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Abstract

Memory is an essential element to adaptive behavior since it allows consolidation of past experience guiding the
subject to consider them in future experiences. Among the endogenous molecules that participate in the consoli-
dation of memory, including the drug-seeking reward, considered as a form of learning, is dopamine. This neuro-
transmitter modulates the activity of specific brain nucleus such as nuclei accumbens, putamen, ventral tegmental
area (VTA), among others and synchronizes the activity of these nuclei to establish the neurobiological mechanism
to set the hedonic element of learning. We review the experimental evidence that highlights the activity of differ-
ent brain nuclei modulating the mechanisms whereby dopamine biases memory towards events that are of moti-
vational significance.

Introduction
Since dopamine (DA) was described as a neurotransmit-
ter in the central nervous system half a century ago [1],
its involvement in movement control has long been
emphasized due to the association between the amount
of striatal DA depletion and motor deficits observed in
Parkinson’s disease (PD) [2]. Diverse experiments have
led to a number of therapeutic interventions to alleviate
patients’ symptoms, such as L-DOPA therapy [3]. It is
known that DA is involved in the neurobiology and
symptoms of a myriad of neurological and psychiatric
diseases, including schizophrenia and attention deficit
hyperactivity disorder, and it is being considered an
essential element in the brain reward system and in the
action of many drugs with abuse potential [4,5].
Although dopaminergic neurons account for less than

1% of the total neuronal population of the brain[6], they
have a profound effect on brain function. For instance,
there are modifications of synaptic plasticity as a conse-
quence of learning and memory due to the activity of
the metabotropic DA receptors [6,7]. Learning is a
change in responsiveness to a particular stimulus
whereas memory is the cellular modification that med-
iates that change. In this regard, recent evidence indi-
cates that DA is involved in reward-related incentive

learning [8,9]. However, the mechanism involving DA
modulating behavioral choice towards available rewards
remains unknown. In this review, we examine the cur-
rent view of the role of DA in learning and behavioral,
with particular regard to reward-seeking behavior.

Rewarding System and Brain
Rewards are defined as those objects, which we will
work to acquire through allocation of time, energy, or
effort; that is, any object or goal that we seek [10].
Rewards are crucial for individual and support elemen-
tary processes such as drinking, eating and reproduction.
The behavioral definition of reward attributes also cer-
tain of non-alimentary and nonsexual functions, such as
gambling. Rewards engage agents in such diverse beha-
viors as foraging and trading on stock markets [10].
Due to this requirement, it has been proposed that

there exists a single neural system which processes
rewards in its different modalities and thereby functions
as a common scale through which diverse rewards may
be contrasted [11].
Several lines of evidence support the conclusion that

the brain’s mesencephalic DA system responds to
rewards. But, what is the role of DA plays in reward
processing? No solid evidence is available about this
issue [6,12,13]. However, it has been demonstrated that
DA is involved in the hedonic component of reward
[6,14]. Several lines of evidence show that the receipt of
rewards evokes an increase in DA activity; however
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numerous conditions exist for which this does not hold.
Several hypotheses have been proposed to draw a differ-
ent mechanism [14,15]. For example, it has been sug-
gested that activity changes in DA neurons encode an
error in the prediction of the time and amount of
immediate and future rewards (the prediction error
hypothesis), therefore, the DA activity is hypothesized to
indicate that the immediate or future prospect for
reward is better than expected.

The Mesocorticolimbic Dopamine System
In the adult brain, dopaminergic neurons are a hetero-
geneous group of cells localized in the mesencephalon,
diencephalon and the olfactory bulb [6,16]. However,
nearly all DA cells reside in the ventral part of the
mesencephalon (Figure 1). Mesodiencephalic dopami-
nergic neurons form substantia nigra pars compacta
(SNc), the ventral tegmental area (VTA) and the retro-
rubral field (RRF). Additionally, the nigrostriatal system,
which originates in the SNc and extends its fibers into
the caudate-putamen nucleus, plays an essential role in
the control of voluntary movement [17,18]. The DA sys-
tem includes the mesolimbic and mesocortical pathway,
which arise from VTA and they have been suggested to
modulate emotion-related behavior [14,19,20]. The
mesolimbic dopaminergic system include VTA that pro-
ject mainly to the nucleus accumbens (NAc) as well as
the olfactory tubercle innervating the septum, amygdala

and hippocampus. On the other hand, the mesocortical
dopaminergic system which includes the VTA, extends
its fibers in the prefrontal, cingulate and perirhinal cor-
tex. Because of the overlap between these two systems
they are often collectively referred to as the mesocorti-
colimbic system [21,22].
In human brain, there are relatively few neurons in

the SNc and VTA (less than 400,000 in the SNc and
roughly 5,000 in the VTA [16,23]). Despite that the
number of neurons is small, the projections from indivi-
dual neurons are extensive and hence modulate diverse
brain functions. The midbrain dopaminergic neuron is
thought to have total axonal length (including collat-
erals) totaling roughly 74 cm [16] whereas synaptic con-
nections are equally as extensive, with 500,000 terminals
common for an individual neuron [16]. In the striatum,
approximately 20% of all synapses in the structure
[24,25].
From their different nuclei, dopaminergic axons pro-

gress medially where they join together and project
through the median forebrain bundle (MFB) to the
internal capsule [16], then the internal capsule, the
axons branch off to form synapses in their target loca-
tions [16]. SNc neurons send projections to the caudate
and putamen nuclei (striatum), named the nigrostriatal
system. Dopaminergic axons originating in the VTA
innervates to the ventral part of the striatum, a region
named NAc [16].
The diverse physiological actions of DA are mediated

by five distinct G protein-coupled receptor subtypes
[26,27]. Two D1-like receptor subtypes (D1A-1D and
D5) couple to the Gs protein that activate adenylyl
cyclase [26,27]. The other receptor subtypes belong to
the D2-like subfamily (D2, D3, and D4) and are Gi pro-
tein-coupled receptors that inhibit adenylyl cyclase and
activate K+ channels [26,27].
The DA receptors have a similar pattern of distribu-

tion that dopaminergic fibers [6,28]. For instance, the
relative concentration of D1-like receptors compared to
D2 receptor is higher in the prefrontal cortex, whereas
the concentration of D2-like receptors is elevated in the
caudate nucleus, putamen, and nucleus accumbens
[26,29]. Importantly, although D1 and D2 receptors
have opposite effect at the molecular level, they often
act synergistically when more complex outputs are
taken into account [30,31].
The neuromolecular mechanism of action of DA is the

following: DA is released outside the synaptic cleft
[32,33], then it diffuses in the extracellular fluid from
which it is slowly cleared as a result of reuptake and
metabolism and activates its receptors [34]. One impor-
tant issue is that DA firing pattern occurs in response
to motivationally relevant stimuli [35], it is unlikely that
these phasic DA signals influence, to any significant

Figure 1 Overview of reward structures in the human brain.
Dopaminergic neurons are located in the midbrain structures
substantia nigra (SNc) and the ventral tegmental area (VTA). Their
axons project to the striatum (caudate nucleus, putamen and
ventral striatum including nucleus accumbens), the dorsal and
ventral prefrontal cortex. Additional brain structures influenced by
reward include the supplementary motor area in the frontal lobe,
the rhinal cortex in the temporal lobe, the pallidum and
subthalamic nucleus in the basal ganglia, and a few others.
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extent, the behavioral response (mediated by fast trans-
mitting pathways) to the same stimulus that triggered
them [36,37]. Thus, this neurotransmitter acts as a
delayed responding amplifier and modulates behavioral
impact [36,37].

Dopamine Lesions and Disorganized Behaviours
Selective lesioning of DA innervation often reproduces
the effects of the lesion itself and disorganizes behavior
[38]. The integrative properties of the DA system are
probably associated more with direct contributions to
cognitive functions at the cortical level, namely in work-
ing memory, executive functions and possibly time esti-
mation processes. Since DA brain activity apparently
decreases with normal aging, stimulating DA transmis-
sion in the elderly could represent a reliable strategy for
improving behavioral deficits, as shown in pathological
situations such as Parkinson’s Disease (PD), where the
impairment of DA transmission is evident [39].

Dopamine and Neurodegenerative Diseases
DA has been associated with neurodegenerative diseases
such as PD. It has been demonstrated that a progressive
loss of neuromelanin-containing DA neurons in the SNc
of the ventral midbrain inducing DA depletion in the
striatum, and it has been suggested that this deficit
induces motor symptoms associated with PD, including
bradykinesia, tremor, rigidity and loss of postural con-
trol [40]. In this context, it is interesting to note that
the main signs of the pre-frontal syndrome in humans,
for example, the diminution in interest in the environ-
ment, sensory neglect, distractibility, visuomotor impair-
ment, among others are under DA regulation [41].
Furthermore, negative symptoms of schizophrenia or
Alzheimer’s disease, also related with DA system [42].
In this regard, a decrease in D1 receptor density in the
frontal cortex of schizophrenic patients with negative
signs have been shown no change in the striatum
[43-45].

Dopamine and Learning
Instrumental conditioning allows subjects to influence
their environment and determine their rate of reward. A
general theory is proposed that attributes the origins of
human intelligence to an expansion of dopaminergic
systems in human cognition [46].
The role of DA on learning and memory has been stu-

died for many years. In this regard, it is known that the
D2 receptor agonist bromocriptine modulates working
memory performance [47]. Behavioral studies show that
DA projections to the striatum and frontal cortex play a
central role in mediating the effects of rewards on
approach behavior and learning [36]. These results are
derived from selective lesions of different components

of DA systems, systemic and intracerebral administra-
tion of direct and indirect DA receptor agonist and
antagonist drugs, electrical self-stimulation, and self-
administration of major drugs of abuse, such as cocaine,
amphetamine, opiates, alcohol, and nicotine [36,37].
Therefore, more information is required from animal
models, where functional studies are possible.

Dopamine and Reward
Most goal-directed motivation -even the seeking of food
or water - is learned [48]. It is largely through selective
reinforcement of initially random movements, that the
behavior of the neonate comes to be both directed at and
motivated by appropriate stimuli in the environment [49].
For the most part, one’s motivation is to return to the
rewards experienced in the past, and to the cues that
mark the way to such rewards. It is primarily through its
role in the selective reinforcement of associations
between rewards and otherwise neutral stimuli that DA
is important for such motivation. Once stimulus-reward
associations have been formed, they can remain potent
for some time even after the reward has been devalued
by the absence of appropriate drive states such as hunger
or thirst [48], or because the DA system is blocked [50].
Once a habit has been established, it remains largely
autonomous until the conditioned significance of incen-
tive motivational stimuli has been extinguished or deva-
lued through experience. Extinction of the conditioned
significance of such stimuli can result from repeated
unrewarded trials, repeated trials in the absence of an
appropriate drive state, or repeated trials under the influ-
ence of neuroleptics [51]. DA appears to be important
for learning and memory processes [36].

The Rewarding System and Addictive Drugs
Over the past 40 years, experimental psychologists have
been developing and refining behavioral models of
addiction using inventive animal protocols.
Addiction is a neurobiological illness where repetitive

substance abuse corrupts the normal circuitry of
rewarding and adaptive behaviors causing drug-induced
neuroplastic changes. Most findings support that addic-
tive drugs share the common property of enhancing the
effect of midbrain DA function, particularly at the level
of their terminals in the nucleus accumbens [52,53].
Among the drugs that activate the DA system is

cocaine. This compound is a monoamine uptake blocker
which binds with greatest affinity to DA transporters
which in turn, participate in the mechanism for removal
DA from synapses. Blockade of the transporters, there-
fore, greatly enhances DA’s efficacy. It has been indi-
cated that this effect could be the cause of cocaine
addiction [54]. Amphetamines activate similar pathway
[55,56].
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On the other hand, alcohol is believed to affect brain
function primarily by enhancing the function of GABA
receptors, the primary inhibitory receptors in the brain
[57] and reduce the firing rate of neurons in the SNc
[58]. Opiates cause a similar release of DA in the stria-
tum [59], both through disinhibition in the VTA and
through direct effects on DA terminals [59,60]. Further-
more, blocking opioid receptors in either the VTA or
NAc reduces heroin self-administration [61].
Finally, self-administration of nicotine is also blocked

by infusion of DA receptor antagonists or by lesion of
DA neurons in NAc [62]. The proposal that the dopa-
minergic system is part of a final pathway for the rein-
forcing effects of drugs abuse is very appealing and fits
in nicely with the literature on brain self-stimulation
[63]. Furthermore, chronic exposure to drugs of abuse
causes longterm adaptations in cAMP concentrations,
tyrosine hydroxylase production, DA expression, recep-
tor coupling to G proteins, and basal firing rate of
VTA-DA neurons [64,65]. These mechanisms have been
thought to underlie addiction and contribute to relapse
to drug taking following periods of abstinence [66-68].
Experimental models to study drug addiction have

been developed. For instance, DA transporter KO mice
are still capable of developing cocaine addiction [69,70].
This discovery suggested that cocaine’s effects would
also involving the serotonergic and noradrenanergic
transporters [71]. This idea is further supported by the
fact that enhanced serotonergic function reduces alcohol
self administration [72,73].

Dopamine and Gambling
A recent study on the other hand, showed faster learn-
ing as well as an increase in winning at gambling in
response to DA consumption [9]. A simple betting
game study by Pessiglione and colleges showed that par-
ticipants spotted winning strategies at a faster rate if
they were given DA in the form of L-DOPA (repetitive).
When subjects win a bet, they seem to experience a DA
“high” in the form of a reward, which in turn helps
them to remember to make the same choice the next
time. When the reward for winning was increased
through a monetary reward, DA recipients only noticed
winning symbols but not the “losing” symbols. These
results might explain why L-DOPA treated PD patients
become sometimes addicted to gambling [39,74]. DA
surges might also explain some of the delusions experi-
enced by people with schizophrenia [41]. Different
works have shown that DA is involved in addiction.
When people take drugs such as cocaine or ampheta-
mines, they experience artificially induced DA surges
which give them the rewarding “high” they crave [22].
The same DA “highs” also occur in people with other
addictive behaviors such as gambling, sex and exercise

[75]. DA is the brain’s mean for reinforcing behavior.
Possibly, this work is a system for minimizing prediction
errors. Unexpected rewards result in a particularly high
amount of DA release and greater learning.
However, recent research finds that while some dopa-

minergic neurons react in the way expected of reward
neurons, others do not and seem to respond in regard
to unpredictability [76]. The activity of dopaminergic
neurons are thought to be increased by stimuli that pre-
dict reward and decreased by stimuli that predict aver-
sive outcomes. Recent work by Matsumoto and
Hikosaka challenges this model by asserting that stimuli
associated with either rewarding or aversive outcomes
increase the activity of dopaminergic neurons in the
SNc [76]. This research finds the reward neurons predo-
minate in the ventromedial region in the SNc as well as
the VTA. Neurons in these areas project mainly to the
ventral striatum and thus might transmit value-related
information in regard to reward values. The nonreward
neurons are predominate in the dorsolateral area of the
SNc which projects to the dorsal striatum and may
relate to orienting behavior has been suggested that the
difference between these two types of dopaminergic
neurons arises from their input: reward-linked ones
have input from the basal forebrain while the nonre-
ward-related ones from the lateral habenula [76].

Conclusions
The past decade has brought an enormous wealth of
knowledge on human reward processing using func-
tional brain imaging. Much progress has been made in
understanding the neural substrates of human reward
processes, but much remains to be learned, and much
integration needs to go on among information at the
molecular, cellular, systems, and behavioral levels. The
pursuit of mechanisms underlying reward has been
hampered by the limitations of current animal models
and thus requires that basic investigators exchange ideas
with those involved in human experimental biology and
clinical research. It is clear that neurotransmitters other
than DA must play important roles in regulating hedo-
nic states and even in reward-related learning.
Consumption of rewards (e.g., palatable food, mating,

cocaine) produces hedonic consequences which initiate
learning processes that consolidate liking the rewarding
goal. Motivational states such as hunger, sexual arousal,
and perhaps early symptoms of drug withdrawal
increase the incentive salience of reward-related cues
and the reward itself. The greater the hunger, the
greater the likelihood that behavioral sequences aimed
at obtaining food will be initiated and carried to conclu-
sion despite distractions and obstacles that may arise.
Positive reinforcement involves an increase over time in
the frequency of behaviors that lead to a reward.
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Understanding the neurobiology of the addictive pro-
cess allows a theoretical psychopharmacological
approach for treating addictive disorders, one that takes
into account biological interventions aimed at particular
stages of the illness.
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