams with different

team characteristics. Our results suggest (1) that interdisciplinary collaboration between

domain scientists and computer scientists as well as the engagement of interdisciplinary indi-

viduals who have expertise in both domain and computer sciences are common in ML-related

projects, (2) that the engagement of interdisciplinary individuals seem more important in

achieving high impact and novel discoveries, especially when a project employs computational

and domain approaches interdependently, and (3) that the contribution of ML and its implica-

tion to team structure depend on the depth of ML, in particular deep learning being associated

with greater impact but with lower novelty.

This paper is structured as follows. The next section reviews literature on the use of ML and

on the organizational design of science and formulates a few hypotheses. The following section

outlines the method and data. Then, the results from bibliometric analyses are presented. The

final section discusses the results and concludes.

Theory and hypothesis

Role of machine in science

Though the use of ML in science has substantially grown in the 2010s [6], computational tech-

niques have long been playing critical roles in science [17]. In empirically driven domains of

science such as physics and biology, statistical approaches have been actively used [18], and

enhanced computational power contributed to the progress of these fields [19]. Further, data

have been accumulated for collective use in various fields (e.g., genome data in life sciences,

material data in materials science), and access to large-scale data facilitated data-driven

approaches in these fields [20]. These technical bases coupled with algorithmic breakthrough

in the 2010s have transformed ML into a practical tool [21, 22]. ML has been applied to tackle

broad areas of problems from industry to academia, including autonomous driving, robotics,

communications, manufacturing, and medical diagnosis [23–26].

The technical core of ML is a model based on neural network, decision trees, and so forth

[27]. A model is trained by data and then applied to additional data to make predictions. In

academic research, domain scientists exploit this prediction capability to predict scientific laws

of their interest, such as optimal chemical reaction paths, physical properties of materials, and

protein-protein interactions [7–9].
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Empirical research usually involves iterated cycles of hypothesis formulation, data collec-

tion, and data analysis [28, 29]. Domain scientists can incorporate ML into different parts or

stages of this process. For example, ML can be used in later stages–data are generated through

non-computational approaches (e.g., experiment) and fed into ML. In this case, the output of

ML may become findings reported in publications. Alternatively, ML can be used in earlier

stages–a hypothesis is formulated based on machine prediction and is tested by non-computa-

tional approaches. In this case, the role of ML is more exploratory and its output may be less

explicitly presented in publications. Finally, ML may be used for data collection to automate

the process of collecting, cleaning, and coding the data. In such cases, the use of ML improves

the efficiency of scientific research but its role may be less apparent in publications.

Only a few studies have investigated the impact of ML on scientific knowledge production

[30], but we argue that ML can bring various values depending on how it is incorporated into a

research process. At the most primitive level, ML may make scientific research more efficient

and productive, for example, when ML is used for automation. ML is also expected to improve

the quality of information extracted from the data. By selecting a right model and carefully tun-

ing it, scientists may be able to extract more accurate or precise information than simpler statisti-

cal approaches can do. Finally, most fundamentally, ML may help domain scientists reach a

discovery beyond their cognitive capacity. As a result of rapid progress of science, fully mastering

domain knowledge has become a challenge for human scientists [31]. The increasing specializa-

tion of science also has made it challenging to integrate knowledge in multiple domains, even

though such is an important route for scientific discoveries [32]. With the computer processing

power, ML may help overcome these challenges attributed to the limit of human cognition.

Organization of science and role of machine

For fulfilling these values of ML in domain science, the expertise in computational science and

that in domain science need to be integrated. ML algorithms may be able to improve them-

selves automatically through the use of data [33], and this autonomous nature makes machines

creative agents. Yet, machines require a substantial care by human scientists, who develop,

run, and assess a model as well as interpret the output generated by the model [4, 22]. This pro-

cess requires both the knowledge of domain science and that of computer science. In fact, a

bibliometric analysis found that the vast majority of ML-based research involves collaboration

[15], implying the integration of two sets of expertise is a key to success.

The application of ML for domain science can be considered a case of interdisciplinary

research [34, 35]. Previous studies discussed various challenges associated with interdisciplin-

ary research [36, 37]. The studies consistently suggested organizational challenges for example

in the coordination of tasks and in communication between diverse scientists, as well as in

trust building which is critical to share insights and research findings among members. In

applying computational techniques to other domains, the same organizational challenges have

been suggested [38–40].

Scientist teams set up various organizational arrangements to overcome such challenges.

One potential solution concerns the proximity of collocation. Previous studies evaluated the

impact of the proximity of team members on team performance in various contexts, by and

large suggesting that proximity facilitates communication and thus performance [41]. In the

context of science, collaboration may occur in proximity (e.g., intra-organizational collabora-

tion) or remotely (e.g., inter-organizational collaboration) [15, 42]. As an extreme case of prox-

imity in science, collaboration can occur within a lab. A lab is an organizational unit more

permanent than a project team, and it offers the organizational basis for scientific activities in

traditional university systems [28, 29, 43]. Recent years have seen interdisciplinary labs being
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formed so that multiple disciplines can interact effectively [44, 45]. Apparently, effective and

dense communication is expected among lab members who share the workspace on a daily

basis. For example, members can monitor one another, which may allow a member to detect a

problem that another member struggles with and quickly find a solution to it [29, 46].

Hypothesis 1 (H1): The proximity of collaboration between computer scientists and domain sci-
entists is positively associated with the quality of research output.

As another route to tackle interdisciplinary research challenges, individual scientists may

acquire expertise in multiple domains. If an individual scientist has skills both in computer sci-

ence and in domain science, the aforementioned organizational challenges can be resolved

within him/herself. In fact, some areas of domain science recognized the promising power of

computational techniques and actively incorporated computational science, such as bioinformat-

ics in the biology domain [47]. These domains tend to offer a curriculum to train for computa-

tional techniques, which systematically develops interdisciplinary scientists at the intersection of

domain and computer sciences. This is becoming common, as computational techniques are

increasingly available from external sources such as publicly shared codes and commands imple-

mented in software, and thus, the skill requirement on computer science may be lowered.

Such interdisciplinary individuals can also play a boundary spanner role, who mediates

members of different expertise [48, 49]. They translate the languages of domain scientists and

computer scientists and facilitate their integration. Thus, the organizational challenges in inter-

disciplinary research are alleviated, which helps achieve expected interdisciplinary output [50].

Hypothesis 2 (H2): The engagement of an interdisciplinary scientist who has expertise in both
computer science and domain science is positively associated with the quality of research
output.

Among these organizational arrangements, the optimal form may depend on how com-

puter science expertise is applied to domain science, or on the interdependency of the two

areas of tasks [51]. On the one hand, task interdependency can be high if the output of domain

science tasks is used as the input of computer science tasks, or vice versa. The two areas of

tasks may be repeated in a cyclic way. In such a scenario with high task interdependency, orga-

nizational arrangement for interdisciplinary integration is expected to be more important. On

the other hand, task interdependency can be low if the two areas of tasks are modularized. For

example, computer scientists may apply their ML models to publicly available data from

domain sciences. Domain scientists may use ML only for data preparation (cleaning, etc.) or

may use established ML algorithms. In these cases, the interface between the two areas of tasks

is minimized, and thus, the above discussed organizational arrangement becomes less relevant.

Hypothesis 3A (H3A): The proximity of collaboration between computer scientists and domain
scientists is more positively associated with the quality of research output when the computer-
related tasks and domain tasks are interdependent.

Hypothesis 3B (H3B): The engagement of an interdisciplinary scientist who has expertise in both
computer science and domain science is more positively associated with the quality of research
output when the computer-related tasks and domain tasks are interdependent.

Methods and data

Data

To test our hypotheses, we draw on bibliometric data collected from the Web of Science

(WoS). Our primary interest is in the integration of computational science (ML) and domain
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science. To highlight the contribution of ML, we draw on a comparative approach, contrasting

(1) ML-related projects (combination of computation and domain sciences) and (2) ML-unre-

lated projects (purely domain science). The unit of analysis is a project team, which is operatio-

nalized by a group of authors of a publication.

We employ the following sampling strategy. First, we chose six domains–agriculture,

biology, chemistry, material sciences, medicine, and physics. The selection of these domains

is based on WoS Subject Categories (SC). We chose 20 SCs in total within these domains

(see S1 Appendix).

Second, in these domains (SCs), we aimed to choose journals that are as mono-disciplinary

as possible for two reasons. First, this is to lower the risk of sampling ML-related projects that

are unrelated to domain science. We assume that mono-disciplinary journals set a clear scope

of publication, with such a risk being mitigated. Second, to clarify the impact due to the inte-

gration of computer science and domain science, we minimized noise stemming from inter-

disciplinarity within a domain. To these ends, we chose up to five journals in each SC that are

associated with a single SC (not associated with any other SC).

Third, in these journals we selected two sets of papers, ML-related and ML-unrelated. We

first searched for ML-related papers with "machine learning", "deep learning", and "artificial

intelligence" as search keywords, which resulted in 2,500 papers.

Next, we collected ML-unrelated papers that include none of the ML-related keywords. For

clearer comparison, for each ML-related paper, we randomly selected up to 10 ML-unrelated

papers published in the same journal and in the same year. We found 22,300 ML-unrelated

papers. In total, we sampled 25,000 papers with 10% of ML-related papers and downloaded

their bibliometric information.

Measures

Quality of research output. As the dependent variables of our analyses, we prepared two

measures of scientific quality. First, we use the citation count as of 2021 to assess the impact of

the findings reported in the paper. To mitigate the skewness, we took a natural logarithm of

citation count (Impact).
Second, we measure the novelty of a paper. This is because we are interested in to what

extent ML contributes to creating new knowledge beyond human cognition. We drew on the

recombinant novelty concept [32, 52] and followed the operationalization by Matsumoto, et al

[53]. The method considers a paper to be novel when it cites a pair of references that have

rarely been cited together before. For easier interpretation we transformed the measure into a

rank measure so that its values are uniformly distributed between 0 and 1, with 0 being the

least novel and 1 being the most novel (Novelty). We computed this variable only for part of

our sample (67%) due to lack of access to citation network information.

Computer-domain collaboration. Since we are interested in the integration of computa-

tional expertise and conventional expertise, we investigated the forms of collaboration. To this

end, we scrutinized the names of authors’ affiliated organizations to distinguish if an organiza-

tion has a computational background or not. Then, we consider an organization to be compu-

tational if the name includes "computation", "information", or "system", and we consider an

organization to be in a traditional domain if the name includes none of them. Using this dis-

tinction of organizations, we prepared a few variables. We first measured if a team involved

both computational and domain organizations (instead of involving only domain organiza-

tions). A dummy variable is coded 1 if at least one affiliated organization is computational and

0 otherwise (Comp-Domain Collab).
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Proximity of collaboration. To further investigate the proximity in collaborating parties,

we examined whether a team involved computational and domain organizations inside the

same parent organization (i.e., a computational department and a domain department in the

same university). In such teams, a dummy variable is coded 1 and otherwise 0 (Intra-Org Col-
lab). Similarly, if a team involved computational and domain organizations in two different

organizations, another dummy variable is coded 1 and otherwise 0 (Inter-Org Collab). Note

that one team can involve both intra-organizational collaboration and inter-organizational

collaboration.

Interdisciplinary individuals. Third, we measured whether an individual team member

has both computational and domain expertise in two ways. One measure is based on organiza-

tional affiliation. If an individual member of a team (an author of a paper) is affiliated with

both computational and domain organizations, we consider that the member has both compu-

tational and conventional expertise and plays a boundary spanner role at the individual level.

A dummy variable is coded 1 if a team has at least one author affiliated with both types of orga-

nizations and 0 otherwise (Multi-Affiliation). The other measure is based on the previous expe-

rience of individual members. For feasibility, we focused on the corresponding author of each

paper and tracked WoS Subject Categories (SCs) associated with their previous publications.

We grouped SCs into computer-related and domain-related SCs, and coded a dummy variable

1 if the previous paper is associated with both a computer-related SC and a domain-related SC,

and 0 otherwise (Multi-Expertise).
Interdependency of computer and domain science. ML may be used in different ways in

domain sciences. We sampled ML-related papers and categorized them into two groups by

reading the method section of the papers. The first group of papers integrates both computa-

tional approaches and domain approaches (e.g., experiment, observation), whereas the second

group uses mainly computational approaches, typically based on secondary data. We assume

that this is a critical distinction in that the former group (Computer-Domain Integrated) should

require a greater extent of integration between computer and domain expertise compared

with the latter group (Computation-Focused).
ML-related project. Part of the following analyses compare ML-related papers and ML-

unrelated papers. For this comparison, we prepared a dummy variable, coded 1 if a paper is

ML-related (i.e., including "machine learning", "deep learning", "artificial intelligence" in the

title, abstract, or keywords) and 0 otherwise (ML-related).
Depth of ML. ML can mean various technologies. In fact, common technical keywords in

our selected papers include, for example, "neural network", "classification", "regression", "sup-

port vector machine", and "random forest." Some of these have been used traditionally (e.g.,

regression analyses). To highlight the impact of machines, we attempted to differentiate the

depth of models on which ML is carried out. Hence, we aim to contrast "deep" learning (DL)

and "non-deep" learning (non-DL). This is because the distinction should affect the computer-

science expertise required in a team and because deeper learning might provide new values for

science beyond what traditional statistical techniques can do. Making this technical distinction

based on text information is challenging because the detail of ML models is not always avail-

able. For feasibility, we consider that a project involved DL if a paper includes "deep learning"

or "neural network" in the abstract or in the keywords (DL-related).
Control variables. In the regression analyses, we control for several variables. As the base

characteristic of a team, we counted the number of authors of each paper (#Author), the num-

ber of organizations (university, firms, etc.) included in the author address (#Org), and the

number of countries included in the author address (#Country). We also control for univer-

sity-industry collaboration as it is known to affect scientific performance [54]. A dummy vari-

able is coded 1 if a paper has both academic and industrial affiliations and 0 otherwise (Univ-
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Industry Collab). We include publication year dummies as well as journal dummies. In so

doing we control for systematic differences in the quality measures between publication years

and between disciplines.

Results

Description of team structure

We first describe our dataset. Table 1 presents the descriptive statistics and correlation matrix

of all the variables. The publication of ML-related papers has recently grown substantially, and

90% of our sampled papers were published in the last five years (2017–2021). In terms of scien-

tific domains, the ML-related papers are in Agriculture (7%), Biology (31%), Chemistry (9%),

Material sciences (5%), Medicine (25%), and Physics (24%). The authors of the ML-related

papers spread across many countries, but major countries include the US (34%), China (23%),

the UK (9%), and Germany (9%). Finally, we examined the technical keywords common in

the ML-related papers, finding "neural network" (28%), "classification" (28%), "regression"

(12%), "support vector machine" (11%), and "random forest" (9%) among others.

Team size. We then describe the organizational features of ML-related projects as

opposed to ML-unrelated projects. Fig 1 first shows the team size of ML-related and ML-unre-

lated projects. We regressed the size variables onML-related and other control variables. The

top bars indicate that ML-related projects involve slightly fewer authors than ML-unrelated

projects (5.3 vs. 5.5, p< .001). This may be because ML-related projects require less physical

work and thus fewer members. The second bars, however, indicate that ML-related projects

involve more organizations (3.1 vs. 3.0, p< .05) probably because the ML-related projects

tend to require a broader set of expertise (i.e., computational and domain). Finally, the bottom

bars show no significant difference in the number of involved countries.

Computer-domain collaboration. Then, we analyze the collaboration forms between

computational and conventional organizations (Fig 2). As expected, domain-computer collab-

oration is more common in ML-related projects than in ML-unrelated projects (39% vs. 15%,

p< .001). Domain-computer collaboration is broken down into intra-organizational and

inter-organizational collaborations, both of which are more common in ML-related projects

(20% vs. 7%, p< .001 and 33% vs. 14%, p< .001).

Table 1. Descriptive statistics and correlation matrix.

Variables Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12

1 Impact 1.010 1.173 .000 8.218

2 Novelty .500 .289 .000 1.000 -.053

3 Ln(#Author) 1.715 .670 .000 5.198 .077 .071

4 Ln(#Org) 1.101 .727 .000 5.176 .071 .049 .668

5 Ln(#Country) .296 .460 .000 3.296 .095 .008 .327 .515

6 Univ-Industry Collab .064 .246 .000 1.000 .033 -.030 .167 .197 .136

7 Comp-Domain Collab .174 .379 .000 1.000 .070 .011 .105 .256 .152 .062

8 Intra-Org Collab .084 .277 .000 1.000 .064 .023 .103 .212 .045 .018 .660

9 Inter-Org Collab .154 .361 .000 1.000 .064 .010 .124 .274 .193 .079 .932 .515

10 Multi-Affiliation .100 .300 .000 1.000 .071 .019 .075 .226 .131 .049 .727 .582 .684

11 Multi-Expertise .151 .358 .000 1.000 .017 -.018 -.131 -.044 .015 .004 .227 .142 .210 .161

12 ML-related .103 .304 .000 1.000 .095 .004 -.032 .009 -.010 .086 .192 .134 .171 .130 .231

13 DL-related .040 .196 .000 1.000 .046 -.021 -.033 -.020 -.014 .055 .130 .082 .117 .086 .156 .602

Note. N = 24,641.

https://doi.org/10.1371/journal.pone.0272280.t001
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Interdisciplinary individuals. Finally, Fig 3 compares ML-related and unrelated projects

in terms of individual team members having both computational and domain expertise. The

figure indicates that ML-related projects are more likely to involve one or more individuals

who are affiliated with domain and computer departments (21% vs. 9%, p< .001). Similarly,

ML-related projects are more likely to engage individuals who had previous experience in

computer and domain sciences (38% vs. 13%, p< .001). These results indicate that ML-related

projects do incorporate a combination of computational and domain expertise.

Quality of output from ML-related projects

ML-related vs. ML-unrelated projects. We analyze the quality of scientific output pro-

duced by ML-related and unrelated projects. We predicted citation impact and novelty byML-

Fig 1. Team size. Team size is estimated by ordinary least squares (OLS) regressions controlling for publication years

and journals. The error bars indicate one standard error. Two-tailed test: �p<0.05, ���p<0.001.

https://doi.org/10.1371/journal.pone.0272280.g001

Fig 2. Collaboration form. Collaboration forms are estimated by logit regressions controlling for publication years

and journals. The error bars indicate one standard error. Two-tailed test: ���p<0.001.

https://doi.org/10.1371/journal.pone.0272280.g002
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related with controlling for the team size and other variables (Table 2A). Model 1 shows a sig-

nificantly positive coefficient ofML-related (b = .478, p< .001), suggesting that ML-related

papers tend to receive more citations than ML-unrelated papers. On the other hand, Model 2

finds no significant coefficient ofML-related (b = -.004, p>.1), suggesting that ML-related

papers do not necessarily present novel discoveries. We further repeated the same set of analy-

ses with a matching approach, in which ML-related papers are compared with ML-unrelated

papers published in the same journal in the same year, finding a consistent result (Table 2B).

Computer-domain collaboration. We then examine how different collaboration forms

affect the quality of publications from ML-related projects (Table 3A). First, Models 1–4 use cita-

tion impact as the dependent variable. Model 1 suggests that computer-domain collaboration is

associated with higher citation impact (b = .113, p< .01). Breaking down such collaboration,

Model 2 finds a weakly significant coefficient (b = .089, p< .1) for intraorganizational collabora-

tion and an insignificant coefficient for inter-organizational collaboration (b = .067, p>.1). This

is consistent with H1, but the difference between the two forms of collaboration is insignificant,

and thus, proximity in collaboration does not seem to play a major role in this context.

Model 3 further breaks down computer-domain collaboration into ones involving individu-

als affiliated with both computer and domain departments (Multi-Affiliation) and ones not

involving such individuals (Comp-Domain Collab without Multi-Affiliation), finding that only

the former group is associated with higher citation impact (b = .160, p< .001) but not the latter

(b = .055, p>.1). This suggests that interdisciplinary individuals are important to achieve high

citation impact. Similarly, Model 4 breaks down computer-domain collaboration into ones

involving individuals having previous experience in computer and domain sciences (Multi-
Expertise) and ones not involving such individuals (Comp-Domain Collab without Multi-Exper-
tise). The result shows significantly positive coefficients for both variables (b = .119, p< .001

and b = .139, p< .001), suggesting that high citation impact requires either computer-domain

collaboration or interdisciplinary individuals. These results are supportive to H2.

Models 5–8 repeat the same set of analyses with novelty as the dependent variable. Model 5

shows that computer-domain collaboration makes no difference in novelty. Model 6 presents

a more positive coefficient for intra-organizational collaboration than for inter-organizational

collaboration (b = .012 vs. b = -.006), which is consistent with H1, but they are both

Fig 3. Interdisciplinary expertise. Collaboration forms are estimated by logit regressions controlling for publication

years and journals. The error bars indicate one standard error. Two-tailed test: ���p<0.001.

https://doi.org/10.1371/journal.pone.0272280.g003
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insignificant. Finally, Model 8 finds that interdisciplinary individuals having both computer

and domain science expertise are weakly associated with higher novelty (b = .026, p< .1), con-

sistent with H2.

These results seem to imply relatively greater importance of interdisciplinary individuals

rather than interdisciplinary collaboration. Thus, we further test whether the role of interdisci-

plinary individuals is specific to ML-related projects. To this end, we compare the impact of

Multi-Affiliation andMulti-Expertise between ML-related and ML-unrelated projects

(Table 3B). In all four models, we find that the coefficients are larger for ML-related projects

than for ML-unrelated projects. In particular, Model 1 shows that individuals having both

computer and domain affiliations (Multi-Affiliation) are significantly associated with higher

citation impact (b = .119, p< .001), and Model 4 shows that individuals having both computer

and domain expertise (Multi-Expertise) are significantly associated with higher novelty (b =

.024, p< .1).

Interdependency of computer and domain science. Next, we test whether the role of

computer-domain collaboration and interdisciplinary individuals differs due to the interde-

pendency of the two expertise areas. To this end, Table 4 draws on the subsamples of ML-

Table 2. Prediction of publication quality: ML-related vs. ML-unrelated projects.

(A) Base model

Impact Novelty

Model 1 Model 2

ln(#Author) .171��� (.010) .020��� (.005)

ln(#Org) .013 (.009) .008† (.004)

ln(#Country) .079��� (.011) -.004 (.005)

Univ-Industry Collab .046� (.018) -.043��� (.009)

ML-related .478��� (.015) -.004 (.006)

Year dummies Yes Yes

Journal dummies Yes Yes

F stat 499.220��� 37.113���

R2 adjusted .660 .173

N 24641 16433

(B) Matched Sample

Impact Novelty

Model 1 Model 2

ln(#Author) .161��� (.009) .019��� (.005)

ln(#Org) .012 (.009) .011� (.004)

ln(#Country) .066��� (.011) -.005 (.005)

Univ-Industry Collab .017 (.017) -0.40��� (.009)

ML-related .497��� (.016) -.001 (.008)

F stat 241.507��� 155.761���

R2 adjusted .828 .797

N 24405 15938

Note. Unstandardized coefficients (standard errors in parentheses).

Two-tailed test: †p<0.1,

�p<0.05,

��p<0.01,

���p<0.001.

Ordinary least squares (OLS). (B) ML-related papers are paired with ML-unrelated papers published in the same journal in the same year.

https://doi.org/10.1371/journal.pone.0272280.t002
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Table 3. Prediction of publication quality by team structure.

(A) ML-related Projects Only

Impact Novelty

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

ln(#Author) .110�� (.037) .110�� (.037) .109�� (.037) .107� (.042) -.012 (.013) -.012 (.013) -.009 (.013) -.009 (.015)

ln(#Org) .004 (.038) -.001 (.038) -.002 (.038) .029 (.041) .037�� (.013) .035�� (.013) .034�� (.013) .021 (.014)

ln(#Country) .144��� (.044) .150��� (.044) .136�� (.044) .102� (.048) -.003 (.015) -.001 (.015) -.003 (.015) -.000 (.016)

Univ-Industry Collab .032 (.051) .033 (.051) .032 (.051) .002 (.058) -.062��� (.018) -.061��� (.018) -.063��� (.018) -.061�� (.020)

Comp-Domain Collab .113�� (.037) -.002 (.013)

Intra-org Collab .089† (.048) .012 (.016)

Inter-org Collab .067 (.041) -.006 (.014)

Multi-Affiliation .160��� (.046) .017 (.016)

Comp-Domain Collab

w/o Multi-Affiliation

.056 (.046) -.021 (.016)

Multi-Expertise .119�� (.044) .026† (.015)

Comp-Domain Collab

w/o Multi-Expertise

.139�� (.053) -.013 (.018)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Journal dummies Yes Yes Yes Yes Yes Yes Yes Yes

F stat 42.377��� 41.923��� 41.937��� 31.402��� 6.086��� 6.027��� 5.820��� 5.327���

R2 adjusted .611 .611 .606 .587 .184 .184 .176 .189

N 2530 2530 2505 2034 2137 2137 2117 1724

(B) ML-related vs. ML-unrelated Projects

Impact Novelty

Model 1 Model 2 Model 3 Model 4

ln(#Author) .170��� (.010) .159��� (.011) .021��� (.005) .025��� (.005)

ln(#Org) .007 (.009) .011 (.010) .007 (.005) .003 (.005)

ln(#Country) .080��� (.011) .069��� (.012) -.003 (.005) .001 (.006)

Univ-Industry Collab .049�� (.018) .048� (.020) -.043��� (.009) -.040��� (.009)

ML-related .457��� (.016) .460��� (.020) -.007 (.007) -.010 (.009)

Multi-Affiliation (ML-

unrelated)

.006 (.017) .002 (.008)

Multi-Affiliation (ML-

related)

.119��� (.033) .017 (.014)

Multi-Expertise (ML-

unrelated)

-.006 (.016) -.006 (.008)

Multi-Expertise (ML-

related)

.006 (.031) .024† (.013)

Year dummies Yes Yes Yes Yes

Journal dummies Yes Yes Yes Yes

F stat 486.705��� 412.463��� 34.530��� 30.739���

R2 adjusted .654 .665 .164 .176

N 24392 20095 16250 13386

Note. Unstandardized coefficients (standard errors in parentheses).

Two-tailed test: †p<0.1,

�p<0.05,

��p<0.01,

���p<0.001.

Ordinary least squares (OLS). (B) To compare the impact ofMulti-Affiliation andMulti-Expertise between ML-related and ML-unrelated projects, we interactedMulti-
Affiliation (-Expertise) withML-related. For example,Multi-Affiliation (ML-related) = 1 ifMulti-Affiliation = 1 andML-related = 1.

https://doi.org/10.1371/journal.pone.0272280.t003
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related projects–computation-focused projects and computer-domain integrated projects. We

first test whether the proximity of collaboration shows a different impact between the two sub-

samples, finding mostly insignificant results. Thus, H3A is rejected. We then test whether

interdisciplinary individuals make a greater impact on interdependent projects (Table 4). The

result indeed shows that bothMulti-Affiliation andMulti-Expertise have significantly positive

coefficients only in computer-domain integrated projects. This suggests that interdisciplinary

individuals are particularly important when projects employ both computational and domain

approaches interdependently, supporting H3B.

Depth of ML. Finally, we break down ML technologies. First, Table 5A regresses the pub-

lication quality on DL-related in addition toML-related. Model 1 shows that DL-related papers

are even more cited compared to DL-unrelated papers (b = .200, p< .001). However, Model 2

indicates that DL-related papers are less novel compared to DL-unrelated papers (b = -.054, p

< .001). Thus, it appears that DL does not necessarily allow scientists to gain novel insights

beyond human cognition. DL rather seems to be applied to an agenda that humans have rela-

tively good understanding of (and thus with lower novelty). Our interviewee suggested that

DL tends to provide better model performance (e.g., accuracy, precision), facilitating further

uses of DL models, which is consistent with the positive coefficient of DL-related on citation

count (Model 1).

Table 5B further investigates the contribution of interdisciplinary individuals in DL-related

and DL-unrelated projects by distinguishing computation-focused projects and computer-

domain integrated projects. The result shows almost no effect of interdisciplinary individuals

in computation-focused projects (Models 1, 2, 5, and 6), as in Table 4. In contrast, in com-

puter-domain integrated projects, interdisciplinary individuals seem to play different roles in

DL-related and DL-unrelated projects. In terms of citation impact, Models 3 and 4 show that

interdisciplinary individuals are more important in DL-unrelated projects (but ML-related)

than in DL-related projects. On the other hand, in terms of novelty, Models 5 and 6 show that

Table 4. Use of machine: Computation-focused vs. computer-domain integrated projects (ML-related projects only).

Impact Novelty

Computation-focused Computer-Domain Integrated Computation-focused Computer-Domain Integrated

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

ln(#Author) .008 (.082) .014 (.099) .112 (.071) .117 (.080) -.017 (.031) -.018 (.037) -.004 (.023) .001 (.026)

ln(#Org) -.030 (.087) .036 (.094) -.015 (.068) .047 (.073) -.004 (.032) -.016 (.034) -.029 (.022) -.021 (.024)

ln(#Country) .157† (.095) .162 (.108) .172� (.078) .112 (.084) .018 (.034) .038 (.038) .049† (.025) .047† (.027)

Univ-Industry Collab .118 (.120) .063 (.145) -.079 (.090) -.109 (.098) .032 (.047) .012 (.054) -.078�� (.029) -.061† (.031)

Multi-Affiliation .085 (.098) .186� (.074) .039 (.036) .058� (.024)

Multi-Expertise .008 (.089) .164� (.074) -.013 (.032) .063�� (.024)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Journal dummies Yes Yes Yes Yes Yes Yes Yes Yes

F stat 19.116��� 11.190��� 21.415��� 18.534��� 2.857��� 2.735��� 3.492��� 3.230���

R2 adjusted .611 .532 .665 .662 .160 .186 .211 .217

N 613 476 751 646 487 380 664 572

Note. Unstandardized coefficients (standard errors in parentheses).

Two-tailed test: †p<0.1,

�p<0.05,

��p<0.01,

���p<0.001.

Ordinary least squares (OLS).

https://doi.org/10.1371/journal.pone.0272280.t004
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interdisciplinary individuals are more important in DL-related projects than in DL-unrelated

ones. A plausible interpretation is that greater novelty is rooted in inspiration from DL facili-

tated by the integration of computer and domain expertise, whereas greater citation results

from higher model performance due to DL, which may not necessarily require the fundamen-

tal integration of computer and domain expertise.

Table 5. ML technologies.

(A) Base model

Impact Novelty

Model 1 Model 2

ln(#Author) .170��� (.010) .021��� (.005)

ln(#Org) .014 (.009) .007† (.004)

ln(#Country) .079��� (.011) -.003 (.005)

Univ-Industry Collab .045� (.018) -.043��� (.009)

ML-related .401��� (.018) .017� (.008)

DL-related .200��� (.028) -.054��� (.012)

Year dummies Yes Yes

Journal dummies Yes Yes

F stat 495.598��� 36.987���

R2 adjusted .661 .174

N 24641 16433

(B) Interdisciplinary Expertise (ML-related projects only)

Computation-focused Computer-Domain Integrated Computation-focused Computer-Domain

Integrated

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

ln(#Author) -.014 (.082) -.003 (.097) .114 (.071) .112 (.080) -.013 (.031) -.013 (.037) (.023) .003 (.026)

ln(#Org) -.021 (.086) .027 (.093) -.011 (.069) .055 (.073) -.004 (.031) -.015 (.034) (.022) -.024 (.024)

ln(#Country) .168† (.094) .179† (.106) .173� (.078) .110 (.084) .016 (.033) .035 (.038) (.025) .046† (.027)

Univ-Industry Collab .100 (.119) .066 (.143) -.088 (.090) -.124 (.099) .031 (.046) .004 (.055) (.029) -.052† (.032)

DL-related .234�� (.079) .198† (.109) .090 (.084) .121 (.098) -.023 (.029) -.026 (.040) (.027) -.065� (.032)

Multi-Affiliation

(DL-unrelated)

-.012 (.137) .201� (.085) .100† (.052) (.027)

Multi-Affiliation

(DL-related)

.113 (.124) .127 (.135) .003 (.046) (.044)

Multi-Expertise

(DL-unrelated)

-.135 (.126) .214� (.086) .005 (.047) .042 (.028)

Multi-Expertise

(DL-related)

.102 (.114) .031 (.133) -.026 (.040) .118�� (.043)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Journal dummies Yes Yes Yes Yes Yes Yes Yes

F stat 19.029��� 11.414��� 20.834��� 18.050��� 2.845��� 2.667��� 3.444��� 3.212���

R2 adjusted .618 .547 .665 .662 .165 .186 .212 .220

N 613 476 751 646 487 380 664 572

Note. Unstandardized coefficients (standard errors in parentheses).

Two-tailed test: †p<0.1,

�p<0.05,

��p<0.01,

���p<0.001.

Ordinary least squares (OLS).

https://doi.org/10.1371/journal.pone.0272280.t005
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Discussion and conclusion

The progress of science increasingly relies on computational expertise and particularly on ML

[6], and machines work alongside humans in various domains. The integration of machines as

creative agents in science can influence the optimal design of work and organizations [11–13].

This study thus investigated the team structure of ML-related projects and analyzed the contri-

bution of ML to scientific knowledge production under different team structure, drawing on

bibliometric data of 25,000 scientific publications in six scientific domains.

This study contributes to the literature by illustrating the role of machines in a scientist

team. Previous literature on the use of machines has been either at a macro level [6] or at a

micro (cognitive) level [4], with the meso-level discussion in scientist teams remaining to be

understudied [14]. Although a few recent studies described the patterns of collaboration (e.g.,

international vs. domestic collaboration) in ML-related projects [15, 16], our understanding

has been scarce as to how ML affects the quality of scientific knowledge production under dif-

ferent internal team structures. Drawing on the literature of scientific collaboration and inter-

disciplinarity [28, 29, 36, 49], we argue that team features that help integrate computer

expertise and domain expertise are associated with higher output quality, and that these fea-

tures are more important when the computer-related tasks and domain tasks are

interdependent.

A potential challenge in integrating computer and domain sciences is the lack of incentive.

While our analysis shows that interdisciplinarity contributes to higher impacts and novelty, it

is not obvious whether scientists with computational expertise and those with domain exper-

tise are willing to work together. In fact, our interview suggested that scientists working on ML

tended to appreciate publications in computer science rather than publications in other fields.

It is also suggested that domain scientists do not always appreciate research approaches based

upon ML because it is difficult to explain how prediction is made by a model that could be

considered a black box. It is thus critical to understand what motivates ML scientists to collab-

orate with domain scientists and what obstacles exist in their collaboration.

It is particularly interesting to find that ML can contribute to the novelty of scientific dis-

coveries with the engagement of interdisciplinary individuals. Our empirical work further sug-

gests that interdisciplinary individuals are critical in delivering novel discoveries based on

deeper ML (DL). ML can bring various values, such as the efficiency of data analysis or greater

precision of model prediction. However, supplementing humans’ cognitive capacity and deliv-

ering novel discoveries is a fundamental benefit of machines under the burden of knowledge

[31]. Our result highlights a critical role played by interdisciplinary individuals in achieving

novelty. Thanks to the continued advancement of computational science, more sophisticated

and potentially more complex and deeper ML approaches are likely to become available for

domain scientists. Our result implies that engaging interdisciplinary individuals is crucial in

exploiting the full capacity of computational techniques. Indeed, our interviewee referred to a

critical "liaison" role played by a scientist who studied computer science and genetics in a proj-

ect utilizing ML for detecting cancers. Such interdisciplinary scientists may begin their careers

either as domain scientists or as computer scientists. For example, domain sciences have

invested in computational techniques (e.g., bioinformatics) to systematically train interdisci-

plinary scientists [47]. Efforts may need to be further reinforced, for example, to support edu-

cational programs to nurture interdisciplinary scientists who can integrate computer and

domain sciences.

Our results need to be interpreted with a few limitations. First, our bibliometric approach

captures the structure of scientist teams only partially. Future research should look into how

team members interact and what skills each member has. Second, future research should
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further investigate the technical aspects of ML. ML can be based on various models and can

differ particularly in depth and complexity. We attempted to capture the depth by a simplified

approach, but the result needs careful interpretation and a more sophisticated analysis is

required. Third, we have to be cautious about potential changes in the role of machines over

time. The vast majority of our sampled papers were published in the last four years (2017–

2021) because ML is a rather recent phenomenon. The role of machines and how it affects the

team design might change in the future with the advancement of computational techniques.

Fourth, our results are based on cross-sectional analyses, and thus, the causal mechanism

behind our findings cannot be completely clear.
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