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OBJECTIVES: There is only low-certainty evidence on the use of predictive 
models to assist COVID-19 patient’s ICU admission decision-making process. 
Accumulative evidence suggests that lung ultrasound (LUS) assessment of 
COVID-19 patients allows accurate bedside evaluation of lung integrity, with the 
added advantage of repeatability, absence of radiation exposure, reduced risk 
of virus dissemination, and low cost. Our goal is to assess the performance of a 
quantified indicator resulting from LUS data compared with standard clinical prac-
tice model to predict critical respiratory illness in the 24 hours following hospital 
admission.

DESIGN: Prospective cohort study.

SETTING: Critical Care Unit from University Hospital Purpan (Toulouse, France) 
between July 2020 and March 2021.

PATIENTS: Adult patients for COVID-19 who were in acute respiratory failure 
(ARF), defined as blood oxygen saturation as measured by pulse oximetry less 
than 90% while breathing room air or respiratory rate greater than or equal to 30 
breaths/min at hospital admission. Linear multivariate models were used to iden-
tify factors associated with critical respiratory illness, defined as death or mild/se-
vere acute respiratory distress syndrome (Pao2/Fio2 < 200) in the 24 hours after 
patient’s hospital admission.

INTERVENTION: LUS assessment.

MEASUREMENTS AND MAIN RESULTS: One hundred and forty COVID-19  
patients with ARF were studied. This cohort was split into two independent 
groups: learning sample (first 70 patients) and validation sample (last 70 
patients). Interstitial lung water, thickening of the pleural line, and alveolar con-
solidation detection were strongly associated with patient’s outcome. The LUS 
model predicted more accurately patient’s outcomes than the standard clinical 
practice model (DeLong test: Testing: z score = 2.50, p value = 0.01; Validation: 
z score = 2.11, p value = 0.03).

CONCLUSIONS: LUS assessment of COVID-19 patients with ARF at hospital 
admission allows a more accurate prediction of the risk of critical respiratory ill-
ness than standard clinical practice. These results hold the promise of improv-
ing ICU resource allocation process, particularly in the case of massive influx of 
patients or limited resources, both now and in future anticipated pandemics.

KEY WORDS: acute respiratory distress syndrome; acute respiratory failure; 
COVID-19; intensive care unit admission decision-making; lung ultrasound; 
machine learning

The exponential spread of the novel COVID-19 has revealed constraints 
in critical care capacity around the globe (1). Accurate and rapid pa-
tient prognostication appears to be essential for critical care utilization 

management and eventually improving outcomes (2). The literature in this 
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field is predominantly descriptive, and there is limited 
empirical evidence on the use of standardized mod-
els to assist ICU admission decision-making process 
(3–5). Many studies have investigated COVID-19 crit-
ical care triage based on clinical variables, laboratory 
measurements, and radiological examination carried 
out on hospital admission to build predictive models 
(6–10). However, the vast majority of these studies are 
based on low-certainty evidence due to their retro-
spective design, lack of validation, poor reporting, and 
high risk of bias (11). Furthermore, it has been argued 
that data collection and analysis processes that are re-
lated to these critical care triage models are time-con-
suming, ineffective in terms of resources allocation, 
and are not well adapted to the cases of massive influx 
of patients or limited resource settings (12).

Interestingly, recent studies have demonstrated 
that lung ultrasound (LUS) gives results that are sim-
ilar to chest CT and superior to standard chest radi-
ography for evaluation of COVID-19 severity (13). 
Converging data suggest that a standardized LUS 
assessment of COVID-19 patients, based on unspe-
cific sonographic semiotics of lung loss aeration (14), 
allows accurate bedside evaluation of lung and pleura 
integrity (15), with the added advantage of ease of 
use at point of care, repeatability, absence of radia-
tion exposure, reduced risk of inhospital severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
virus dissemination, and low cost (16). We suggest 
that an LUS-based patient’s bedside stratification of 
lung and pleural damage induced by SARS-CoV-2 
infection hold the promise of providing highly 
needed, innovative and powerful short-term out-
come predictors for COVID-19 patients with acute 
respiratory failure (ARF).

We hypothesize that the accuracy of prediction of 
COVID-19 critical respiratory illness, defined as death 
or mild/severe acute respiratory distress syndrome 
(ARDS) (Pao2/Fio2 < 200) in the 24 hours following 
hospital admission based on LUS data, will signif-
icantly outperform prediction built upon standard 
clinical variables collected at the time of hospital ad-
mission. The goal of the current study is to assess the 
performance of a quantified indicator resulting from 
LUS data gathered at patient’s hospital admission for 
COVID-19, compared with standard procedures to 
predict critical respiratory illness in the 24 hours fol-
lowing hospital admission. The optimum cutoff will be 

defined from a derivation cohort and assessed in an 
independent validation cohort.

MATERIALS AND METHODS

Study Design

This prospective, observational, proof of concept study 
was done in the Medical Triage Zone of the Purpan 
University Hospital, Toulouse, France. We compared 
two predictive models of critical respiratory illness, 
defined as death or mild/severe ARDS (Pao2/Fio2 < 
200) in the 24 hours after patient’s first hospital ad-
mission. The whole dataset, including LUS assessment 
and standard clinical variables, was prospectively col-
lected between July 2020 and March 2021. Patients 
were managed by emergency physicians according to 
current guidelines and recommendations (1, 12, 17). 
Emergency physicians were blinded to LUS data. The 
study was approved by the ethics committee of the 
University Hospital of Toulouse, Toulouse, France 
(Comité Consultatif pour la Protection des Personnes, 
Ref. 2020-A01225-48); written consent was obtained 
from all participants. COVID-19 diagnoses were con-
firmed by positive real-time reverse transcription 
polymerase-chain-reaction assay for pharyngeal swap 
specimens. The study protocol was registered under 
NCT 04474236.

Population

We recruited consecutively admitted adult patients for 
COVID-19 who were in ARF at hospital admission 
(Fig. 1). To define ARF, we used American Thoracic 
guidelines for community-acquired pneumonia given 
the extensive acceptance of this guideline (blood ox-
ygen saturation as measured by pulse oximetry <90% 
while breathing room air or respiratory rate ≥30 
breaths/min) (18). Exclusion criteria were history of 
long-term oxygen therapy (oxygen used for at least 
15 hr/day in patients with severe chronic resting room 
air hypoxemia), either standard oxygen requirement 
greater than 15 L/min to maintain a pulse oximetry 
greater than 92% or need of invasive mechanical ven-
tilation at the time of hospital admission. Indeed, to 
increase the clinical relevance of our predictive mod-
els, we decided to focus on COVID-19 patients with 
ARF for whom mild/severe ARDS was not universally 
apparent at the time of the hospital admission.
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Standard Clinical Assessment

Based on current recommendations for the manage-
ment of critically ill patients with COVID-19 (1–3) 
and previous reports about the development and vali-
dation of early prognostic tools for COVID-19 patients 
(19), we prospectively collected predefined clinical 
data at patient’s bedside. To increase the generaliza-
bility, the reproducibility, and the clinical relevance of 
our findings, we decided to only use clinical criteria 
that are currently considered as being part of standard 
procedures for first-line medical triage for COVID-19 
patients. Following current guidelines and recommen-
dations (1–3, 12, 19), standard variables were collected 
at hospital admission in the medical triage zone to be 
used as potential predictors of critical respiratory ill-
ness and included: demographic variables, medical 
history, clinical signs, and symptoms. Demographic 
variables included sex, age, smoking status, and the 
Quick Sepsis-related Organ Failure Assessment score 
for sepsis (20). Medical history included number of 
comorbidities, chronic obstructive pulmonary di-
sease, diabetes, hypertension, coronary artery disease, 
cancer, chronic renal disease, and immunodeficiency 

disease. Clinical signs included categorical and contin-
uous variables: heart rate (beats/min), systolic blood 
pressure (mm Hg), diastolic blood pressure (mm Hg), 
respiratory rate (breaths/min), Spo2 (%), and standard 
oxygen flow (L/min). Clinical symptoms comprised 
fever, cough, dyspnea, anosmia, and diarrhea. The 
time between first symptoms and hospital admission 
was also recorded.

Lung Ultrasound Examination

All patients underwent an LUS assessment by inves-
tigators who did not participate in patient manage-
ment (A.A., S.B., B.R., S.S.). These investigators are all 
senior critical care practitioners, with advanced level 
of thoracic ultrasound training and who were blinded 
to patient’s outcomes. The level of agreement between 
raters for the ultrasound findings has been previously 
reported (21–23). All patients were studied in the semi-
recumbent position. LUS assessment was performed 
with CX 50 Philips Ultrasounds (22100 Bothell-Everett 
HighwayBothell, WA, USA) and 2- to 4-MHz probes. 
The investigators used standardized criteria and fol-
lowed pattern analysis (Fig. 2) (24, 25). As previously 

Figure 1. Study flowchart. Longitudinal data from 140 consecutive patients were included in the study. Ultimately, the dataset was 
split into two time series to enable further analysis: a learning sample (first 70 patients), which was used to establish the best predictive 
model (10-fold cross-validation and 1,000 bootstrap permutations), and a validation sample (last 70 patients), which has not been used 
during the previous phase, were employed to test model’s generalization. ARF = acute respiratory failure, IMV = invasive mechanical 
ventilation, LUS = lung ultrasound.



Aguersif et al

4     www.ccejournal.org June 2022 • Volume 4 • Number 6

described, the chest wall was demarcated from the 
clavicles to the diaphragm and from the sternum to 
the anterior axillary line (26). Six quadrants were de-
fined for each hemithorax. The normal pleural line was 
defined as a horizontal hyperechoic line visible below 
the rib line. As recently reported from COVID-19  
patients (14), thickening of the pleural line with 
pleural line irregularity was considered as abnormal 
(Thickening of the Pleural Line, TPL). A normal lung 
pattern was defined as the presence in a quadrant of 
lung sliding with reverberating horizontal A lines (A 
profile). Pleural effusion (PE profile) was defined as a 
hypoechoic collection limited by the diaphragm and 
the pleura (24). Alveolar consolidation was defined as 
the presence of poorly defined heterogeneous wedge-
shaped hypoechoic images. As recently reported, we 
distinguished two patterns of alveolar consolidation 

during COVID-19: subpleural nontranslobar (C1 pro-
file) (27), which might correspond to peripheral lung 
embolism (28), and posterior translobar with occa-
sional mobile air bronchograms (C2 profile). Alveolar-
interstitial syndrome was defined as the presence of 
more than two vertical lines B lines in a given lung re-
gion. Aiming to specifically address the added value of 
pulmonary edema semiquantitative LUS assessment, 
we defined three B-lines patterns: B1 profile (thin, 
multiple, and well-defined), B2 profile (large and co-
alescent), and B3 profile (“shining white lung”) (29). 
Each of the 12 lung regions assessed per patient was 
classified in one of these profiles to define one final 
pattern for each quadrant. The number of quadrants 
depicting the same LUS patterns was summed, and the 
total amount of each profile was computed for further 
analysis (21–23).

Figure 2. Lung ultrasound patterns. Each of the 12 lung regions assessed per patient was classified using predefined lung ultrasounds 
profiles (A, B1, B2, B3, C1, C2, TPL, and pleural effusion [PE]). Sonographic LUS signs are not specific of COVID-19 when considered 
alone. Normal lung sliding (magenta triangles indicate the pleural line) with reverberating horizontal lines (blue triangles) were described 
as a profile. Interstitial syndrome was defined as the presence of more than two vertical lines in a given lung sector (depicted between 
vertical blue lines). To allow a semiquantitative assessment, we defined three B-lines patterns: B1 profile (thin, multiple, and well-
defined), B2 profile (large and coalescent), and B3 profile (“shining white lung”). As recently reported, we distinguished two patterns 
of alveolar consolidation (blue circles): subpleural nontranslobar (C1 profile) (27) and posterior translobar with occasional mobile air 
bronchograms (C2 profile). A thickening of the pleural line with pleural line irregularity was considered as abnormal (Thickening of the 
Pleural Line, TPL), and PE was defined as a hypoechoic collection limited by the diaphragm and the pleura (PE profile). For additional 
information regarding lung ultrasounds semiotics, please see the “Materials and Methods” section.
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Outcome

Critical respiratory illness, defined as death or mild/
severe ARDS (Pao2/Fio2 < 200) in the 24 hours fol-
lowing patients’ hospital admission, was considered as 
an unfavorable patient’s outcome. To increase the gen-
eralizability of our findings, we decide to use neither 
ICU admission decision nor the specific modalities 
ventilatory support in our composite main outcome 
criteria. Indeed, throughout the current pandemic, 
both criteria for patient’s ICU admission and the use 
of invasive/non-invasive respiratory support have 
evolved across the time (1) and might also have been 
influenced by ICU resource’s availability during the 
study period (30).

Statistics Analysis

Continuous data are expressed as mean ± sd and or 
median (interquartile range) according their distri-
bution. Categorical variables were expressed as num-
bers and percentages. Two means were compared with 
Student test or Mann-Whitney U test and two propor-
tions with a chi-square test or Fisher exact test. The 
Pearson correlation or Spearman test were used to 
test linear correlation. A cross-correlation matrix was 
applied to the whole dataset to test multicollinearity. 
Sensitivity, specificity, and diagnostic accuracy were 
calculated using standard formulas to evaluate the 
predictive performances of clinical standard and LUS 
approaches.

First, clinical and LUS data were split into two time 
series to enable further analysis: a learning sample 
(first 70 patients) was used to establish the best classi-
fication model and validation sample (last 70 patients), 
which has not been used during the previous phase, 
was employed to test model’s generalization and to 
avoid the risk of over-fitting. Second, clinical and LUS 
data, used as independent variables, were employed to 
estimate partial least square (PLS) regression to pre-
dict critical respiratory illness using a linear multivar-
iate model. PLS model does not require the absence 
of multicollinearity and can be performed when there 
are more variables than observations. All the variables 
(independent and dependent) were used without any 
mathematical treatment. Note that the PLS model used 
a nonlinear iterative partial least squares (NIPALS) al-
gorithm to implement missing data. To test multicol-
linearity, we used variable inflation factors (VIFs), 

which determine the strength of the correlation be-
tween independent variables. The determination of the 
significant PLS principal components (model dimen-
sions) was made by 10-fold cross-validation. Among 
them, only one component minimized the least square 
difference between the reference value and the meas-
ured parameters. The standardized coefficients and 
95% CIs of each parameter were determined using a 
bootstrap procedure (1,000 permutations). A logistic 
regression was performed on the PLS component to 
convert PLS values of each observation into a prob-
ability score. Finally, receiver-operating character-
istic curves were calculated for each final diagnosis 
during each both learning and validation phases and 
compared using the DeLong test (R-library package 
nsRoc).

The level of agreement between the observers for the 
ultrasound findings was previously reported (21–23). 
All statistical tests were two-sided, and p < 0.05 was 
required to reject the null hypothesis. Statistical anal-
ysis was performed with the R software (R Foundation, 
Vienna, Austria) and Tanagra 1.4.50 (Rakotomalala, 
Lyon University, Lyon, France).

RESULTS

Patients

A total of 305 COVID-19 patients with ARF were pro-
spectively identified at the time of hospital admission 
(Fig. 1). Among them, 147 did not fulfill at least one 
inclusion criterion, three had to be excluded because 
of insufficient LUS data quality, and 14 withdrawn 
consents. The final cohort consisted of 140 patients, 
age 62.0 years (51.8–73.0 yr), of whom 42 (30%) were 
woman. This cohort was split into two independent 
patient’s groups for further analysis: a learning sample 
(first 70 patients), which was used to establish the 
best cross-validated classification model, and vali-
dation sample (last 70 patients), which has not been 
used during the previous phase, were employed to 
test model’s generalization (Fig. 1). At inclusion time, 
patients have a mean Spo2 of 89.0 (84.2–90.0) and a 
mean respiratory rate of 27.0 (14.1–32.1) before ox-
ygen therapy onset. Within the 24 hours of follow-up, 
53/140 patients (37.8%) developed critical respiratory 
illness. Indeed, 19 patients died, 34 developed mild/
severe ARDS, 67 had moderate ARDS, and 20 were 
not with ARDS. Among ARDS patients, 17 received 
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invasive mechanical ventilation, and 84 were treated 
with nasal high-flow oxygen therapy during the first 24 
hours after hospital admission. The mean ICU stay was 
12 ± 10 days. The 28-day mortality rate was 31% (43 
patients). Further information about patient’s demo-
graphics and characteristics is provided in Table 1.

LUS Data

Patient’s LUS assessments lasted 6 ± 2 min. Overall, 
1,680 lung regions were evaluated. In this cohort 
of COVID-19 patients with ARF, LUS examination 
allowed the identification of predefined LUS patterns 
(Fig.  2; Supplemental Digital Content 1–3, http://
links.lww.com/CCX/B14) as follows (sum and per-
centage of quadrants depicting the same LUS patterns, 
respectively): A (618, 37%), B1 (450, 27%), B2, (205, 
12%), B3 (207, 12%), C1 (162, 10%), C2 (30, 2%), TPL 
(305, 18%), and PE (11, 1%). Interestingly, the total 
amount of lung regions depicting the same LUS pat-
tern was significantly different between patients who 
were with or without critically respiratory failure dur-
ing the 24 hours of follow-up (Fig. 3; Supplemental 
Digital Content 1, http://links.lww.com/CCX/B14). 
It is worth noting that a significant multicollinearity 
was observed between collected LUS data (VIF > 5;  
Supplemental Digital Content 4, http://links.lww.
com/CCX/B15).

Data Modeling

The whole data set of predictors was used to generate 
two independent linear multivariate models with no 
a priori hypothesis (Supplemental Digital Content 
5, http://links.lww.com/CCX/B16). We used PLS 
methods to build these models because PLS does 
not require the absence of multicollinearity, and it 
is well fitted in the case of missing data. The LUS-
derived model (Supplemental Digital Content 5, 
http://links.lww.com/CCX/B16) revealed a signifi-
cant relationship between the patient’s risk of critical 
respiratory illness and the identification at hospital 
admission of the following LUS profiles: B2, B3, C1, 
C2, and TPL. Regarding the standard clinical prac-
tice model, it should be noted that among clinical 
predictors, respiratory rate was the factor who was 
more significantly associated with patient’s outcome 
(Supplemental Digital Content 5, http://links.lww.
com/CCX/B16).

Predictive Values

Overall, the LUS model predicted more accurately 
patient’s outcomes than the standard clinical practice 
model (DeLong test: Testing: z score = 2.50, p value = 0.01;  
Validation: z score = 2.11, p value = 0.03). It should be 
noted that data obtained during the validation study 
phase confirmed the accuracy and robustness of the 
cross-validated models that were built during the test-
ing phase (Supplemental Digital Content 6, http://
links.lww.com/CCX/B17).

The analysis of PLS “standard coefficient” of each LUS 
profile yields additional information in terms of crit-
ical respiratory illness risk assessment (Supplemental 
Digital Content 5, http://links.lww.com/CCX/B16). 
Indeed, detection of A profile was significantly asso-
ciated with patient’s favorable outcome. On the other 
hand, all the ultrasonographic LUS patterns corre-
sponding to lung edema (B profiles) were significantly 
associated with patients’ outcome. It is worth noting 
that a gradient effect was observed, meaning that B1 
detection, corresponding to absent or minimal pul-
monary edema, compared with B2/B3 recognition, re-
lated to greater amount of interstitial lung water, was 
significantly associated with favorable and unfavorable 
outcomes, respectively. Regarding alveolar consolida-
tion, subpleural topography seemed more linked to 
unfavorable outcome than a posterior translobar loss 
of lung aeration (C2). Last but not least, pleura ultra-
sonographic evaluation demonstrated that PE was not 
associated with patient’s outcome, but the detection of 
thickening of the pleural line with pleural line irregu-
larity (TPL pattern) was significantly associated with 
the risk of critical respiratory illness.

The number of lung quadrants depicting the same 
LUS pattern at patients’ hospital admission for each 
outcome group (patients with or without critical res-
piratory illness at 24 hr from hospital admission) was 
significantly different for all LUS profiles but PE (Fig. 3; 
Supplemental Digital Content 5, http://links.lww.com/
CCX/B16). These results are in favor of lung lesion 
effect, meaning that a greater number of lung regions 
showing the same pattern are more strongly associated 
with a definite outcome.

DISCUSSION

Despite many reports of patient characteristics and 
risk factors for critical illness (31–34), there is little 
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evidence-based guidance available to aid first-line 
practitioners in safely dispositioning COVID-19 
patients with ARF. To the extent of our knowledge, we 
report for the first time the usefulness of point-of-care 
LUS assessment to assist medical triage of COVID-19 

patients with ARF upon hospital admission. Hence, we 
observed that compared with standard clinical data, 
LUS data were significantly associated with the risk of 
critical respiratory illness 24 hours after hospital ad-
mission. We think that our result holds the promise 

TABLE 1. 
Patient’s Characteristics at Hospital Admission

Characteristics n (%)
All Patients  

(n = 140)

24-hr Critical Respiratory Illness

Yes (n = 53) No (n = 87) p

Age, yr 140 (100) 62.0 (51.8–73.0) 61.0 (49.0–75.0) 63.0 (52.0–72.5) 0.947

Woman, n (%) 140 (100) 42 (30) 17 (32) 25 (29) 0.707

Body mass index > 30, n (%) 140 (100) 61 (44) 25 (47) 36 (41) 0.598

Active smokers, n (%) 135 (96.4) 31 (22.1) 13 (24.5) 18 (20.7) 0.676

Quick Sepsis-related Organ Failure  
Assessment score, median (IQR)

140 (100) 1.0 (0.0–1.0) 0.0 (0.0–1.0) 1.0 (0.0–1.0) 0.283

Time between first symptoms and  
hospital admission, d

129 (92.1) 9.0 (7.0–12.0) 10.0 (8.0–12.0) 9.0 (6.0–12.0) 0.231

Comorbidities, n (%) = 140 (100)

 Treated hypertension  84 (60.0) 32 (60.4) 52 (59.8) 1.000

 Known diabetes  56 (40.0) 22 (41.5) 34 (39.1) 0.859

 Immunodeficiency  16 (11.4) 10 (18.9) 6 (6.9) 0.052

 Chronic pulmonary disease  111 (79.3) 43 (81.1) 68 (78.2) 0.830

 Chronic liver disease  24 (17.1) 9 (17.0) 15 (17.2) 1.000

 Chronic heart failure  27 (19.3) 20 (23.0) 7 (13.2) 0.188

 Solid cancer  11 (7.9) 6 (11.3) 5 (5.7) 0.332

Symptoms, n (%) =140 (100)

 Fever  102 (72.9) 38 (71.7) 64 (73.6) 0.846

 Cough  85 (60.7) 31 (58.5) 54 (62.1) 0.723

 Dyspnea  111 (79.3) 41 (77.4) 70 (80.5) 0.672

 Anosmia  62 (44.3) 19 (35.8) 43 (49.4) 0.160

 Diarrhea  40 (28.6) 14 (26.4) 26 (29.9) 0.703

Admission measures,a median (IQR)

 Systolic blood pressure, mm Hg 133 (95) 121.0 (108.0–145.0) 117.0 (102.0–131.5) 131.0 (118.0–146.0) 0.010

 Diastolic blood pressure, mm Hg 133 (95) 70.0 (58.0–78.0) 66.0 (58.0–75.0) 71.0 (60.0–80.0) 0.095

 Heart rate, beats/min 133 (95) 83.0 (73.0–92.5) 80.5 (69.0–90.5) 84.0 (74.0–93.0) 0.210

 Respiratory rate, breaths/min 140 (100) 22.0 (17.0–29.0) 27.0 (18.0–30.0) 21.0 (16.0–27.0) 0.022

 Spo2, % 140 (100) 95.0 (93.8–98.0) 95.0 (93.0–97.0) 95.0 (94.0–98.0) 0.430

 Standard OF flow, L/min 138 (99) 9.0 (6.0–12.0) 9.0 (6.0–12.0) 9.0 (6.0–9.0) 0.328

 Confusion 140 (100) 28 (20.0) 14 (26.4) 14 (16.1) 0.191

IQR = interquartile range.
aThese variables were recorded after oxygen therapy onset.
Results are expressed as median (interquartile range) or n (%). Critical respiratory illness was defined as death or mild/severe acute 
respiratory distress syndrome (Pao2/Fio2 < 200) in the 24 hr following hospital admission. A p value of < 0.05 was considered as statis-
tically significant.
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of significantly improving ICU admission deci-
sion-making process and medical resource attribution 
for these patients, particularly in the case of massive 
afflux of patients or limited-resource settings.

In agreement with previous in vitro (35) and in vivo 
(36) reports, which have described the progressive 
loss of lung aeration as first as a switch from A-lines 
to a B-pattern, followed by a progressive increasing 
number of B-lines that coalesce more and more (from 
B1 to B3 patterns), we observed a significant relation-
ship between the total amount of LUS-detected lung 
edema and patient’s outcome. Indeed, A/B1 patterns 
and B2/B3 were significantly associated with favorable 
and unfavorable outcomes, respectively. Interestingly, 

in addition to well-known 
unspecific LUS semiotics 
(24, 26), we also explored 
the clinical relevance of 
LUS patterns that have 
been described in the spe-
cific setting of COVID-19. 
In fact, we observed that 
lung consolidation (C pat-
tern) was significantly as-
sociated with patients’ 
unfavorable outcome, in 
particular, when lung con-
solidations were small, 
anterior, subpleural, and 
triangular (C1) compared 
with large, posterior, and 
ill-defined consolidations 
(C2). We think that the 
reported difference be-
tween C1 and C2 patterns 
in terms of outcome pre-
diction might be related 
to the difference between 
the underlying pathophys-
iological mechanisms. In 
fact, a recent study has sug-
gested that C1 pattern is 
more typical of COVID-19  
patients and might be an 
indicator for segmental 
pulmonary embolism (28). 
Finally, it is worth noting 
that the detection of thick-

ening of the pleural line with pleural line irregularity 
(TPL profile) was also associated with unfavorable pa-
tient outcome. We suggest that the impact of the detec-
tion of these diffuse irregularities of the pleural line in 
terms of patient’s outcome could be related to the fact that 
TPL pattern is an accurate bedside biomarker (14, 29)  
of interstitial pulmonary disease. 

Our results must be interpreted with caution, and a 
number of limitations should be borne in mind. The 
first is related to the limited sample size. Consequently, 
the reported evidence requires confirmation from large-
scale trials with strict recruitment criteria. Clinical and 
LUS data were split into two time series to enable to first 
establish the best classification model and then to test 

Figure 3. Extent of lung lesions. The number of quadrants depicting the same lung ultrasound 
patterns (A, B1, B2, B3, C1, C2, TPL, and pleural effusion [PE]) was summed and is represented 
according patient’s outcome (critical respiratory illness at 24 hr from hospital admission). p 
value < 0.05 was considered as statistically significant (*). For additional information, please see 
Supplemental Digital Content 1, http://links.lww.com/CCX/B14 and Supplemental Digital 
Content 6, http://links.lww.com/CCX/B17.

http://links.lww.com/CCX/B14
http://links.lww.com/CCX/B17
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model’s generalization. However, external validation 
has not been performed and may result in overfitting. 
In addition, we should keep in mind that the reported 
predictive model was developed for identification of 
patients’ deterioration within the first 24 hours after 
hospital admission, but its performance for prediction 
of critical respiratory illness at later time points has not 
been evaluated. Finally, to increase the generalizability 
and the clinical relevance of our findings, we decided 
to only use clinical criteria as standard predictive pro-
cedure during first-line medical triage for COVID-19 
patients. Further advances will come from studies that 
will specifically address the added value of LUS data 
for patients’ monitoring and outcome prediction, inde-
pendently or in combination with additional radiolog-
ical and laboratory findings. The main strengths of our 
study are a prospective design, the blinded assessment 
of LUS data based on predefined criteria, and the use 
of a standard clinical practice model based on current 
guidelines for COVID-19 patient’s clinical manage-
ment. As a variant to tree-based predictive algorithms, 
the reported machine learning model accurately deals 
with two critical methodological issues that are fre-
quently encountered in LUS studies: 1) LUS data mul-
ticollinearity (Supplemental Digital Content 2, http://
links.lww.com/CCX/B14), meaning that there is a 
linear correlation between the detection discrete LUS 
features (e.g., the thickening of the pleural line pat-
tern—TPL pattern—was mostly observed in patients 
with subpleural alveolar consolidation—C1 pattern, 
but was never identified in patients with predominant 
normal lung patterns—A pattern) and 2) missing data 
are accurately taken into account and elude further ex-
clusion of patients (Table 1).

During the current study, we specifically addressed 
the usefulness of LUS data, early collected at the time 
of hospital admission, to streamline further care of 
COVID-19 patients with ARF. Our results suggest 
that LUS holds the promise of significantly improving 
COVID-19 patients’ first-line medical triage, while re-
ducing the need for additional test as chest CT scan 
or laboratory findings. However, we acknowledge that 
the valuable information carried by LUS should always 
be integrated in a broader medical reasoning (37,38) 
and that triage tools alone, whatever their precision, 
without ethical support and accurate information 
about available resources, do not guarantee protective 
standards for all those involved in a pandemic.

CONCLUSIONS

The pandemic of COVID-19 has seriously challenged 
the medical organization in many parts of the world. 
LUS sonographic assessment of COVID-19 patients 
with ARF at hospital admission allows for a reliable 
patient’s bedside characterization of lung and pleura 
integrities, providing new predictors of subsequent 
need for ICU admission. This would give critical lead 
time to allocate resources most wisely both now and in 
future anticipated pandemics.
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