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	 Background:	 Despite noteworthy advancements in the multidisciplinary treatment of colorectal cancer (CRC) and deeper 
understanding in the molecular mechanisms of CRC, many of CRC patients with histologically identical tumors 
present different treatment response and prognosis. Thus, more evidence on novel predictive and prognostic 
biomarkers for CRC remains urgently needed.

		  This study aims to identify potential prognostic biomarkers for CRC with integrative gene expression profiling 
analysis.

	 Material/Methods:	 Differential expression analysis of paired CRC and adjacent normal tissue samples in 6 microarray datasets 
was independently performed, and the 6 datasets were integrated by the robust rank aggregation method to 
detect consistent differentially expressed genes (DEGs). Aberrant expression patterns of these genes were fur-
ther validated in RNA sequencing data. Then, gene set enrichment analysis (GSEA) was performed to investi-
gate significantly dysregulated biological functions in CRC. Finally, univariate, LASSO and multivariate Cox re-
gression models were built to identify key prognostic genes in CRC patients.

	 Results:	 A total of 990 DEGs (495 downregulated and 495 upregulated genes) were acquired after integratedly analyz-
ing the 6 microarray datasets, and 4131 DEGs (2050 downregulated and 2081 upregulated genes) were ob-
tained from the RNA sequencing dataset. Subsequently, these DEGs were intersected and 885 consistent DEGs 
were finally identified, including 458 downregulated and 427 upregulated genes. Two risky prognostic genes 
(TIMP1 and LZTS3) and 5 protective prognostic genes (AXIN2, CXCL1, ITLN1, CPT2 and CLDN23) were identi-
fied, which were significantly associated with the prognosis of CRC.

	 Conclusions:	 The 7 genes that we identified would provide more evidence for further applying novel diagnostic and prog-
nostic biomarkers in clinical practice to facilitate personalized treatment of CRC.
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Background

Colorectal cancer (CRC) is the third most commonly diagnosed 
malignancy and the second leading cause of cancer death in a 
global context [1]. The past decades have witnessed a remark-
able decline in CRC incidence and mortality overall, and a dra-
matic rise in the median overall survival (OS) of metastatic 
colorectal cancer patients [2–9]. The exciting fact is ascribed 
to advances in comprehensive medical options, such as laparo-
scopic surgery, radiotherapy, neoadjuvant and palliative chemo-
therapies and targeted therapies, along with a deeper under-
standing of epidemiology, pathology and molecular mechanisms 
related to CRC [2,10]. Despite that, CRC, which accounts for al-
most one-tenth of cancer cases and deaths (with an estimated 
1.8 million new cases and 881 000 deaths in 2018), contrib-
utes to high medical burden worldwide [1]. It has been well-
known that many of CRC patients present discrepant treatment 
response and prognosis despite having histologically identical 
tumors, and thus personalized treatment based on biomarkers 
is likely to generate great clinical efficacy and public health sig-
nificance, which not only enhances therapeutic effectiveness 
but also decreases treatment-related injury and costs [10,11]. 
Therefore, although the numerous molecular characterization, 
biological markers and therapeutic targets of CRC formerly dis-
covered have greatly contributed to the diagnosis and treat-
ment of this malignancy, more evidence on predictive and 
prognostic biomarkers is meaningful and urgently demanded 
in view of the biological complexity, worse outcome and high 
metastasis of this deadly disease [2,10,12].

Striking advancements in microarray and high-throughput se-
quencing technologies have facilitated the discovery of not only 
the crucial genetic or epigenetic alternations in carcinogenesis, 
tumor growth, metastasis and recurrence but also the promis-
ing cancer biomarkers for diagnosis, prognosis and treatment 
prediction [12–14]. Nevertheless, inconsistent results often 
occur due to sample heterogeneity in individual experiments 
or discrepancy in technological platforms [15]. Furthermore, 
application of relatively small sample size decreases statistical 
power, which blocks informative and useful findings [16–18]. 
To overcome the limitations and obtain convictive outcomes, 
integrated bioinformatics analysis, a comprehensive strategy 
to increase sample size, unify cross-platform standardization 
of expression profiles and discard invalid raw data, has been 
widely adopted to identify differentially expressed genes (DEGs) 
at mRNA and non-coding RNA level in CRC [16,19].

This study performed the integrative analysis for the gene ex-
pression patterns of 6 microarray datasets in Gene Expression 
Omnibus (GEO) via using the robust rank aggregation (RRA) 
method, aiming at discovering the consistent DEGs between 
human CRC and paired adjacent normal tissue samples. We 
further validated the aberrant expression patterns of these 

genes in the RNA sequencing data of the CRC patients from 
The Cancer Genome Atlas (TCGA). Additionally, we conducted 
gene set enrichment analysis (GSEA) to investigate signifi-
cantly dysregulated biological functions in CRC. Finally, we 
constructed a gene signature with prognostic value in CRC 
patients through implementing univariate, LASSO and multi-
variate Cox regression analyses.

Material and Methods

Data collection and preprocessing

Six microarray-based gene expression data (GSE21510, 
GSE22598, GSE37182, GSE39582, GSE44076 and GSE89076) 
were accessed from Gene Expression Omnibus [20,21] (GEO; 
http://www.ncbi.nlm.nih.gov/geo/). All the included datasets 
met the following inclusion criteria: 1) they used colorectal tis-
sues of CRC patients; 2) they included paired tumor and ad-
jacent normal tissue samples and 3) the sample size of each 
dataset was at least 30. The samples included in this study 
came from these datasets and only the paired tumor and ad-
jacent normal samples from colon tissues were used. The mi-
croarray data of GSE21510 (23 paired samples), GSE22598 
(17 paired) and GSE39582 (17 paired) implemented the plat-
form of Affymetrix Human Genome U133 Plus 2.0 Array. 
The platforms for GSE44076 (98 paired), GSE89076 (24 paired) 
and GSE37182 (82 paired) were Affymetrix Human Genome 
U219 Array, Agilent-039494 SurePrint G3 Human GE v2 8x60K 
Microarray 039381 and Illumina HumanHT-12 V3.0 expression 
beadchip, respectively. In total, 261 CRC and 261 matched nor-
mal cases were chosen for integrated analysis. The RNA se-
quencing data containing 398 colon adenocarcinoma and 39 
normal samples were downloaded from The Cancer Genome 
Atlas (TCGA) (up to December 18, 2018, http://cancergenome.
nih.gov/). Only protein-coding genes were eventually reserved 
for further study, and corresponding annotation information 
was accessed from Ensembl (http://www.ensembl.org/index.
html). The AnnotationDbi [22] and org.Hs.eg.db [23] packages 
were applied to achieve conversion among gene symbol, Entrez 
ID and Ensembl ID. Furthermore, clinical information of 385 co-
lon adenocarcinoma patients in TCGA was also downloaded, 
among whom 349 patients were reserved for further study. 
Thirty-six patients were excluded from our study for 3 reasons: 
1) 12 patients for not having overall survival (OS) time, sur-
vival status, or pathological stage; 2) 20 patients for having 
an overall survival time shorter than 30 days and 3) 4 patients 
for lacking corresponding mRNA expression data.

Background correction, normalization, and expression calcu-
lation for the raw data (.cel format) of GSE21510, GSE22598, 
GSE39582 and GSE44076 (based on the Affymetrix platform) 
were conducted by the Robust Multi-array Average (RMA) 
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method [24,25] in the affy package [26]. The marray pack-
age [27] and the neqc function in the limma package [28,29] 
were used for preprocessing the raw data of the Agilent 
(GSE89076) and Illumina (GSE37182) microarray platforms, 
respectively. Annotation files for probes in the different data-
sets were downloaded from the GEO database. If multiple 
probes were mapped to one same gene, the average expres-
sion value of the different probes represented the final ex-
pression level of this gene. Moreover, conversion among gene 
symbol, Entrez ID and Ensembl ID was also achieved by the 
AnnotationDbi and org.Hs.eg.db packages.

Differentially expressed genes (DEGs) screening

For each of the 6 microarray datasets, gene expression differ-
ence between the tumor and adjacent noncancerous tissues 
were calculated by the limma package. Then, the integration for 
the genes in every list was conducted by the RobustRankAggreg 
package [30], which was based on the robust rank aggrega-
tion (RRA) method. This rank aggregation approach detects 
genes that are ranked consistently better than expected un-
der null hypothesis of randomly ordered input lists and as-
signs a P value for each gene. Bonferroni correction was also 
employed in case of false positive results, and genes meeting 
the criterion of |log2 fold change (FC)| >1 and adjust P<0.05 
were taken as DEGs.

For the mRNA sequencing data from TCGA, protein-coding genes 
with counts >1 in more than 75% samples were retained, and 
duplicate gene expression values were averaged. Expression 
calculation, normalization and DEGs screening were carried out 
by edgeR [31], with |log2FC| >1 and false discovery rate (FDR) 
<0.05 as the threshold. The impute package [32] was used to 
fill missing values of the normalized expression data. The con-
sistent DEGs in the 6 microarray profiles were intersected with 
the DEGs in the TCGA dataset by Entrez ID, and the eventu-
ally consistent DEGs between the microarray and sequencing 
data were reserved for further study. Moreover, the expres-
sion values of the eventually consistent DEGs in the TCGA co-
lon adenocarcinoma dataset were log2 transformed before 
the following analysis.

Gene set enrichment analysis (GSEA)

To identify significantly dysregulated biological pathways 
in CRC, the GSEA [33] was performed by clusterProfiler [34], 
under functional annotations of the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database (https://www.genome.
jp/kegg/). Entrez IDs and corresponding log2FC values of all the 
genes in each dataset were submitted to clusterProfiler, with 
the permutation number and the minimum gene set size set 
as 100 000 and 120, respectively. Activated and suppressed 
pathways with adjust P<0.05 in each dataset were merged, 

and ones with higher frequency (found in ³3 datasets) were 
identified as dramatically changed biological functions in CRC.

Survival analysis

For the included 349 CRC patients, survival time, status, and 
mRNA expression levels of the consistent DEGs were applied 
for survival analysis. Firstly, a univariate Cox proportional haz-
ards regression model was built for preliminarily screening OS-
related genes, and the genes with P<0.05 were considered sta-
tistically significant. Secondly, a least absolute shrinkage and 
selection operator (LASSO) Cox regression model was adopted 
to further select key genes from significant ones in univariate 
analysis. The glmnet package [35] was utilized to perform the 
LASSO Cox analysis. The maximum number of replacements 
was set as 100 000 times, and a sequence of tuning param-
eters (lambdas, ls) were returned according to the expected 
generalization error estimated from 10-fold cross-valida-
tion. The lambda with minimum mean cross-validated error 
(lambda.min) was employed. Finally, a multivariate Cox pro-
portional hazards regression model was established to esti-
mate the contribution of a gene as an independent prognos-
tic factor for patient survival. The optimal model was selected 
by the Akaike information criterion (AIC) method, and thereby 
a prognostic gene signature was established. The univariate 
and multivariate Cox regression analyses were all conducted 
by the survival package [36]. A prognosis risk score was cal-
culated based on a linear combination of the expression value 
of the gene in this prognostic signature multiplied by its re-
gression coefficient derived from the multivariate Cox model. 
The formula is as follows:
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Where n is the number of genes, expi is the expression value of the ith variable and coefi is the 
Where n is the number of genes, expi is the expression val-
ue of the ith variable and coefi is the regression coefficient of 
the ith variable. These 349 patients were categorized into ei-
ther low-risk or high-risk group based on the median prognos-
tic risk score. The Kaplan-Meier method with the log-rank test 
was used to assess the correlation between the risk and OS, 
and the survival curve was generated by the survminer pack-
age [37]. The time-dependent receiver operating characteristic 
(ROC) curve analysis was conducted by the survivalROC pack-
age [38], and the area under the curve (AUC) was calculated 
to measure the predictive accuracy of this prognostic signa-
ture for time-dependent cancer death. All the statistical anal-
yses were performed with R (version 3.5.2, https://www.r-proj-
ect.org/) in this study.
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Results

Identification of DEGs

The clinical information for the CRC patients included in the 
present study is shown in Table 1, Supplementary Tables 1–3. 
We obtained 990 DEGs (495 downregulated and 495 upreg-
ulated genes) after performing the integrated analysis of the 
6 microarray datasets (Figures 1A, 2A–2F, Supplementary 
Tables 4, 5), and we also acquired 4131 DEGs (2050 down-
regulated and 2081 upregulated genes) from the TCGA colon 
cancer dataset (Figures 1B, 2G, and Supplementary Table 6). 
Subsequently, we intersected these DEGs and finally identified 

885 consistent DEGs, including 458 downregulated and 427 
upregulated genes (Figure 1C, 1D, and Supplementary Table 7).

Identification of dysregulated pathways

According to the results of GSEA (Figures 3, 4 and Supplementary 
Table 8, 9), 24 pathways (including 5 activated and 19 sup-
pressed) found in more than or equal to 4 datasets were iden-
tified as significantly dysregulated biological pathways in CRC. 
Eight suppressed pathways existed in all the 7 datasets, namely, 
adrenergic signaling in cardiomyocytes, apelin signaling path-
way, calcium signaling pathway, cAMP signaling pathway, cGMP-
PKG signaling pathway, neuroactive ligand-receptor interaction, 
Rap1 signaling pathway, and regulation of actin cytoskeleton. 
The top 3 activated pathways were cell cycle, RNA transport, 
and Wnt signaling pathway, which were respectively found in 
7, 7, and 5 datasets, respectively. Among the 24 significantly 
changed pathways, it has long been known that the cell cy-
cle, Ras signaling pathway and Wnt signaling pathway play im-
portant roles in the initiation and progression of CRC [12,39].

Survival analysis

We performed the univariate Cox regression to investigate the 
correlation of the DEGs with OS of CRC patients, and identi-
fied 101 OS-related genes with P was <0.05 (Supplementary 
Table 10). Then, in order to further narrow genes, we employed 
the LASSO Cox model with 10-fold cross-validation and 100 000 
repetitions to acquire optimal penalty parameters. As a result, 
22 genes were identified when we chose the minimum crite-
ria where the log (l)=–3.52 with l=0.02957 (Figure 5). Finally, 
we developed a 7-gene prognostic signature after performing 
the multivariate Cox analysis, which was composed of TIMP 
metallopeptidase inhibitor 1 (TIMP1), Axin 2 (AXIN2), C-X-C 
motif chemokine ligand 1 (CXCL1), leucine zipper tumor sup-
pressor family member 3 (LZTS3), intelectin 1 (ITLN1), carni-
tine palmitoyltransferase 2 (CPT2) and claudin 23 (CLDN23) 
(Figures 6A, 7A). As shown in Figure 7B, TIMP1, AXIN2, CXCL1 
and LZTS3 were upregulated, whereas ITLN1, CPT2 and CLDN23 
were downregulated in CRC compared with normal groups. 
Moreover, lower expression of CXCL1 and CPT2 was shown 
to be associated with advanced tumor stage (Kruskal-Wallis 
test P<0.05, Figure 7C, 7D), while the correlation of the other 
5 genes with pathological stage was not statistically signifi-
cant. Among these 7 genes, AXIN2, CXCL1, ITLN1, CPT2, and 
CLDN23 with HR<1 were identified as protective prognostic 
genes, whereas TIMP1 and LZTS3 with HR>1 were identified as 
risky prognostic genes. The regression coefficient for each gene 
was also generated, and the survival risk score was calculat-
ed as follows: risk score=(0.3259×expression level of TIMP1)+ 
(–0.2607×expression level of AXIN2)+(–0.1289×expression 
level of CXCL1)+(0.4504×expression level of LZTS3)+ 
(–0.0619×expression level of ITLN1)+(–0.7526×expression 

Characteristics Number of cases (%)

Gender

	 Male 	 189	 (54.2)

	 Female 	 160	 (45.8)

Age

	 £60 	 105	 (30.1)

	 >60 	 244	 (69.9)

TNM stage

	 Stage I 	 62	 (17.8)

	 Stage II 	 138	 (39.5)

	 Stage III 	 99	 (28.4)

	 Stage IV 	 50	 (14.3)

T stage

	 Tis 	 1	 (0.3)

	 T1 	 7	 (2.0)

	 T2 	 62	 (17.8)

	 T3 	 242	 (69.3)

	 T4 	 37	 (10.6)

M stage

	 M0 	 266	 (76.2)

	 M1 	 50	 (14.3)

	 MX 	 31	 (8.9)

	 Not reported 	 2	 (0.6)

N stage

	 N0 	 207	 (59.3)

	 N1 	 83	 (23.8)

	 N2 	 59	 (16.9)

Vital status

	 Alive 	 279	 (79.9)

	 Dead 	 70	 (20.1)

Table 1. Clinical information for the included 349 patients.
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level of CPT2)+(–0.4304×expression level of CLDN23). The 174 
patients with risk scores higher than the median risk score 
(1.0048) were included into the high-risk group, whereas 
the rest 175 patients were included into the low-risk group 
(Figure 6B). The Kaplan-Meier survival analysis showed that 
patients in the high-risk group had shorter survival time and 
more deaths compared with patients in the low-risk group (Log-
rank test P<0.0001), suggesting expression levels of these 7 

genes could effectively distinguish the high-risk and low-risk of 
these colon cancer patients (Figure 6C). The AUC of the time-
dependent ROC curve was 0.738, 0.769, and 0.851 for 1-year, 
3-year, and 5-year OS, respectively, confirming the good pre-
diction accuracy of this prognostic gene signature (Figure 6D). 
The nomogram for survival time prediction of CRC patients is 
shown in  ure 8.
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Figure 1. �Identification of differentially expressed genes (DEGs). (A) The heatmap of top 20 downregulated and upregulated DEGs 
identified by the integrated analysis of the 6 microarray datasets. Each column represents 1 dataset and each row represents 
1 gene. The number in each rectangle represents the value of log2FC. The gradual color ranging from blue to red represents 
the changing process from downregulation to upregulation. (B) The heatmap of the 4131 DEGs in The Cancer Genome Atlas 
(TCGA) colorectal cancer (CRC) dataset. Each column represents 1 sample and each row represents 1 gene. The gradual color 
ranging from green to red represents the changing process from downregulation to upregulation. (C) The Venn diagram of 
the DEGs between the integrated Gene Expression Omnibus (GEO) dataset and the TCGA CRC dataset. (D) The heatmap 
of the 885 consistent DEGs (using the TCGA dataset). Each column represents 1 sample and each row represents 1 gene. 
The gradual color ranging from green to red represents the changing process from downregulation to upregulation.
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Figure 2. �The volcano plot of the genes in the 7 datasets. (A) The volcano plot of the genes in GSE21510. (B) The volcano plot of 
the genes in GSE22598. (C) The volcano plot of the genes in GSE37182. (D) The volcano plot of the genes in GSE39582. 
(E) The volcano plot of the genes in GSE44076. (F) The volcano plot of the genes in GSE89076. (G) The volcano plot of the 
genes in The Cancer Genome Atlas (TCGA) dataset. The red dot represents the genes with adjust P<0.05 and log2FC >1, 
and the green dot represents the genes with adjust P<0.05 and log2FC <–1.
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Discussion

Integrated bioinformatics analysis of CRC gene expression 
profiles and construction of gene signatures associated with 
CRC prognosis have aroused extensive attention recently. For 
example, Sun et al. identified 352 overlapping DEGs in 5 GEO 
datasets which totally included 207 CRC and matched nor-
mal samples and proposed a 5-gene prognostic signature us-
ing Cox regression models [40]. Chen et al. detected a 7-gene 

signature that can predict OS of CRC patients by employing Cox 
regression analysis combined with a robust likelihood-based 
survival modeling approach [11]. Xiong et al. extracted expres-
sion data of mRNAs, miRNAs, and lncRNAs in TCGA, and built 
a multi-RNA-based classifier for CRC patient stratification by 
Cox survival analysis and Lasso regression [41]. Dai et al. also 
used Lasso Cox regression modeling and developed a robust 
15-mRNA prognostic signature from GSE39582 for predicting 
early relapse in stage I–III colon cancer patients [42]. As for the 
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Figure 3. �The gene set enrichment analysis (GSEA) for the 7 colorectal cancer (CRC) datasets. (A) The GSEA for GSE21510. (B) The GSEA 
for GSE22598. (C) The GSEA for GSE37182. (D) The GSEA for GSE39582. (E) The GSEA for GSE44076. (F) The GSEA for 
GSE89076. (G) The GSEA for The Cancer Genome Atlas (TCGA) dataset. The top 20 suppressed and activated Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways in each dataset were shown. The y-axis shows the KEGG pathway 
terms, and the x-axis shows the gene ratio of each term.
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Figure 4. �The enrichment plot of the gene set enrichment analysis (GSEA) (using GSE89076). (A) The enrichment plot of 9 suppressed 
pathways. (B) The enrichment plot of 5 activated pathway. (C) The upSet plot for the GSEA.

present study, we used the raw data of 6 whole genome plat-
form-based microarray datasets with paired tumor and non-
cancerous samples and conducted corresponding normalization 
for them to make these data more comparable. Meanwhile, we 
applied the RRA approach to integrate the shared DEGs across 
the 6 datasets, making the results more reliable than only inter-
secting DEGs of different expression profiles. Moreover, to de-
tect significantly changed biological functions in CRC, we per-
formed GSEA for each CRC dataset and the pathways found in 
more than 4 datasets were taken into consideration. Ultimately, 
we integrated univariate, LASSO and multivariate Cox regres-
sion models to identify key prognostic genes in CRC patients.

In the current study, we detected 990 common DEGs between 
261 CRC and matched normal tissues in 6 microarray datasets, 
885 of which were validated thorough TCGA. When conduct-
ing the GSEA, we identified 22 significantly dysregulated bio-
logical pathways in CRC. The univariate and LASSO Cox regres-
sion models selected 22 survival-related genes, and a 7-gene 
signature with prognostic value in CRC was finally established 
by the multivariate Cox analysis. The 7-gene prognostic signa-
ture consisted of 2 risky prognostic genes (TIMP1 and LZTS3) 
and 5 protective prognostic genes (AXIN2, CXCL1, ITLN1, CPT2, 
and CLDN23). Among them TIMP1, AXIN2, CXCL1 and LZTS3 
were upregulated, whereas ITLN1, CPT2, and CLDN23 were 
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Figure 5. �Gene selection through the least absolute shrinkage and selection operator (LASSO) Cox regression model. (A) The heatmap 
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for tuning parameter (l) selection in the LASSO Cox regression model. The vertical lines were drawn at the optimal values by 
the minimum criteria and the 1-SE criteria. (C) The LASSO coefficient profiles of the 101 DEGs.

downregulated in CRC compared with normal groups accord-
ing to our bioinformatics analysis. For the 2 risky prognostic 
genes, the prognostic value of TIMP1 in CRC has been con-
firmed in former works, while that of LZTS3 has not. TIMP-1 
is among human natural endogenous inhibitors of matrix 
metalloproteinases (MMPs). It has been acknowledged that 
MMPs, a group of proteolytic enzymes, play an important 
role in the degradation of extracellular matrix (ECM) compo-
nents, which is critical for tumor growth, invasion and metas-
tasis [43]. In addition to its function as an inhibitor of MMPs, 
TIMP-1 can stimulate cell proliferation, induce anti-apoptotic 
signaling and influence angiogenesis in an MMP-independent 
manner [44–47]. Increasing evidence, especially from meta-
analysis, has shown that TIMP-1 has potential diagnostic and 
prognostic value in CRC, and elevated TIMP-1 may predicts 
shorter OS among patients with no systemic inflammatory re-
sponse [48–54]. Consistent with these reports, our study also 
found that TIMP1 is upregulated in CRC patients and severs 
as a risky prognostic gene. Members of the leucine zipper tu-
mor suppressor (LZTS) protein family are thought to play roles 

in cell growth modulation [55]. A past in silico work present-
ed that LZTS3, a member of this protein family, served as a 
potential tumor suppressor [55]. A latest study showed that 
highly expressed miR-1275 could promote proliferation and 
metastasis of non-small cell lung cancer thorough targeting 
LZTS3 [56]. However, much less is known about the function 
of LZTS3 in CRC.

Regarding the 5 protective prognostic genes, the prognos-
tic value of CXCL1, ITLN1, CPT2 and CLDN23 in CRC have 
been reported, while that of AXIN2 has not been totally elu-
cidated. CXCL1, a chemotactic cytokine, involves in cancer 
progression and invasion [57]. Highly elevated CXCL1 ex-
pression is found in CRC, promoting tumorigenicity, progres-
sion and metastasis [57–61], and higher CXCL1 expression is 
correlated with larger tumor size and later tumor stage [57]. 
Recent researches showed that CXCL1 serves as an indepen-
dent adverse prognostic biomarker in CRC patients, and it 
might be a novel biomarker and potential therapeutic target 
for CRC treatment [57,61]. In contrast, our results showed the 
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Figure 6. �Construction of the 7-gene signature with prognostic value. (A) The forest plot of the 7 genes identified by the multivariate 
Cox regression analysis. (B) The characteristics of the patients order by their risk score. Dotted line: the median risk 
score (1.0048). From top to bottom is the risk score, patients’ survival status distribution and heatmap of the 7 genes for 
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Figure 7. �The expression level distribution of the 7 genes. (A) The expression level of the 7 genes between the low-risk and high-
risk groups. (B) The expression level of the 7 genes between the normal and tumor groups. (C) The correlation of CXCL1 
expression with pathological stage. (D) The correlation of CPT2 expression with pathological stage.
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correlation of higher CXCL1 expression with lower tumor stage 
in CRC and that high level of CXCL1 predicts better outcome 
in CRC. The difference may derive from population heteroge-
neity and small sample size, and thus large-scale multi-cen-
ter clinical research studies are needed due to limited evi-
dence on the prognostic value of CXCL1 in patients with CRC. 
Intelectin-1 (also known as omentin-1), encoded by the ITLN1 
gene, is reported as a protein that possess metabolic, inflam-
matory, and immune-related properties, and thereby might 
be correlated with CRC risk [62–66]. A previous research pre-
sented that high intelectin-1 expression is closely associated 
with favorable prognosis in gastric cancer patients [67]. As for 
CRC, our findings identified ITLN1 as a protective prognostic 
gene. Likewise, Kim et al. reported that intelectin-1 predicts 
better prognosis in stage IV CRC [68]. These findings support 
the functions of ITLN1 as a potential tumor suppressor in gas-
trointestinal cancers. Conversely, a prospective cohort study 
presented that higher circulating intelectin-1 concentrations 
were related to a higher CRC risk [62]. Since whether ITLN1 
is a tumor suppressor or promoter in colorectal carcinogene-
sis has not been absolutely clarified [69], the prognostic value 
of ITLN1 should be highly valued and deserves deeper inves-
tigation. CPT2, the key enzyme in fatty acid oxidation, locat-
ing on the mitochondrial membrane [70]. Consistent with our 
study, decreased expression of CPT2 was detected in CRC tis-
sue [70,71], and higher expression of CPT2 in cancer tissue 
as an independent prognostic factor predicts better progno-
sis in CRC patients [70]. The CLDN23 gene encodes a member 
of the claudin family, and claudins are known to be crucial in 
cancer growth and progression [72,73]. It has been reported 
that CLDN23 expression is significantly reduced in CRC tissue 
and lower expression of this gene correlates with shorter OS 
rates in CRC patients [74–76], which is consistent with our 
finding that CLDN23 could serve as a protective prognostic 
factor. Furthermore, CLDN23 expression is shown to be epige-
netically regulated, and disruption of bivalent histone modifi-
cations at the CLDN23 locus probably result in remarkably re-
duced CLDN23 expression in CRC tissue [74]. As for the AXIN2 
gene, both germline and somatic mutations in this gene were 
found in CRC [77]. The AXIN2 protein, acting as an essential 

scaffold to help assemble the b-catenin destruction complex, 
negatively regulates b-catenin-dependent Wnt signaling, the 
well-known pathway that is critical in initiation and progres-
sion of CRC and is featured by accumulation of genetic and epi-
genetic changes [12,77,78]. Meanwhile, AXIN2 is a transcrip-
tional target of b-catenin-dependent Wnt signaling [79–81], 
and highly expressed AXIN2 is found in malignancies with ac-
tivating Wnt pathway mutations [77]. Give that AXIN2 is not 
only a b-catenin downstream target but also a key negative 
feedback regulator of Wnt signaling with induction of b-catenin 
degradation, AXIN2 has long been hypothesized as a poten-
tial tumor suppressor [77,82]. However, the prognostic value 
of AXIN2 in CRC has hardly been reported.

In the current study, the gene expression data we used for the 
integrative analysis were generated from different institutions 
and accessed from publicly available databases, so we cannot 
guarantee the quality of these data. Furthermore, the influ-
ence of the detailed features such as age, gender, race, tumor 
grade and stage on gene expression patterns was not consid-
ered because our study solely focused on genes consistently 
identified as significantly altered ones in different researches, 
which makes some biological information overlooked in our 
study. Ultimately, given that our findings came from the com-
prehensive in silico research, additional results from biologi-
cal experiments and large-scale multi-center clinical research 
studies will be pivotal for supporting our findings.

Conclusions

In conclusion, we identified 7 potential prognostic biomarkers 
for CRC by performing the integrative analysis of the gene ex-
pression profiles of microarray and RNA sequencing. Our find-
ings would provide more evidence for further applying novel 
diagnostic and prognostic biomarkers in clinical practice to fa-
cilitate the personalized treatment of CRC. Meanwhile, further 
biological experiments and large-scale multi-center clinical re-
search studies are required to validate our results since our 
study was conducted based on data analysis.

Supplementary Table 1. The information for the samples in the 
6 Gene Expression Omnibus (GEO) datasets.
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adenocarcinoma patients in The Cancer Genome Atlas (TCGA).
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colon adenocarcinoma patients in The Cancer Genome Atlas 
(TCGA).
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Supplementary Table 4. The information for the 6 gene lists of 
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