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ABSTRACT
Objectives: The aim of this study was to develop and
test, for the first time, a multivariate diagnostic
classifier of attention deficit hyperactivity disorder
(ADHD) based on EEG coherence measures and
chronological age.
Setting: The participants were recruited in two
specialised centres and three schools in Reykjavik.
Participants: The data are from a large cross-
sectional cohort of 310 patients with ADHD and 351
controls, covering an age range from 5.8 to 14 years.
ADHD was diagnosed according to the Diagnostic
and Statistical Manual of Mental Disorders fourth
edition (DSM-IV) criteria using the K-SADS-PL
semistructured interview. Participants in the control
group were reported to be free of any mental or
developmental disorders by their parents and had a
score of less than 1.5 SDs above the age-appropriate
norm on the ADHD Rating Scale-IV. Other than
moderate or severe intellectual disability, no additional
exclusion criteria were applied in order that the cohort
reflected the typical cross section of patients with
ADHD.
Results: Diagnostic classifiers were developed using
statistical pattern recognition for the entire age range
and for specific age ranges and were tested using
cross-validation and by application to a separate
cohort of recordings not used in the development
process. The age-specific classification approach was
more accurate (76% accuracy in the independent test
cohort; 81% cross-validation accuracy) than the age-
independent version (76%; 73%). Chronological age
was found to be an important classification feature.
Conclusions: The novel application of EEG-based
classification methods presented here can offer
significant benefit to the clinician by improving both
the accuracy of initial diagnosis and ongoing
monitoring of children and adolescents with ADHD.
The most accurate possible diagnosis at a single
point in time can be obtained by the age-specific
classifiers, but the age-independent classifiers are
also useful as they enable longitudinal monitoring of
brain function.

INTRODUCTION
Attention Deficit Hyperactivity Disorder
(ADHD) is the most common neuropsychi-
atric disorder among school-age children
with an estimated worldwide prevalence of
5.9–7.1%.1 Clinical diagnosis currently relies
on the assessment of behavioural patterns
and characteristics, using questionnaires and
information provided by close observers of
the child’s behaviour.2 A lack of confidence
in diagnosis, which is inherently subjective as
it is limited to interviews, review of patient
history and rating scales, has been demon-
strated to be one of the barriers to effective
treatment.3 In addition, the diagnostic
process consists of many elements and can

Strengths and limitations of this study

▪ For the first time, a multivariate diagnostic classi-
fier of attention deficit hyperactivity disorder
(ADHD) has been developed, based on EEG
coherence measures and chronological age,
using data from 630 recordings.

▪ In addition to cross-validation, a cohort of com-
pletely independent EEG recordings that were not
used in training the classifiers was used for testing.

▪ The underlying population and EEG equipment
were quite tightly controlled, as the participants
in the study were all recruited in Iceland and the
EEG recordings were all made with similar hard-
ware and software.

▪ The patient group is cross-sectional, which can
be considered not only as a limitation but also
as a strength of the study, because it reflects the
realities of clinical practice. This patient group is
highly heterogenic by nature, and hence a clinical
diagnostic method developed for the general
clinical population using this group is likely to be
more widely applicable and have greater clinical
utility.
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therefore be time-consuming and expensive. However,
despite the clear need for development of an objective
and independent diagnostic test for ADHD, such a tool
remains elusive. Although the underlying differences in
the central nervous system (CNS) in children with
ADHD have been widely studied, the findings from
neurobiological research have not so far been translated
into diagnostic methods suitable for use in clinical
practice.
EEG measures electrical signals at the scalp which are

generated by synaptic activity in the cerebral cortex,
which is driven by the underlying brain network and
neurotransmitter systems and hence also sensitive to sub-
cortical function.4 The technique has a long history of
providing functional information on the CNS, including
in children with behavioural problems. The first EEG
recordings in humans were made by Hans Berger in
about 1928, and 10 years later the first EEG study on
children with behavioural problems was presented. EEG
recordings of 77 children with behavioural problems
and 289 controls showed EEG abnormalities in 73% and
severe EEG abnormalities in 59% of behaviourally disor-
dered children.5

Neurobiologically, symptoms of ADHD have been asso-
ciated with alterations in dopaminergic and noradrener-
gic function. One of the common treatments, the
stimulant methylphenidate, which has been found to be
effective in increasing attention and concentration in
children diagnosed with ADHD, acts by blocking the
dopamine and norepinephrine transporters in the brain
and thereby increasing the level of dopamine and nor-
epinephrine in the prefrontal cortex.6 7 EEG has been
shown to provide an indirect measure of the levels of
these neurotransmitters as the signals reflect chemical
activity at the synapses of the neurons.8–10

Many EEG studies carried out during the past two
decades show differences in brain activity in children
diagnosed with ADHD compared to controls. The
majority of these studies rely on power-spectral analysis
of individual channels and frequencies; the most com-
monly reported differences are increased power in the
θ band (4–7 Hz) and decreased power in the β band
(13–30 Hz) in frontal areas. These results show, in prin-
ciple, that EEG measures are capable of discriminating
between patients with ADHD and controls. However,
there is a lack of methodological standardisation and
the studies vary in the age range of the participants
included, the number and position of EEG channels
used, the recording conditions (eye state and use of a
task) and the analysis methods.11–14 Overall, this body of
literature provides good evidence for electrophysio-
logical differences at the group level which are clinically
relevant, but the methods are not in general accessible
for widespread diagnostic use in the clinic, due to the
reliance on subjective interpretation.
Recent research on the underlying neurobiological

basis of ADHD has focused increasingly on neuronal
connectivity and synchronisation between brain areas.15

Studies using functional MRI have found atypical con-
nectivity in the resting-state brain network of individuals
with ADHD.16 17 Similarly, studies measuring the coher-
ence between different EEG channels in children diag-
nosed with ADHD and the effect of stimulant
medication have reported significant differences
between the groups as well as between good and poor
responders to medication.14 18 19

The methods available to analyse EEG have improved
greatly in recent years with advancements in signal pro-
cessing techniques and statistical methods. In particular,
multivariate statistical approaches enable the inclusion
of a wide range of the available EEG measures into a
single classifier, avoiding the need to concentrate on
individual channels and frequency bands and potentially
improving the accuracy and robustness of EEG-based
diagnosis. Magee et al20 used a combination of factor,
cluster and regression analysis to develop a diagnostic
classifier for a homogeneous group of patients with
ADHD based on EEG power measures across all fre-
quency bands and channels, obtaining an overall classifi-
cation sensitivity of 89.0% and a specificity of 79.6%.
Poil et al21 classified ADHD adults versus controls with
67% sensitivity and 83% accuracy with support vector
machine classification. Such a multivariate statistical
approach can be further extended to include multiple
EEG features, including coherence measures.22 23 These
are particularly relevant in ADHD as EEG coherence
reflects the connectivity and synchronisation of different
brain areas, thus providing potential measures of the
underlying dysfunction. Further, as EEG features change
significantly with age, particularly in children,24 25

chronological age can be included as a feature in the
analysis, to account for natural brain development. The
aim of this study was to develop and test a multivariate
diagnostic classifier of ADHD based on EEG coherence
measures and chronological age, using data from a large
cross-sectional cohort of patients with ADHD and con-
trols covering a broad age range.

METHODS
Participants
Six hundred and sixty-one children and adolescents
were recruited into this study: 310 participants diag-
nosed with ADHD and a control group of 351 partici-
pants not diagnosed with ADHD. The age range was
5.8–14 years, the average age being 9.6 years for the
ADHD group and 9.5 years for the control group. The
male:female ratio was 3:1 for the ADHD group and 1:1
for the control group. The participants in the ADHD
group were recruited in two specialised centres in
Reykjavik, Iceland: the Department of Child and
Adolescent Psychiatry at Landspitali University Hospital
and the Health Care Centre for Developmental
Disorders. The participants in the control group were
recruited in three schools in Reykjavik, selected for
reasons of convenience.
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The individuals in the ADHD group were diagnosed
according to Diagnostic and Statistical Manual of Mental
Disorders fourth edition (DSM-IV)2 using the K-SADS-PL
semistructured interview,26–28 performed by experienced
clinicians. There are three subtypes of ADHD and, in this
study, 33% of the participants in the ADHD group were
predominantly inattentive, 2% were predominantly hyper-
active/impulsive, and 65% were of the combined subtype.
The mean score on the ADHD Rating Scale-IV for the
ADHD group is 2.84 SD above the age-appropriate norm.
As we wanted to include a wide range of participants

typical of the broad spectrum of patients with ADHD
typically presenting in the clinic, no exclusions relating
to medication status were applied. Therefore, the ADHD
group included the following three participants:
medication-naïve patients (N=150 recordings), patients
receiving treatment at the time of the recording (N=100
recordings), and patients on medication (N=65) but not
actually receiving treatment at the time of the recording.
Comorbid disorders are common in ADHD and,

again, were not excluded in order that the patients
recruited would be typical of the normal range seen in
clinic. The only exclusion criterion applied was moder-
ate or severe intellectual disability. In our ADHD group,
60% of the participants had at least one comorbid dis-
order and 22% had two or more. The most common
comorbid disorders were oppositional defiant disorder
(N=92), autism spectrum disorder (N=41), anxiety disor-
ders (N=28) and tics (N=25). These types and frequen-
cies are comparable to the comorbidities presented in
the study of Patel.29 The parents of the participants in
both groups provided information on their history of
head injuries, migraine, epilepsy, tics and sleep distur-
bances but none of these were applied as exclusion
criteria.
The children and adolescents in the control group

were reported to be free of any mental or developmen-
tal problems by their parents. Additionally, they all had a
score of less than 1.5 SDs above the age-appropriate

norm on the ADHD Rating Scale-IV (mean score −0.31
SD from norm) (table 1).30–32

The parents or other caregivers of all participants pro-
vided written informed consent prior to participation.

EEG data acquisition
The EEGs were recorded using NicoletOne EEG
Systems from Natus. Recordings were made at a sam-
pling rate of 512 Hz for 3 min with eyes closed at rest.
Participants were seated in a chair and were alerted if
they moved too much or if their EEG showed signs of
drowsiness. The amplifier had a band pass from 0.5 to
70 Hz, with a 50 Hz notch filter. The electrodes were
placed on the scalp according to the international 10–20
system using 17 electrodes: Fz, F3, F4, F7, F8, Cz, C3, C4,
T3, T4, T5, T6, Pz, P3, P4, O1 and O2, all referenced to
Fpz. The impedance was kept below 5 kΩ for all electro-
des. Eye movements were monitored for horizontal and
vertical movements by measurement of the electro-
oculogram. The recordings were re-referenced to an
average montage prior to subsequent data analysis,
which was carried out in the Matlab environment from
MathWorks. According to the protocol, the recording
was to be repeated if a technical problem occurred. As a
result, no participants were excluded due to bad quality
EEG.
In total, 351 recordings were obtained from control

participants (one per participant). Of the 351 record-
ings obtained from the 310 patients with ADHD, 100
were recordings from patients on medication (methyl-
phenidate N=76, atomoxetine N=22, methylphenidate
and atomoxetine N=2) and 251 were recordings from
patients on no treatment. 41 of the patients had their
EEG recorded twice, once while not on treatment and
again at a different time while on treatment.
The recordings were divided into two separate

cohorts. The first ‘training’ cohort, consisting of 315
ADHD and 315 control recordings, was used to train the
diagnostic classifier. The second ‘test’ cohort, consisting

Table 1 Details of the ADHD participants assigned to the training cohort and the test cohort, including gender, number of

comorbidities and ADHD subgroups, and if they were medicated at the time of the recording (two visits means there is one

recording from the subject on medication and 48 h of free medication)

Training group Percentage Test group Percentage

Total participants 274 100 36 100

Male 212 76 26 72

Female 62 24 10 28

No comorbidity 109 38 11 31

1+ comorbidity 165 62 20 56

2+ comorbidity 61 22 5 14

ADHD IA 89 34 13 36

ADHD COM 180 64 22 61

ADHD H/I 5 2 1 3

Medicated 59 33 10 28

Non-medicated 174 67 26 72

2 visits 41 13 0 0

ADHD, attention deficit hyperactivity disorder.
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of 36 ADHD and 36 control recordings, was not involved
in the training process and was used solely for independ-
ent testing of the classifiers obtained.
In both cases, the cohorts were subdivided into four

separate age ranges to enable investigation of the utility
of age-specific classifiers. In addition, the training
cohort was divided into three equal age-independent
subcohorts consisting of 105 ADHD and 105 control
recordings apiece, each with a similar age distribution
covering the entire range, by dividing each of the age
groups into three equal parts, to enable investigation of
the variability of age-independent classifiers trained on
different data sets. Details of the cohorts and age-
specific subgroups are provided in tables 2 and 3.

Signal processing and statistical analysis
The coherence between 12 different electrode pairs
(6 intrahemispheric and 6 interhemispheric), for each
of the 16 different spectral features, was extracted from
the EEG recordings, giving a total of 192 coherence
measures. Details of the spectral features and electrode
pairs used are given in table 4; note that only coherence
measures (ie, not absolute or relative powers) were used
in the construction of the classifiers. In addition, the
chronological age of the subject was used as a feature in
the data analysis. The reliability of the EEG features
used in this study has already been investigated.23 33 An
automatic artefact removal scheme is applied by a robust
fit of each feature.
The spirit of the feature extraction is to capture the

relevant degrees of freedom in the multivariate signal.
In order to capture the connectivity degrees of freedom,
the choice was to consider the autocorrelation function

between electrodes in the average montage. The spectral
features related to connectivity were then estimated
from that. In practice, this is done by considering the
autocorrelation function for 2 s segments and evaluating
the spectrum for each segment. The segments consid-
ered are all segments within the selected recording with
a 1sec overlap. A Bartlet window is applied to each
segment. The analysis results in a spectrum for each
segment. This ensemble is then used in order to esti-
mate a representative spectrum by applying robust
fitting over all spectra. In that way, incidental artefacts
are avoided. This evaluation was repeated for five con-
secutive 36 s intervals of the recording. The outcomes
for the intervals were then averaged and applied. The
classical qEEG spectral features for each channel are
obtained in a similar manner, again in the average
montage.
The data are analysed applying a statistical pattern rec-

ognition (SPR) technique, based on support vector
machines, which is used to construct a classifier from
two groups of qEEGs, for example, qEEGs from groups
A and B.10 When an EEG is classified, the classifier
returns an index, the A–B index, with a value between 0
and 1. If the A–B index is close to 0, the EEG is indistin-
guishable from the EEGs in group A, and if the A–B
index is close to 1, the EEG is indistinguishable from the
EEGs in group B. Each classifier relies on a set of 20 fea-
tures out of the 193 available features. Twenty features
were chosen because there is experience in using that
number of features from an earlier work where the size
of groups is comparable.23 Even though it is possible
that some of those features are redundant, a usable set
of features has been obtained. For each classifier

Table 2 Details of the EEG recordings assigned to the training cohort and the division into four age groups

Training set
Age group

ADHD
Minimum age

ADHD
Maximum age N

Control
Minimum age

Control
Maximum age N

1 5.9 8.3 90 5.8 7.8 90

2 8.4 9.9 90 7.8 10.0 90

3 10.0 12.0 90 10.1 12.3 90

4 12.1 13.8 45 12.3 14.0 45

1–4 5.9 13.8 315 5.8 14.0 315

ADHD, attention deficit hyperactivity disorder.
These data were used to train classifiers for ADHD vs controls.

Table 3 Details of the EEG recordings assigned to the test cohort and the division into four age groups

Test set
Age Group

ADHD
Min age

ADHD
Max age N

Control
Min age

Control
Max age N

1 6.5 8.2 8 6.3 7.3 10

2 8.4 9.8 9 7.8 9.8 8

3 10.4 12.0 6 10.2 12.2 11

4 12.2 14.0 13 12.3 13.6 7

1–4 6.5 14.0 36 6.3 13.6 36

These data were used for independent testing of the classifiers obtained.
ADHD, attention deficit hyperactivity disorder.
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construction, there are therefore 8×1026 distinct possibil-
ities. A genetic algorithm34 was applied to select the fea-
tures used in the construction of the classifier for each
pair of groups. The target value of the genetic evolution
of classifiers was the area under the curve (AUC) of the

corresponding receiver operating characteristic (ROC)
curve. The AUC represents the quality of the classifier; if
AUC=0.5, the classification is random, and if AUC=1,
then the classification is perfect. The objective was not
to find the best classifier in each case, which is a near
impossible task, but rather to find a classifier with clinic-
ally acceptable qualities.
Statistical properties of the classifiers, including the

AUC, accuracy, sensitivity and specificity, were estimated
using 10-fold cross validation.23 The SDs of those are esti-
mated using the bootstrap approach.35 The classifiers are
categorised by the AUC value: excellent (AUC ≥0.90),
good (0.9 >AUC ≥0.8), and fair (0.8 >AUC ≥0.7).
To obtain a non-biased evaluation of the importance

of the chronological age it was given equal weight to the
EEG features. Thus, whether or not it was included in
the best set of features was determined solely by the
random processes of the evolutionary algorithm.
Two approaches to the classifier construction were

investigated in this study. First, age-independent classi-
fiers were constructed, using data from participants dis-
tributed evenly over the entire age range; and second,
age-specific classifiers were generated for each age
group independently.

Age-independent classifiers
Nine ADHD versus control classifiers were constructed
from all possible pairs of the three control and ADHD
subcohorts of the training cohort, each having a similar
age distribution across the entire range and containing
105 recordings. This approach is more robust than gen-
erating a single classifier for a single large data set and
also enables the variability of the classification system to
be estimated. This methodology is based on our experi-
ence from our previous work.23 The point is to avoid
imbalances in group sizes and increase robustness. Also,
the time it takes to calculate the AUC for thousands of
classifiers is relatively short (days) for group sizes of
around 100.

Age-specific classifiers
Separate ADHD vs. control classifiers were constructed
for each of the four age groups in the training cohort
(see table 2). Thus, the classifiers for age groups 1–3
were constructed using data from 180 recordings, 90
from the ADHD group and 90 from the control group.
The classifier for age group 4 was based on data from 90
recordings, 45 from the ADHD group and 45 from the
control group.
Finally, to provide an independent assessment of the

accuracy of the classifiers generated, the recordings
from the test cohort (see table 3), which were not used
in the training of the classifiers, were evaluated. The
classification of an individual results in an ADHD versus
control index, which ranges from 0 to 1. If the index is
below 0.50, the individual is classified as a control but
ADHD otherwise.

Table 4 Coherence features extracted from the EEG for

the statistical pattern classifiers

Spectral
feature Description

1 Power in the δ frequency band (0.5–3.5 Hz)

2 Power in the θ frequency band (3.5–7.5 Hz)

3 Power in the α1 frequency band (7.5–9.5 Hz)

4 Power in the α2 frequency band (9.5–12.5 Hz)

5 Power in the β1 frequency band (12.5–17.5 Hz)

6 Power in the β2 frequency band (17.5–25 Hz)

7 Power in the γ frequency band (25–40 Hz)

8 Relative power in the δ frequency band

9 Relative power in the θ frequency band

10 Relative power in the α1 frequency band

11 Relative power in the α2 frequency band

12 Relative power in the β1 frequency band

13 Relative power in the β2 frequency band

14 Relative power in the γ frequency band

15 Total power of the EEG power spectrum

(0.5–40 Hz)

16 Peak α frequency

Electrode pairs for which the coherences were evaluated

for each spectral feature:

Far intrahemispheric

1–6 F3/O1, F4/O2, F3/P3, F4/P4, C3/O1, C4/O2

Far interhemispheric

7–12 F3/F4, T3/T4, C3/C4, T5/T6, P3/P4, O1/O2

Figure 1 Receiver operating characteristic (ROC) curves

corresponding to the nine age-independent classifiers for

attention deficit hyperactivity disorder (ADHD) participants and

control participants in the age range 6–14 years. The inset

shows the separation of the ADHD group (red) from the

control group (blue) in the classifiers as evaluated by 10-fold

cross-validation. The ROC statistics are listed in table 5.
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In the case of the age-independent classifiers, each test
cohort recording was classified nine times, once for each
classifier, and the overall result for the subject was then
obtained using the average of the nine ADHD indices.

RESULTS
Training and validation of the classifiers
Age-independent classifiers
Nine age-independent classifiers were constructed, one
for each pair of ADHD and control subcohorts in the
training cohort. The resulting classifiers are presented
in figure 1 by their corresponding ROC curves. The
10-fold cross-validation statistics and the corresponding
category for each classifier are shown in table 5. Five
classifiers are good and four classifiers are fair. Overall,
the system of nine classifiers is on the borderline of
good to fair with AUC=0.79±0.03.
The inset in figure 1 shows how well the ADHD and

control groups are separated in this system, based on
10-fold cross-validation. There is some overlap, which is
to be expected, but the groups have been separated
successfully.
In table 5, it is indicated whether chronological age

was one of the features used in the classifier. In eight
out of the nine classifiers, age has been selected as a
feature by the evolutionary algorithm.

Age-specific classifiers
Four age-specific classifiers were constructed, one for
each age group (table 6). The resulting classifiers are
presented in figure 2 by their corresponding ROC
curves. The 10-fold cross-validation statistics and the cor-
responding category for each classifier is shown in
table 6. Three classifiers are good and one is excellent.
Overall, the system of four classifiers is on the borderline
of excellent to good with AUC=0.88±0.04.
Chronological age was selected as a feature by the evo-

lutionary algorithm for the two youngest age groups, see
table 6, but not for the two older age groups.

Classification of test cohort
Both systems, the age-independent classifiers and the
age-specific classifiers, were used to classify independent
data from the test cohort of 71 recordings, with the
results shown in tables 7 and 8.
The results are in agreement with the ROC statistics of

both systems obtained during training and validation.
The overall accuracy of the age-independent system when
applied to the test cohort is 76%, compared to the ROC
accuracy from cross-validation of 73%±3% obtained
during validation. In the case of the age-specific system,
the overall test cohort accuracy is 76%, compared to the
corresponding ROC accuracy of 81%±4%.

Table 5 The ROC curve statistics for the nine age-independent ADHD versus control classifiers

Classifier: nr AUC Tp Fn Tn Fp Accuracy Age (Y/N) AUC category

1 0.82 0.80 0.20 0.72 0.28 0.76 Y Good

2 0.80 0.78 0.22 0.67 0.33 0.72 Y Good

3 0.82 0.85 0.15 0.66 0.34 0.75 Y Good

4 0.85 0.78 0.22 0.76 0.24 0.77 Y Good

5 0.76 0.75 0.25 0.64 0.36 0.70 N Fair

6 0.81 0.78 0.22 0.72 0.28 0.75 Y Good

7 0.77 0.62 0.38 0.78 0.22 0.70 Y Fair

8 0.75 0.73 0.27 0.65 0.35 0.69 Y Fair

9 0.77 0.79 0.21 0.62 0.38 0.70 Y Fair

Mean (SD) 0.79(0.03) 0.76(0.06) 0.24(0.06) 0.69(0.06) 0.31(0.06) 0.73(0.03)

The Age column indicates whether not the chronological age is one of the features in the corresponding classifier (Y: yes; N: no).
ADHD, attention deficit hyperactivity disorder; Fn, false negatives; Fp, false positives; ROC, receiver operating characteristic; Tn, true
negatives; Tp, true positives.

Table 6 The ROC curve statistics for the four age-specific ADHD versus control classifiers

Classifier:
age group AUC Tp Fn Tn Fp Accuracy

Age
(Y/N)

AUC
category

1 0.85 0.85 0.15 0.70 0.30 0.78 Y Good

2 0.87 0.87 0.13 0.74 0.26 0.80 Y Good

3 0.84 0.78 0.22 0.78 0.22 0.78 N Good

4 0.94 0.87 0.13 0.88 0.12 0.87 N Excellent

Mean (SD) 0.88 (0.04) 0.84 (0.04) 0.16 (0.04) 0.77 (0.08) 0.23 (0.08) 0.81 (0.04)

The AUC shows good to excellent accuracy.
The Age column indicates whether or not the chronological age is one of the features in the corresponding classifier (Y: yes; N: no)
ADHD, attention deficit hyperactivity disorder; AUC, area under the curve; Fn, false negatives; Fp, false positives; ROC, receiver operating
characteristic; Tn, true negatives; Tp, true positives.
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Identifying the most relevant EEG coherences
The optimal set of 20 features resulting from an evolu-
tionary search does not necessarily contain only good
features, in terms of separating the two training cohorts.
Therefore, it is more sensible to select a few thousand of
the classifiers generated by the evolutionary algorithm
and identify those features that appear most often as the
most relevant ones. Using this approach, the most rele-
vant EEG coherence features are interhemispheric
coherences in the central region of the brain. More spe-
cifically, these are all T3/T4 and C3/C4 coherences,
except for the coherences in the α2 band. The ADHD
group shows elevated coherence values in the total
power and all frequency bands except the α2 band when
compared to the control group. This is in accordance
with a previous study by Barry et al25 who reported an
increase in the same interhemispheric EEG coherence
values in the θ frequency band for the ADHD group
when compared to controls. Furthermore, the results do
not overlap with the main results of Duffy and Als36 pre-
senting the main EEG coherence features in autism
spectrum disorder that are different from controls.

Effects of comorbidity, ADHD subtype, medication, gender
and severity of symptoms
In a cross-sectional cohort of ADHD individuals, more
than half of them have a single comorbidity and a sub-
stantial portion has two comorbidities. In order to
compare the ADHD individuals with no comorbidity
with the ADHD individuals who have one or more
comorbidities, the ADHD versus control indices were
compared using ROC curve statistics. The results are
shown in table 9. The two groups are indistinguishable
in the training cohort.
The other corresponding subgroups were compared in

the same manner and the results shown in table 9. In
none of the comparisons do the two subgroups differ with
respect to the ADHD versus control index (AUC<0.6).
The ADHD versus control index does not correlate

with the severity of symptoms in the ADHD group in the
training set, measured with the ADHD Rating Scale. The
correlation coefficient is 0.033.
The training cohort can thus be considered to be

independent of those factors. There are no effects on
the classifiers due to comorbidity, ADHD subtype, medi-
cation, gender or severity of symptoms.

DISCUSSION
The results of the current study show differences in the
EEG coherence of children and adolescents diagnosed
with ADHD and healthy controls across a broad age
range. Analysis of these recordings has produced classi-
fiers based on features that separate the groups of
patients with ADHD and controls. Although the statis-
tical pattern analysis of EEG coherences has previously
been used successfully for autism and Alzheimer’s
disease,23 36 to the best of our knowledge this is the first
time it has been demonstrated in patients with ADHD.
In addition to cross-validation, a cohort of completely

independent EEG recordings that were not used in
training the classifiers was used for testing. Using inde-
pendent data to validate classification algorithms is the
gold standard approach to assessing their validity.
The age-specific classification approach is more accur-

ate (76% accuracy in the independent test cohort and
ROC accuracy of 81%±4%) than the age-independent
version (76% accuracy in the independent test cohort
and ROC accuracy of 73%±3%). In eight out of the nine

Figure 2 Receiver operating characteristic (ROC) curves

corresponding to the four age-specific classifiers for attention

deficit hyperactivity disorder (ADHD) participants and control

participants. The age groups are defined in table 2. The

corresponding ROC statistics are listed in table 6.

Table 7 Test data classified using the nine age-

independent classifiers

Age group Tp Fn Tn Fp Accuracy

1 0.70 0.30 0.88 0.12 0.79

2 0.63 0.37 0.67 0.33 0.65

3 0.73 0.27 0.83 0.17 0.78

4 0.86 0.14 0.77 0.23 0.82

Overall accuracy is 76%. The SD is 0.2 for all numbers in the
table.
Fn, false negatives; Fp, false positives; Tn, true negatives;
Tp, true positives.

Table 8 Test data classified using the four age-specific

classifiers

Age group Tp Fn Tn Fp Accuracy

1 0.70 0.30 0.75 0.25 0.73

2 0.75 0.25 0.67 0.33 0.71

3 0.64 0.36 0.83 0.17 0.74

4 0.71 0.29 1.00 0.00 0.86

The overall accuracy is 76%. The SD is 0.2 for all numbers in the
table.
Fn, false negatives; Fp, false positives; Tn, true negatives;
Tp, true positives.
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age-independent classifiers, and in age-specific classifiers
for the younger two of the four age ranges, the evolu-
tionary algorithm selected chronological age as one of
the key features. In addition, the accuracy was highest
for the oldest age group in all cases. These results
reflect the high importance of age, which is to be
expected since the brain matures significantly in the crit-
ical age range that we have studied (6–13 years), particu-
larly at the younger end, resulting in significant changes
in their EEG.37 38 According to Shaw et al39, the cortical
development of children with ADHD is lagging behind
those not diagnosed with ADHD. As the oldest age
group is close to entering puberty, it is possible that a
larger part of the participants in the control group has
already moved to puberty than in the ADHD group. As
children reach puberty, they experience hormonal and
physical changes, and this might be one of the factors
that explains the high accuracy in the oldest age group.
Despite the higher diagnostic accuracy of the age-

specific classifiers, the age-independent classifiers have a
particular potential application in monitoring brain
function over time. If chronological age is removed, the
other features remain the same as the age of the subject
increases, thus enabling longitudinal measurements.
These results support those of previous published

studies showing differences in various EEG coherence fea-
tures of children diagnosed with ADHD compared to
controls.18 20By using the coherence features, which repre-
sent the synchronisation between brain areas, and combin-
ing all the measures into a single classifier, we obtain more
robust results than by analysing individual coherences
between brain regions separately. In addition, our findings
are consistent with the increasingly compelling results
linking ADHD to deficits in brain connectivity.7 40 41

The patient group is highly heterogeneous, which can
be considered not only as a limitation but also as a
strength of the study, because it reflects the realities of
clinical practice. The included participants were diag-
nosed with different subtypes of ADHD and had a range
of comorbidities. Some of them were on treatment,
some were not receiving treatment at the time of the
recording and others were medication naïve. This
patient group is highly heterogenic by nature, and
hence a clinical diagnostic method developed for the
general clinical population is likely to be more widely
applicable and have greater clinical utility.

The participants in the study were all recruited in
Iceland and the EEG recordings were all made with
similar hardware and software. Hence, both the under-
lying population and EEG equipment were quite tightly
controlled. To widen the validity, it would be interesting
to test the classifiers with different EEG equipment and
with a sample from different populations. Subsequently,
the database could be extended to EEG recordings from
children with autism spectrum disorder, anxiety, oppos-
itional defiant disorder and other relevant disorders.
Such a database would enable the building of a series of
classifiers which would pave the way for differential
EEG-based diagnosis of psychiatric disorders in children.
In conclusion, this study demonstrates that an

EEG-based method using classification algorithms can
bring a new perspective to the diagnosis of ADHD in chil-
dren and adolescents. There is a need for such a system
to provide not only the most accurate possible diagnosis
at a single point in time, but also to enable the monitor-
ing of brain function longitudinally. These requirements
can be met through the age-specific and age-
independent classifiers, respectively. Clinically, the diag-
nosis of ADHD is based on several sources of informa-
tion, including standardised interviews, rating scales,
developmental and medical history. No single source of
information can be expected to have 100% accuracy, so a
clinical decision must be based on several sources, some-
times providing conflicting information. The EEG classifi-
cation serves as an additional source of information and
has proved to be a helpful addition for the authors who
have used it in their clinical work. The novel application
of EEG-based classification methods presented here can
offer significant benefit to the clinician by improving the
accuracy of initial diagnosis and ongoing monitoring of
children and adolescents with ADHD.
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