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A B S T R A C T   

Background: Meningiomas are among the most common intracranial tumors. In these tumors, volumetric 
assessment is not only important for planning therapeutic intervention but also for follow-up examination. 
However, a highly accurate automated volumetric method for meningiomas using single-modality magnetic 
resonance imaging (MRI) has not yet been reported. Here, we aimed to develop a deep learning-based automated 
volumetry method for meningiomas in MRI and investigate its accuracy and potential clinical applications. 
Methods: For deep learning, we used MRI images of patients with meningioma who were referred to Osaka 
University Hospital between January 2007 and October 2020. Imaging data of eligible patients were divided into 
three non-overlapping groups: training, validation, and testing. The model was trained and tested using the 
leave-oneout cross-validation method. Dice index (DI) and root mean squared percentage error (RMSPE) were 
measured to evaluate the model accuracy. Result: A total of 178 patients (64.6 ± 12.3 years [standard devia-
tion]; 147 women) were evaluated. Comparison of the deep learning model and manual segmentation revealed a 
mean DI of 0.923 ± 0.051 for tumor lesions. For total tumor volume, RMSPE was 9.5 ± 1.2%, and Man-
n–Whitney U test did not show a significant difference between manual and algorithm-based measurement of the 
tumor volume (p = 0.96). Conclusion: The automatic tumor volumetry algorithm developed in this study pro-
vides a potential volume-based imaging biomarker for tumor evaluation in the field of neuroradiological im-
aging, which will contribute to the optimization and personalization of treatment for central nervous system 
tumors in the near future   

1. Introduction 

Meningiomas are among the most common intracranial tumors. 
These tumors account for approximately 30% of primary intracranial 
tumors and are often discovered incidentally.1,2 Radiological and au-
topsy studies have reported an incidence of approximately 1.2 cases of 
incidental meningiomas per 100,000 people per year.3,4 The World 
Health Organization (WHO) classifies meningiomas as benign (grade I), 
atypical (grade II), or malignant (grade III), with most of them being 
diagnosed as Grade I.5 The WHO grades of meningiomas diagnosed 
based on histopathologic findings, are related to imaging features and 
grade II or III meningiomas grow at a comparatively faster rate.6–8 

Enlarged meningiomas have been reported in 70% of cases, and 
increased meningioma volume is known to be associated with its 
symptoms.9–12 The primary treatment strategy for asymptomatic me-
ningioma is observation, wherein some patients require regular 

follow-up with imaging studies to help determine the timing of thera-
peutic intervention.13 

Manual segmentation by physicians is commonly used to measure 
tumor volume; however, differences between inter- and intra-observers 
may make it difficult to achieve a precise follow-up and study.14,15 To 
the best of our knowledge, no previous studies have reported an auto-
mated volumetric method for meningiomas using single-modality 
magnetic resonance imaging (MRI) with high accuracy. 

Therefore, in this study, we used deep learning techniques with 
contrast-enhanced T1 (CET1)-weighted MRI to develop and evaluate a 
supportive algorithm for automated volumetry of meningiomas. 

2. Materials and methods 

This retrospective study was approved by the institutional review 
board of our institution. Patient informed consent was waived because 

* Corresponding author. Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. 
E-mail address: rhirayama@nsurg.med.osaka-u.ac.jp (R. Hirayama).  

Contents lists available at ScienceDirect 

World Neurosurgery: X 

journal homepage: www.journals.elsevier.com/world-neurosurgery-x 

https://doi.org/10.1016/j.wnsx.2024.100353 
Received 25 April 2023; Accepted 21 February 2024   

mailto:rhirayama@nsurg.med.osaka-u.ac.jp
www.sciencedirect.com/science/journal/25901397
https://www.journals.elsevier.com/world-neurosurgery-x
https://doi.org/10.1016/j.wnsx.2024.100353
https://doi.org/10.1016/j.wnsx.2024.100353
https://doi.org/10.1016/j.wnsx.2024.100353
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wnsx.2024.100353&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


World Neurosurgery: X 22 (2024) 100353

2

this study consisted of a retrospective analysis of existing records. 

2.1. Datasets 

A total of 497 patients who were referred to Osaka University Hos-
pital for meningioma treatment and underwent MRI between January 
2007 and October 2020 were included. MRI Digital Imaging and Com-
munications in Medicine data from different scanners, including data 
from a referral center, were used. Among the 255 patients with a 
completely available MRI dataset before treatment, those with axial 
CET1-weighted MRI sequence were further included. If a patient un-
derwent multiple MRI scans, we only considered the final images. 
Furthermore, 77 patients were excluded from further assessment for the 
following reasons (Fig. 1): tumor with a large cyst, previous treatment, 
image size other than 256 × 256 or 512 × 512 pixels, recurrent or 
multiple meningiomas, and severe MRI artifacts. Patients with inap-
propriate volumetry on axial imaging, such as remarkably small me-
ningiomas located at high convexity, were excluded. 

All scans were performed for clinical indications. MRI acquisitions 
were performed using diverse scanners from our institution and the 
referring institutions. The examinations were mainly performed using 
MRI units (Achieva, Philips Medical Systems, Best, the Netherlands and 
SIGNA, GE Healthcare, Milwaukee, WI, USA). Each patient underwent 
imaging with a CET1-weighted MRI sequence after the administration of 
gadolinium. 

2.2. Algorithm development methods 

All meningioma segmentations were conducted manually by two 
experienced neurosurgeons (R.H. and S.Y.) using Horos (www.horospr 
oject.org; Horos Project) for macOS and Onis 2.5 Professional (www. 
onis-viewer.com; DigitalCore). The segmentation data were converted 
into a binarized image, which was used as the ground truth. The input 
MRI data of the deep learning network included only slices that con-
tained the tumor. Images of size 256 × 256 pixels were converted to 512 
× 512 pixels. 

Convolutional neural networks are often used for deep-learning- 
based segmentation. We performed transfer learning by fine-tuning a 
DeepLabV3 model that was pretrained by ResNet-101 to fully automate 
the process of meningioma segmentation. The networks were created in 
PyTorch using a Windows desktop with a 32-GB RAM and NVIDIA RTX 
2080. For training, we used the Adam optimizer with a batch size of 
four. The learning rate was initialized to exp (− 2). Because tumors are 
3D objects, three neighboring 2D slices were stacked as the inputs after 
the input images were converted to grayscale. Thus, the 2D network 
could detect a small range of 3D contexts each time. Image augmenta-
tion was employed to improve the generalizability of the network. 
Training was terminated if the validation loss did not improve after 20 
epochs. The eligible data were divided into training (90%) and test 
(10%) datasets. The model was trained and tested using leave-one-out 

10-fold cross-validation (Supplementary Fig. 1). 

2.3. Statistical analysis 

For quantitative analysis, the Dice index (DI) and root mean squared 
percentage error (RMSPE) of the tumor volume were measured. We 
defined pixels with tumors as true and those without tumors as false. 

The DI is a proven statistical validation metric used to evaluate the 
performance and spatial overlap between two sets of segmentations of 
the same anatomy. The DI is represented as a percentage using the below 
formula, with 100% being a perfect voxel-wise match between results. 

DI =
2 × TP

(TP + FP) + (TP + FN)

DI, Dice index; TP, true positive; FP, false positive; FN, false negative. 
RMSPE is defined by the below formula and is the error between the 

manually measured volume of each tumor and the volume calculated 
using artificial intelligence. Continuous variables are expressed as 
means and standard deviations. The Mann–Whitney U test was used to 
compare the two groups. JMP Pro 16.0.0 (SAS Institute, Cary, NC, USA) 
was used for statistical analyses. 

RMSPE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

i=1

(
Vi − Vi

Vi

)2
√

RMSPE, root mean squared percentage error; Vi, manually measured 
volume; Vi, automatically measured volume 

3. Results 

The training dataset included 178 patients (147 females and 31 
males) with meningiomas. The characteristics of all patients are listed in 
Table 1. The mean age of the patients was 64.6 ± 12.3 years. Tumor 
locations included the convexity (n = 66), parasagittal (n = 34), falx (n 

Fig. 1. Flowchart depicting the patient selection process.  

Table 1 
Patient and tumor characteristics.    

CASES (n = 178) 

SEX Female 147 (82.6%) 
Male 31 (17.4%) 

AGE (YEARS) Mean ± SD 64.6 ± 12.3 
Range 23–89 

LOCATION Convexity 66 (37.1%) 
Parasagittal 34 (19.1%) 
Falx 26 (14.6%) 
CP-angle 16 (9.0%) 
Other 36 (20.2%) 

TUMOR VOLUME (CM3) Mean ± SD 20.5 ± 26.0 
Range 0.9–138.8 

PERITUMORAL BRAIN EDEMA Yes 65 (36.5%) 
No 113 (63.5%)  
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= 26), cerebellopontine angle (n = 16), and other locations (n = 36). 
Peritumoral brain edema was observed in 65 patients. 

3.1. Segmentation and volumetry performance of the network 

Among all patients, manual segmentation volume of tumors aver-
aged 20.5 ± 26.0 cm3 (range 0.9–138.8 cm3). The accuracy and con-
sistency of the developed algorithm were further evaluated using the DI 
to assess the 2D accuracy of the individual images. The mean DI for the 
tumor region was 0.923 ± 0.051. The actual tumor volume was signif-
icantly correlated with the predicted volume (R: 0.9877, p < 0.001; 
Pearson correlation analysis). The tumor volume showed a weak cor-
relation with the DI (R: 0.21283, p: 0.0043411; Pearson correlation 
analysis) (Fig. 2). Furthermore, we compared the DI in two groups of 
tumors: those below and above the median volume of all tumors in this 
study. This analysis revealed a significantly lower DI for tumors with a 
volume below the median compared with those above the median (DI =
0.91 ± 0.051 and 0.94 ± 0.049; p < 0.0001; Wilcoxon rank sum test). 

Representative cases are shown in Fig. 3. Cases with a clear contrast 
effect, but with the tumor in contact with the skull base (Fig. 3A) and 
cases with a large tumor and no large surrounding vessels to be con-
trasted (Fig. 3B), but with irregularly shaped tumor, were automatically 
segmented with a high DI. In contrast, cases with small tumors and poor 
contrast effects (Fig. 3C) were poorly segmented with a low DI. 

3.2. Comparison of automated and manual volumetry 

The volume RMSPE was measured to assess the 3D and clinical utility 
of individual cases. The mean RMSPE for tumor volume was 9.5 ± 1.2%, 
and the Mann–Whitney U test did not show a significant difference be-
tween the tumor volume measured manually and that measured with 
our algorithm (p = 0.96). 

4. Discussion 

In this study, we developed a deep learning-based method for the 
automated volumetry of meningiomas. The DI and RMSPE showed that 
the automatically segmented tumor regions correlated well with manual 
segmentation, which was highly accurate compared to other previous 
studies based on brain lesion segmentation using deep learning.16,17 

Artificial intelligence has been demonstrated to be reaching a point 
where it can be used reliably in clinical applications.15–17 Glioma is a 

clinically important brain tumor due to its nature and has been a 
research target for automated tumor segmentation.16,17 Meningioma 
segmentation has also been a research focus, with several automated 
approaches being reported since tracking of tumor volume plays an 
important role in determining therapeutic interventions for meningi-
omas.18,19 Recent studies have reported the accuracy of meningioma 
tumor volume measurement using deep learning methods with multiple 
MRI sequences, including T1-weighted image (T1WI) and T2WI as well 
as CET1 and fluid-attenuated inversion recovery (FLAIR) images.20,21 

The segmentation accuracy of CE tumor regions has reached a DI of up to 
0.91 ± 0.08.21 In order to obtain a high accuracy, only CET1-weighted 
images were used in our study. The reasons for the high accuracy of 
this algorithm are that a large number of examples were used, transfer 
learning was well adapted, and noise was added during augmentation to 
minimize the overfitting of the algorithm and generalizability. 

Automatic detection is highly reproducible and objective as it avoids 
observer differences in the definition of tumor volume.14,15 Moreover, 
conventional diameter measurements tend to underestimate tumor 
growth, whereas volume measurements based on deep learning can 
reliably detect tumor growth by volume, thereby supporting 
decision-making for treatment strategies and providing a precise un-
derstanding of the disease state.14 Thus, the reliable automatic volume 
measurement shown in this study can replace the time-consuming 
manual segmentation and deal with large amounts of data. 

The deep learning method developed in this study is also clinically 
useful because it can be implemented using a single MRI modality. 
Furthermore, MR images from different scanners, including those from a 
referral center, were used to prove that the method could provide ac-
curate volume measurements. Because meningiomas have less structural 
complexity than gliomas and other types of tumors, the segmentation 
accuracy should be higher. However, segmentation of meningiomas may 
be rendered difficult due to the following tumor features1: significant 
edema around the tumor,2 infiltration into the skull base or bone inva-
sion,3 wide dural tail sign,4 large cysts,5 necrosis, and6 CE vascular 
structures adjacent to the tumor. Therefore, more data are needed on the 
accurate segmentation of tumors with these characteristics. 

The current study has several limitations. First, this was a single- 
center, retrospective study. In the future, its validity will be necessary 
to be evaluated under the imaging conditions at other facilities. Second, 
the accuracy of detecting the presence of tumors was not evaluated 
because the training was performed only on slices where the tumor was 
present. In addition, to increase specificity, training on a mixture of 

Fig. 2. (A)Plot of actual vs. predicted tumor volume. Tumor volume was significantly correlated with the predicted volume (R: 0.9877, p: 9.9084e-144; Pearson 
correlation analysis). (B) Plot of tumor volume vs. Dice index (DI). Tumor volume showed a weak correlation with the DI (R: 0.21283, p: 0.0043411; Pearson 
correlation analysis). 
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datasets with and without meningiomas is required. However, in clinical 
follow-up situations, assessing the increase in meningioma volume may 
be more important than detecting the presence of meningioma. Third, 
CET1-weighted images were used in this study to develop a method that 
minimizes the variability inherent in manual volume measurements. In 
clinical practice, excellent agreement between meningioma size and 
growth is obtained from T1 3D-gadolinium and 2D-T2WI, suggesting 
that the use of non-contrast images may be sufficient for the follow-up of 
untreated meningiomas.22 However, our dataset did not include 
non-contrast T1 and T2 annotation data, limiting our ability to extend 

our findings to these imaging modalities. Therefore, we are planning a 
study to create a similar algorithm using T2WI or FLAIR images. 

5. Conclusions 

Our study results suggest that automatic volume calculation using 
deep learning can be easily used for follow-up and treatment planning of 
meningiomas with high reproducibility and accuracy. Additionally, the 
automatic tumor volumetry algorithm developed in this study provides a 
potential volume-based imaging biomarker for tumor evaluation in the 

Fig. 3. Representative cases are shown. The left column shows a contrast-enhanced T1 image with the outline of a detected tumor. The right column image is a 
magnified image of the tumor and its surrounding area. The blue contour shows manual segmentation, while the red contour represents automated segmentation 
using the algorithm.A (case no. 30) is a case of left frontal base meningioma with a Dice index (DI) of 0.975, which is representative of highly accurate segmentation 
of the region bordering the superior sagittal sinus and falx cerebri.B (case no. 212) is a case of right convexity meningioma. Although the tumor was irregularly 
shaped, it was segmented with high accuracy (DI: 0.973).C (case no. 109) is a case of right parasagittal meningioma with a DI of 0.688 and poor segmentation. The 
tumor was small, and the contrast effect with the surrounding parenchyma was poor. 

T. Iwata et al.                                                                                                                                                                                                                                   



World Neurosurgery: X 22 (2024) 100353

5

field of neuroradiological imaging, which will contribute to the opti-
mization and personalization of treatment for central nervous system 
tumors in the near future. 
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