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Machine learning guided aptamer refinement and
discovery
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Aptamers are single-stranded nucleic acid ligands that bind to target molecules with high
affinity and specificity. They are typically discovered by searching large libraries for
sequences with desirable binding properties. These libraries, however, are practically con-
strained to a fraction of the theoretical sequence space. Machine learning provides an
opportunity to intelligently navigate this space to identify high-performing aptamers. Here,
we propose an approach that employs particle display (PD) to partition a library of aptamers
by affinity, and uses such data to train machine learning models to predict affinity in silico.
Our model predicted high-affinity DNA aptamers from experimental candidates at a rate 11-
fold higher than random perturbation and generated novel, high-affinity aptamers at a greater
rate than observed by PD alone. Our approach also facilitated the design of truncated
aptamers 70% shorter and with higher binding affinity (1.5 nM) than the best experimental
candidate. This work demonstrates how combining machine learning and physical approa-
ches can be used to expedite the discovery of better diagnostic and therapeutic agents.
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ARTICLE

ptamers are single-stranded nucleic acid ligands that can

be developed to bind a wide range of targets with high

affinity and specificity. Comprised of DNA, RNA, or
chemically-modified nucleic acids, aptamers offer a unique
combination of physicochemical properties that provide impor-
tant advantages over traditional protein-based scaffolds in certain
therapeutic and diagnostic applications. As a therapeutic mod-
ality, chemically modified DNA/RNA aptamers are widely
appreciated for their non-immunogenic composition and excel-
lent safety profile!~4. Their small size and high solubility permit
high molar doses and high tissue penetration for maximum
bioavailability>®. Their modularity enables easy creation of
multi-specific and chimeric agents’~%, conjugates for extending
pharmacokinetics!® or delivering payloads!!!2, and reverse
complement “antidotes”!®14, In diagnostics, aptamers offer high
stability, facile manufacture and can be engineered into molecular
switches to enable continuous monitoring!>16, For any applica-
tion, the quality of an aptamer is determined by its sequence
which must be derived from a discovery process.

High-quality aptamers are exceptionally rare occurrences in
the sequence space!”. Discovering them typically entails sampling
the space by creating a large random library of candidate nucleic
acid sequences!8-22 and enriching for the candidates with desired
characteristics. To yield the best possible aptamers one must
maximize the effectiveness of the discovery process and the
library itself. Most methods have focused on the former, seeking
to improve the traditional aptamer discovery process, SELEX,
which identifies aptamers through an iterative process of
selection?324, While a number of methods have been published to
improve aptamer affinity, specificity, and success rate?>-29 all
experimental approaches are constrained by the physical number
of aptamer candidates in the library and the physical approaches
to synthesize them. Practical limitations constrain the library size
to ~101% candidates, which covers only one billionth of the
sequence space available to a typical 40-base aptamer library, for
example30. The library is further limited by the means of sam-
pling the sequence space since fully-specified oligo libraries can
only reach a diversity of ~10° sequences®! and scalable random
strategies233 fail to precisely explore the sequence space. Over-
coming this limit via intelligent sampling strategies could yield
significantly better aptamers.

Although appreciably sampling the sequence space via physical
methods is not feasible, in silico approaches offer a compelling
opportunity to search the space more efficiently. Chushak and
Stone used secondary structure prediction and computational
docking to filter the starting sequence pool34. Knight et al. used
machine learning (ML) to model a sequence-fitness landscape by
training a random forest model on aptamers and their corre-
sponding affinities>, though this model was not used to generate
novel sequences. Modern neural network (NN) approaches have
had success generating sequences in other biological domains.
Predictive models trained on experimental results have been used
to successfully computationally evolve yeast 5’UTR sequences
with higher protein expression®®37 and antibody sequences with
greater specificity638. Predictive ML models offer the opportu-
nity to perform directed aptamer design: synthesizing and eval-
uating sequences in silico to dramatically reduce the number of
sequences required to be experimentally screened.

In this work, we develop and validate a ML-guided Particle
Display methodology (MLPD) to improve existing experimental
candidates, identify completely novel DNA aptamers, and trun-
cate aptamers to improve therapeutic utility. To demonstrate the
method, we selected the target protein neutrophil gelatinase-
associated lipocalin (NGAL). NGAL is an emerging diagnostic
and prognostic biomarker of acute kidney injury and biomarker
of urinary tract infection3®40. Using results from an initial PD

screen on NGAL, we trained machine learning models to predict
affinity. We used these machine learning models to predict
improvements to experimentally-derived aptamers and to predict
aptamers de novo, experimentally evaluating 187,499 aptamers.
In addition, we extended our approach to automatically identify
candidates for another important practical application: yielding
minimal-length aptamers that maintain binding affinity. Taken
together, MLPD is able to more efficiently explore the fitness
landscape for aptamer design.

Results

MLPD: machine learning guided particle display. MLPD
combines state-of-the-art experimental and computational
approaches to generate high-affinity aptamers. The process starts
with a traditionally synthesized library, which can be viewed as a
sample from the space of possible aptamers (Fig. 1a). To produce
training data for machine learning models, particle display (PD)
was used to measure the relative affinity of every aptamer can-
didate in the library based on the target concentration and the
measured fluorescence (Fig. 1b)2°. By varying the target con-
centration to control the stringency, PD was used to partition this
library into positive and negative aptamer pools at multiple
affinity thresholds, each of which was characterized via Next
Generation Sequencing (NGS) on the Illumina NextSeq (see
Sequencing and data processing in the Methods section for
details). These DNA sequences were passed as input to the ML
method. Fully connected and convolutional NN models took
these features and predicted affinity measurements (Fig. lc,
described in detail in the Methods subsection; ML models, fea-
tures, and output layers). We evaluated the models using a 20%
test subset of the original PD dataset. In order to assess whether
ML can generate useful aptamers, three high-performing models
were used to create sequences. Our approach followed a two-step
process. First, we identified seed sequences to serve as starting
points for ML-guided mutation. Next, we iteratively mutated
these seeds for five rounds, selecting mutated sequences in each
round that were preferred by the model (Fig. 1d). Aptamers were
generated from three sets of initial seeds: (1) high-performing
aptamer sequences from the initial PD, (2) random sequences
that were screened in silico, and (3) as a baseline, completely
random sequences. Seed sets were then iteratively mutated,
with each variant being scored with an ML model to enrich for
mutations preferred by the model, the output being an in silico
enriched pool containing novel candidate sequences (Fig. 1d).
Lastly, these candidates were synthesized and experimentally
measured via PD (Fig. le). In principle, this process can be
repeated (Fig. 1b-d) until sufficient high-quality candidates are
obtained.

Particle display partitions the library based on affinity
threshold. We aimed to create ML training data with minimal
false positives and multiple, sharply-defined affinity levels
(Fig. 2a; Methods). We synthesized aptamer particles from a
DNA library containing a 40-mer random region flanked by
primer sites and performed two rounds of PD with a total of three
affinity thresholds. To perform a round of PD, the pool of
aptamer particles was first incubated with fluorescently-labeled
target at a given concentration. Next, the pool was screened via
fluorescence-activated cell sorting (FACS) to partition the parti-
cles based on a gating fluorescence value as the threshold (see
Methods for details). The affinity thresholds were separated by
fourfold each by lowering the target concentration fourfold while
keeping the same sorting gate value at F,.«/3 (Supplementary
Table ST1). The approximate affinity thresholds for the increas-
ing stringencies (<128 nM, <512 nM, and <2 uM) were estimated
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Fig. 1 MLPD overview. a Aptamer candidates from a physical pool (white dots) sample a small portion of the fitness landscape (dark gray line), each with a
corresponding affinity level (light to dark green). b Particle display discerns the affinity level of each candidate by interrogating the library at multiple
stringency levels. ¢ Aptamer sequences and their corresponding affinity levels are used to train and validate a neural network ML model. d The ML model
extrapolates new sequences on the fitness landscape in two ways: (1) mutating existing candidates (white dots) in a model-guided fashion (orange dots),
and (2) nominating novel sequences in silico, predicting their position on the fitness landscape (white diamonds) and walking top-performing sequences to
higher affinity levels (orange diamonds). The extrapolated candidates are synthesized and experimentally tested. @ MLPD yields more candidates at each
affinity level compared to the initial library, and enables sequence truncation without reduction in affinity.

via Kp curves on a subset of the observed aptamers (Supple-
mentary Fig. S1, Supplementary Table ST1). In Round 1 the
relatively low-affinity thresholds (<512 nM, and <2 uM) created a
large pool of initial candidates. Under these conditions, we
observed that a fraction of the library was able to pass the Fy,,,/3
thresholds (Supplementary Fig. S2). At each concentration, we
collected the positive aptamer particles as well as ~10° negative
aptamer particles (F < Fy,,,/3), for use as negative examples in ML
training. Primer particles exhibiting no aptamer sequences were
excluded from this analysis.

To enrich our libraries with additional high-affinity binders, we
conducted a second round of PD using all three stringencies
(Fig. 2a). Two Round 1 positives pools were amplified, then
mixed at a 1:1 ratio to serve as template for Round 2 PD. We
observed a much higher proportion of positive aptamer particles
(1.0-6.5%; Supplementary Fig. S2B). As in Round 1, positive and
negative aptamers were collected at each concentration, amplified,
and indexed for NGS sequencing. We verified that the particles
made from individual pools were enriched at respective affinity
thresholds and more than 80% of aptamer particles sorted from
round 1 to round 2 had the desired affinity (Supplementary
Fig. S2C).

To verify the consistency of the PD, we evaluated the
concordance of observed positive sequences at each affinity level.
Each aptamer was labeled as successfully passing an affinity level
if it satisfied two criteria. First, the aptamer had to be reliably
detected in the positive pool, defined as having a sequencing
count of at least 20% of the expected bead coverage (correspond-
ing to 1373, 1469, 1311 sequencing counts for the 2 uM, 512 nM,
and 128 nM stringencies, respectively; Supplementary Table ST2).
Second, the aptamer had to be more prevalent in the positive pool
than the negative pool as calculated by the aptamer’s normalized
sequencing fraction within positive and negative pools. All

positive pool counts, on average, exceeded negative pool counts
by >29x for sequences passing a stringency threshold. For both
the original PD (Fig. 2b) and the MLPD (Fig. 2c) most sequences
observed at a given affinity were observed in all lower affinity
levels, indicating high-fidelity partitioning.

Trained ML models can predict high-affinity aptamers in a
held-out dataset. The NGS-sequenced positive and negative
pools served as training data for a neural network (NN) model.
For the input, our models used the concatenation of a simple one-
hot and kmer count-based representation of the input sequence
(see Methods subsection, ML Model Design). Multiple prediction
tasks were implemented as described in our Methods, each of
which fell into these two general classes: (1) predicting the
abundance (sequencing fraction) of the input sequence in the
selection pools (Counts model), and (2) treating each PD
experiment as quantized measurements indicating whether the
aptamer exceeded the affinity level set in FACS. We implemented
the second class in two ways. First, the Binned model has a
separate output for each stringency level, similar to the Counts
model, except instead of predicting sequencing fraction per pool,
the model predicts if a sequence will be present at each stringency
level. Second, the SuperBin model reduces these multiple output
predictions into a single number representing the maximum
stringency level where the sequence is predicted to be present. In
all three prediction tasks, the model is trained with least-squares
regression.

An important consideration for machine learning is to
maintain separation between data used to train the models and
data used to validate their performance. Since sequencing error
can create multiple data points from the same underlying
aptamer sequence, it was necessary to cluster sequences to ensure
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Fig. 2 Design of particle display training data and concordance across experimental affinity thresholds. a Two rounds (denoted R1 or R2, respectively)
of particle display (PD) experiments were run with increasing stringency (decreasing protein concentrations) such that the lowest stringency (light green)
should contain all aptamers observed at higher stringencies. At each stringency level, we obtained positive pools of aptamers each with affinities that pass
the affinity threshold (green shades) and negative pools that do not pass the affinity threshold. R1 positive pools were amplified then mixed as the template
for the R2 particle display experiment. All pools were NGS sequenced. b, € Venn diagram of unique aptamer clusters in (b) the original particle display
experiment and (c) the machine learning guided particle display (MLPD) positive pools. Green-colored sections indicate sequences observed at a particular
stringency and all lower stringencies. The dotted line and pie chart in (€) show the concordance (dark green) of the fourth and highest stringency run in the

MLPD experiment (< 8 nM).

these similar sequences did not appear in both training and
testing sets. To create a clean train/test split, the initial
500,454,107 reads that passed quality filtering were clustered
into 910,441 clusters using a conservative Levenshtein distance of
5 and clusters were never separated across train and test datasets.
Machine learning models were trained on 80% of the sequences,
and the other 20% were used to evaluate the trained models.
Multiple models were trained using Vizier*!, varying hyperpara-
meters, number of fully connected middle layers, and output layer
architectures. These were evaluated based on their performance in
predicting “positive binders,” defined as sequences in the top 1%
of the test set. All selected models had three convolutional layers
and between one to four fully connected layers (see Methods,
Supplementary Fig. S6).

To compare models trained on sequence abundance with those
trained on the binned values, we evaluated all the models on their
ability to predict the test dataset via two different metrics: the
normalized sum of counts from Round 2 < 128 nM and Round 2
<512nM, or the highest stringency-level for the subset of
aptamers with consistent labels shown in Fig. 2¢c. In both metrics,
the models were better at predicting the very top candidates (Top
1% and < 128 nM) compared to candidates with lower affinity
(top 5-10% and < 512 nM-2 uM), suggesting differentiating
properties unique to this subset. Despite the Counts model being
trained on richer input, it did not show improved performance

relative to the simplified Binned representation. In fact, it had
reduced performance on most metrics, reinforcing the intuition
that the true signal provided by PD is simply the observation of a
sequence passing an experimental affinity threshold.

Trained ML models can predict novel aptamers with high
affinity. Next, we evaluated the predictive power of our models by
generating model-guided sequences and validating them experi-
mentally. Exhaustively simulating the entire fitness landscape is
computationally infeasible; instead, we developed a model-guided
mutation strategy to “walk” from seed sequences to mutant
sequences with higher predicted affinity. Seeds defined a starting
position in the fitness landscape. In each model-guided step, seed
aptamers were randomly mutated (with 0-2 single nucleotide (nt)
substitutions) and scored. The top mutated aptamers were set as
new seeds and the process was repeated for five rounds. Aptamers
from each round of mutation were selected, synthesized, and
tested via PD. In the MLPD design, four stringency levels were
run, again increasing by fourfold per level. The estimated affinity
thresholds for these stringencies were 512 nM, 128 nM, 32 nM,
and 8 nM (Supplementary Table ST3 and Supplementary Fig. S1).

We selected seed sequences in three ways to characterize
different aspects of the model. First, a purely random baseline
(177 “random seeds”) was used to evaluate if the models had
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Fig. 3 Experimental validation of machine learning predictions. a Observed affinity for experimental seeds used in machine learning guided particle
display (MLPD). Greens correspond to sequences at particular affinity thresholds (with darker greens indicating higher affinity); white corresponds to
sequences below the lowest screened affinity, and gray corresponds to sequences with ambiguous affinity. b Candidates generated by three machine
learning (ML) model walks (SuperBin (blue), Binned (orange), Counts (purple)) and Random walks (Red) as a fraction of the input pool size. The MLPD
panels show ML-directed walks starting from (top) the original particle display experimental (expt.) seeds, (middle) randomly screened and model ranked
ML seeds, (bottom) completely random seeds. Independent of the seed category, the ML-directed walks substantially outperform random walks and the

original particle display.

learned general sequence properties that could be applied to
arbitrary sequences. Second, a mixture of high performers within
the original PD experimental pool (400 “experimental seeds”) was
used to evaluate the model’s ability to enrich for alternative
candidates near experimental starting points. Third, top perfor-
mers through computational model screening of random
sequences (14,977 “ML seeds”) were used to evaluate whether
the models could generate diverse, high-quality candidates de
novo. For ML seeds, each model ranked 1 billion random
sequences, selecting the top ~5000 (0.0005%). All three seed sets
were walked using the Counts, Binned, and SuperBin models as
well as a Random walk baseline, yielding a total of 82,931
aptamers (Supplementary Table ST4).

In each seed set, the ML models substantially outperformed
random walks (Fig. 3). The experimental seeds, selected from the
top aptamers after two rounds of Particle Display, performed well
on their own, thus most mutations on these sequences were
deleterious, especially for seeds with initial Kp <128 nM (Sup-
plementary Tables ST5 and ST6). Despite this challenge, the ML-
directed walks from experimental seeds improved 11.3-fold (8
nM) and 4.6-fold (32nM) over random walks. Notably, the
model performance appeared to be independent of the distance to
training set sequences. Model AUCs on randomly walked
sequences from experimental seeds in the training set did not
decline as the distance increased (Supplementary Table ST7).

Although the ML directed walks from the ML seeds did not
yield as many high-affinity sequences as walking from experi-
mental seeds, they markedly outperformed random seeds, and
were able to generate candidates with PD affinity levels beyond
the training data at the most stringent level tested in MLPD (8
nM). Walked aptamers from ML seeds were quite distinct; all
walked sequences were a Levenshtein distance of 10 or more from
any experimental seeds, indicating that the ML models have
generated de novo sequences, not just improved existing
candidates. Across all ML models, we saw a 460-fold increase
in the fraction of <128 nM aptamers compared to PD (Fig. 3a),
which increased to 1214-fold when using the MLPD recalibrated
affinity for top PD candidates (Supplementary Fig. S3). Interest-
ingly, while the SuperBin model did not have the best AUC
performance on the test set (Table 1) it produced the highest
fraction of sequences at all affinity levels <128 nM across seed
sets.

To validate these observations, full Kp curves were generated
for a subset of aptamers, including a portion observed in PD and

a portion predicted by ML (Supplementary Table ST2). In
addition to verifying the fourfold increase between stringency
levels for both PD and MLPD, the Ky curves confirmed the
improvements gained via the ML-based walks: in one example
improving a seed with an affinity of 275 nM to 8 nM. The highest
performing experimental seed was outperformed by several ML-
predicted aptamers. Surprisingly, the best performing aptamer
candidate was not derived from an experimental seed, but rather
from an ML-guided walk of a randomly screened ML seed. This
demonstrates that MLPD can yield better aptamers than the
examples it was trained with.

ML Models can identify motifs and subsequences enriched for
binding affinity. Sequence motifs are known to be important in
aptamer affinity*2. We first sought to identify the most frequent
motif observed in aptamers selected by the ML models. To
eliminate potential biases introduced by non-random seed
sequences, we first examined differential enrichment between
walked sequences and seed sequences in the “random seed” set.
Using MEME#3, we obtained a 7 nt motif (consensus motif =
TGGATAG, e value = 3.2x10718) shown in Supplementary
Fig. S4A. Next, we examined the original particle display test
sequences that were not used to train the model. Experimental
test sequences observed in a positive pool were compared to the
full set of experimental test sequences. This yielded a highly
similar 7 nt motif (e value = 3.3x1086) that shared the same
consensus sequence, TGGATAG (Supplementary Fig. S4B).
Interestingly, while the motif was not explicitly discussed, a
recent, independent study of high-affinity aptamers for NGAL
included three distinct aptamer candidates also containing
TGGATAG*.

A common next step in aptamer generation is minimizing
sequence length. Structural studies of aptamers have shown that a
full length (~80 nt) aptamer is usually unnecessary to retain
strong binding affinity. Minimization, or truncation, can reduce
synthesis cost, complexity, and potential for non-specific inter-
action all while increasing the maximum attainable concentra-
tions (surface or volumetric)*>. Traditionally this is achieved via
brute force experimental approaches?® or by researchers’
biological insight coupled with manual curation to investigate
enriched motifs*” and secondary structures#8:49.

Given that the models appeared capable of learning features
important for affinity, we established a simple data-driven
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Table 1 Test set AUC using two different criteria.

ML model name Output targets

Normalized Rd 2 Count Sum AUCs

Affinity threshold AUCs

Top 10%: Top 5%: Top 1%: 2uM: 512 nM: 128 nM:

563 seqgs 281 seqs 56 seqgs 409 seqs 215 segs 84 seqs
Counts Counts + PF 0.62 0.73 0.84 0.76 0.85 0.86
Binned Stringency Labels 0.62 0.78 0.89 0.82 0.91 0.95
SuperBin Stringency summary value  0.63 0.76 0.83 0.79 0.87 0.87

Affinity threshold AUCs utilize the three stringency thresholds while Count Sum AUCs calculate the top fraction of sequences observed in Round 2 at the two highest stringencies. All models show
improved prediction performance at increasing stringency levels with the binned model performing best at nearly all stringency criteria and levels.
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Fig. 4 Performance of machine learning directed aptamer length truncation. a, b Box-plots and swarmplots showing model scores for candidate aptamers
calculated across multiple sequence backgrounds. Each swarm/box plot corresponds to one core sequence: each point represents the core sequence in a
different sequence background, each box represents the median, lower, and upper quartiles, and whiskers correspond to 1.5x the interquartile range.
Sequence lengths with multiple swarm/box plots indicate cases where multiple different subsequences of the same length were tested experimentally.
Particle display affinity level for a truncated sequence is shown by shade of green in the corresponding swarm. ¢, d Ky curves showing the affinity of the
full-length sequences (orange, purple) and 23 nt truncations (blue, teal) for G12 and G13, respectively. e, f Secondary structures of the full-length sequence
and 23 nucleotide (nt) truncations for G12 and G13, respectively. Each nt is indicated by a small circle (A (maroon), C (blue), G (brown), T (green)).
Covalent bonds in the phosphodiester backbone are shown in black and hydrogen bonds between bases are shown in magenta). The TGGATAG motif is

outlined in blue.

approach to identify high-affinity core sequences within candi-
date aptamers. To test smaller sequences using models trained on
fixed-length sequences, each substring of length n was placed at
all possible positions within the aptamer. Next, the surrounding
sequence was filled in with different background sequence
(homopolymers of either A, C, G, or T) and scored to get a
distribution of affinities for the core subsequence. We performed
the experiment from 2 of the <8 nM aptamers, PD derived G12
and ML derived G13. All substrings of 15, 19, 23, 27, 31, 35, and
39 nt were evaluated by the SuperBin model and a subset of these
core sequences were experimentally validated. Experimental
details for this truncation study are described in the Methods
section.

The distribution of model scores was quite wide (Fig. 4,
Supplementary Table ST8). While the median model score of core
sequences did not always lead to the best candidates, core
sequences that consistently produced high model predicted scores

irrespective of their position within the background sequences
more frequently maintained the performance of the full-length
sequence. This allowed us to identify aptamers as short as 23 nt
that met our most stringent affinity condition (Fig. 4b). We
experimentally verified these high affinities by measuring the Kp,
for each full-length sequence along with its top 23 nt candidate
(Fig. 4¢, d). The G12 truncation yielded a 23 nt candidate with Kp,
close to that of the full-length sequence (11 nM vs 8 nM). In the
case of G13, the 1.5 nM truncated aptamer surprisingly yielded a
5.2-fold improvement over the full-length sequence.

In both cases, the high-performing 23-mer cores (ACGTT
TTTGGTGGATAGCAAATG and GAGGATTTGGTGGATA
GTAAATC) were contained in all larger truncations that reached
the same Kp, threshold suggesting these to be the key binding
subsequences from the full-length sequence. Secondary structure
prediction revealed that the 23 nt truncated aptamer of G12 and
G13 shared a hairpin structure with the TGGATAG motif located
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on the loop region (Fig. 4e, f). The same structure was observed in
the full-length sequence for G12 and G13, suggesting the likely
importance of this structure. The high affinities observed were
particularly notable given the degree of truncation and perfor-
mance relative to the original PD data. Given the original
aptamers used for training were 80 nt, the 23 nt aptamers
represent elimination of >70% of the original sequence length.
Furthermore, the full-length G13 sequence was obtained via an
ML-directed walk from an ML-inference seed. Therefore, the G13
truncation exhibited 5.3-fold higher affinity than the best-
observed candidate from the original PD, despite having never
started from any experimentally derived candidate.

Discussion

ML-guided PD has immediate benefits for researchers seeking to
increase the diversity of candidates into therapeutic pipelines or
locally optimize existing candidates, and is broadly applicable for
general aptamer development. As a 25kDa soluble protein, the
composition of NGAL is not atypical of protein targets. The
straightforward domain-agnostic features in the models highlight
the strength of a data-driven approach and increases the like-
lihood that such a model would translate to other targets.

Surprisingly, training on a large volume of relatively low
stringency data (<128 nM) enabled extrapolation to candidates
with orders of magnitude higher affinity. Ultimately, the value of
a machine learning model is in the predictions it makes which, in
this work, corresponds to the creation of high-affinity, experi-
mentally validated aptamers. Notably, a limitation of our
approach was the use of a single test set (holding out 20% of the
data) for hyperparameter tuning. Given the limited positive
examples, cross-validation could improve robustness of the tuned
models. Despite having a relatively low AUC, the models sub-
stantially enriched for new aptamers with high-affinity. In par-
ticular, models trained on particle display bins (with
comparatively limited positive training examples) seemed to
outperform the more fine-grained signal employed in the Counts
model. This increases the potential applications of these
approaches since obtaining many high-affinity aptamer candi-
dates experimentally is often a major challenge. While promising,
there are some natural extensions to the protocol which would
increase its utility.

Increasing the number and diversity of positive training
examples would yield the most straightforward gains in MLPD.
Experimentally, this could be achieved through either larger input
libraries or SELEX pre-enrichment?. In addition, one could
extract more potential binders for model training from each
sequencing round by using approaches that incorporate structure
to identify low-abundant aptamers with binding affinity>.
Similarly, one could screen more random sequences in silico.
While computationally screening the entire sequence landscape is
infeasible, our naive in silico mutagenesis strategy demonstrated
that model-guided evolution of candidates can discover desirable
aptamers at higher rates than would be expected given the
number of model-evaluated sequences. While a more aggressive
mutation strategy to optimize model scores may be possible, such
approaches may lead to pathological behavior in NN models!.
The chosen strategy attempted to mitigate this to identify
diverse, high-scoring candidates. More sophisticated exploration-
exploitation algorithms could dramatically reduce experimental
iterations while increasing concordance between the model and
ground truth; for example, an active learning approach, where the
model is retrained after each round of experimentation.

In addition to efficiency gains, MLPD can move beyond what is
possible experimentally to explore multiple parameters critical for
therapeutic aptamers. The ability of ML models to simultaneously

predict multiple properties could be used in a variety of ways. For
example, to discover aptamers on the basis of both affinity and
specificity?, one can perform screens on a desired target and non-
targets such as undesired homologues or protein mixtures, as we
demonstrated in our previous work, Multi-Parameter Particle
Display?8. By preferentially walking up the affinity landscape for
the target and down the affinity landscape for the non-target, one
could increase affinity and specificity simultaneously. By walking
up both affinity landscapes, one could increase cross-reactivity.
Analogously, other screens could be designed to partition apta-
mers based on additional measurable parameters such as dis-
sociation kinetics or nuclease stability. Due to the combinatorial
explosion of conditions, simultaneous optimization of such multi-
parameter fitness landscapes is nearly impossible experimentally;
even if such screening was feasible, the likelihood of observing an
aptamer at the intersection of a desired property set may be quite
low. However, by transforming experimental results into N-
dimensional property vectors, candidates across all parameters
can be optimized in silico.

This work comprises a fundamentally different means to
generate high-quality DNA aptamers providing a potential ave-
nue to optimize multiple properties that are desirable for clinical
applications. As a complementary approach to purely experi-
mental aptamer selection, our work can be scaled and combined
with the wide range of existing aptamer research as well as
other directed evolution research currently underway, opening up
an exciting area of development. More broadly, we show that the
combination of traditional bioanalytic methods with machine
learning enables outcomes that were otherwise not possible via
experimental means alone, not only accelerating life sciences
research but also enabling new research questions to be asked.

Methods

DNA aptamer particle synthesis. The single-stranded DNA library and primers
used for the research are synthesized by IDT (Supplemental table ST10). A step-by-
step protocol describing the DNA aptamer particle synthesis and particle display
screening can be found at Protocol Exchange;2%°2 it is summarized briefly as
follows. The first step is to create FP-coated particles. To do so, 5’-amino-modified
FP (5’-amino-PEG18-AGCAGCACAGAGGTCAGATG-3/, 0.2 M) was covalently
conjugated onto 1-um MyOne carboxylic acid magnetic particles (Thermo Fisher)
in the presence of EDC (250 mM), imidazole chloride (1 mM) and NaCl (200 mM).
The mixture was incubated overnight at room temperature. The aptamer particles
were then passivated by conjugation with amino-PEG12 (Pierce Biotechnology, 2
mM) by incubating with EDC (250 mM) and sulfo-NHS (100 mM) in PBS buffer
for 16 h at room temperature. After passivation, the particles were washed twice for
30 min with 1 ml of TT buffer (250 mM Tris, 0.1% Tween 20, pH 8.0), and then
resuspended in TET buffer (10 mM Tris, pH 8.0, 0.1 mM EDTA, 0.1% Tween 20)
at a concentration of 107/pl and stored at 4 °C.

Next, monoclonal aptamer particles were generated through emulsion PCR.
The oil phase was composed of Span 80, Tween 80, and Triton X-100 (Sigma-
Aldrich, 4.5%, 0.40%, and 0.05%, respectively) in mineral oil. The aqueous phase
consisted of Taq PCR Master Mix (Promega, 1x), MgCl,, reverse primer (RP, 3
uM), GoTaq Hot Start Polymerase (Promega, 0.5 U/pl), template DNA (2 pM)FP-
coated particles (3x108) in a total volume of 1 ml. Water-in-oil emulsions were
prepared by adding 1 ml of the aqueous phase to 7 ml of oil phase in a DT-20 tube
(IKA) locked into the Ultra-Turrax Device (IKA). This addition was performed
drop-wise over 30 s while the mixture was being stirred at 650 RPM in the Ultra-
Turrax. Then 100 pl aliquots of the emulsion were pipetted into ~80 wells of a 96-
well PCR plate. We performed PCR under the following cycling conditions: 95 °C
for 3 min, followed by 50 cycles of 95 °C for 15, 60 °C for 30 s and 72 °C for 75s.

After PCR, the emulsion was broken by mixing 50 pl of 2-butanol with 100 ul of
the PCR reagent mixture in each well. The broken emulsions were combined into a
50 ml tube, vortexed, and centrifuged at 2500 x g for 5 min. After carefully
removing the oil phase, the particle pellet was resuspended with 1 ml of single-
strand generation (SSG) buffer (100 mM NaOH, 100 mM NaCl, 1% Triton X-100,
10 mM Tris-HCL, pH 7.5, and 1 mM EDTA), transferred to a new 1.5 ml tube and
incubated at 50 °C for 2 min. The particles were then pelleted via a magnetic
separator and the supernatant was removed. The particles were washed two more
times with SSG buffer using magnetic separation, then resuspended in 300 pl TE.

To characterize the monoclonality and the density of the aptamer particles,
AlexaFluor 488-labeled RP was annealed with 10° aptamer particles in TE buffer at
55 °C for 10 min and snap-cooled on ice for 2 min. The particles were then washed
twice with 100 pl TE buffer and analyzed by flow cytometry.

| (2021)12:2366 | https://doi.org/10.1038/s41467-021-22555-9 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

PD screening. When incubated with the target protein, a fraction of the aptamers
on each particle bind the target. The binding fraction (Fr) is dictated by the
aptamer Kp, and the concentration of the target ([T]), with Fr = [T]/([T] 4+ Kp). Fr
can be directly quantitated by fluorescence-activated cell sorting (FACS) by the
intensity (F) at a given target concentration with Fr = F/ F,,,. Thus, to isolate
aptamers with a desired Kp threshold, we incubated with a target concentration of
Kp/2 and set the FACS collection gate to > Fy,,,/3 (Fig. 2a). In this way, we
collected pools with sharply defined affinity thresholds and minimal false positives
and negatives®. It is important to note that the absolute K, value of the threshold
is contingent upon consistent F.,, floruencencent channel gains and target con-
centration, which can vary from experiment to experiment. Since it is essential to
compare the absolute K, threshold between experimental sets (PD and MLPD),
after the pools were collected and sequenced, we calibrated the Kp, thresholds by
retrospectively analyzing a subset of aptamers within each bin (detailed below in
the aptamer characterization section).

During each round of screening, we incubated ~108 aptamer particles with
NGAL (R&D systems, C-terminal His-tag) at different concentrations (64, and 256
nM for Rounds 1; 16, 64 and 256 nM for rounds 2; 4, 16, 64, and 256 nM for the
ML generated library) in 1 ml of PBSMCT buffer (DPBS with 2.5 mM MgCl,, 0.9
mM CaCl,, 0.01% Tween 20)°2. His-Tag peptide (GenScript, 10 uM) was included
to avoid generating aptamer against the His-Tag attached to NGAL. After
incubating for 1h at room temperature, the unbound NGAL was washed away
with PBSMCT via magnetic separation. To fluorescently label the bound NGAL,
iFluor 647 His-Tag antibody (Genscript, 6 nM) was added to the mixture and
incubated for 30 min. The particles were magnetically washed with PBSMCT to
remove the excess antibody and resuspended in PBSMCT bulffer.

The samples were then analyzed via FACS (SONY SH800) with the sorting
threshold set to 1/3 of the maximum fluorescent intensity (F.x), which was
determined by incubating a positive control aptamer?’ at a saturating
concentration of NGAL (1 uM) and fluorescently labeling as described above.
Particles with intensity greater than F,,,,/3 were collected as a positive population
and particles with intensity lower than Fy,,,/3 were collected as a negative
population. The isolated aptamers were amplified by GoTaq DNA polymerase to
generate an enriched pool for a subsequent round of aptamer particle synthesis or
to append sequencing adapters to perform next-generation sequencing (NGS) as
described below.

Sequencing and data processing

Sequencing of PD screening pools. To perform NGS, adapter sequences were first
appended to the sequences contained in each pool. Overhang adapter sequences for
the forward and reverse primers were synthesized at IDT. The Illumina P5 adapter
was added to the 5’ end of FP (P5FP) and a hexamer index and P7 adapter was added
to the 5 end of the RP (P7RP). Both positive and negative populations from each
NGAL concentration were indexed by performing PCR with respective mixtures of
P5FP (1 uM), P7RP (1 uM), dsDNA template (0.1 nM) and 1x KOD Hot Start master
mix. PCR products of the correct size were purified via agarose gel extraction using
QIAquick Gel Extraction Kit. Each sample was quantified via Bioanalyzer and mixed
at equimolar ratio for sequencing on the NextSeq platform. The number of reads for
each sequencing pool can be found in Supplementary Table ST9.

Data preprocessing. To prepare the sequencing data for model training, the DNA
sequences in the raw fastq files were filtered to remove low-quality reads and
clustered to group similar sequences. Conceptually, for the clustering, we created a
graph where sequences (nodes) were linked if they were within a Levenshtein
distance of five. Cluster ids were assigned to each connected component in the
graph. An efficient implementation of this approach is described below. In practice
it enabled the clustering of up to 1 billion reads. Once clusters were identified, we
trained the models in one of three ways: (1) with all the sequences, but keeping all
sequences in a cluster within one partition; (2) only the “cluster representative”
(sequence within the cluster with the highest count) kept; or (3) only the “cluster
representative,” but the value for this representative was the sum of all the sequence
counts in the cluster. In practice, these models performed similarly, though the
models trained faster when only using cluster representatives. We, thus, used
cluster representatives for selecting sequences in MLPD. Lastly, before use in any
ML models, sequencing counts were normalized to the total number of sequences
from the experiment. The sequences were divided into five equal folds and the first
fold (20% of the data) was selected to be the test set, and the models were trained
on the remaining 80% of the data.

Clustering approach. The conceptual graph algorithm for identifying clusters is the
following:

1. Add all unique sequences as nodes to a graph.
2. For each pair of nodes, calculate Levenshtein distance and add an edge to
the graph if the distance is <= 5.
3. Assign a unique cluster ID to each connected component of the
resultant graph.
However, because the input data may be quite diverse (>1 billion sequences),
the naive algorithm presented above is intractable. We implement an
approximation of the above algorithm in the following way:

First, we split the input data into two distinct subsets. One subset was used for
an all-pairs comparison to define initial clusters, and the other was projected into
the clusters defined by the all-pairs subset. To maximize the accuracy of all-pairs
cluster detection, its input sequences were multi-read sequences; i.e. those for
which the sum of all read counts in all conditions is greater than one. If this subset
of sequences is sufficiently small, the subset is then padded with singleton
sequences until either the entire dataset is exhausted or its size is as large as is
computationally tractable. In practice, we set the size of the all-pairs subset to
300,000,000.

Second, we converted the two subsets of sequences to vectors representing the
counts of all 6-mers in each sequence. These feature vectors were used to identify
candidate neighbors, both for the all-pairs subset (comparing it to itself) and the
projection subset (projecting each of those against the all-pairs data) using an
inverted index algorithm and cosine distance®>>*. Finally, we filtered the candidate
neighbors to the set of true neighbors by performing explicit calculation of
Levenshtein distance. We used the true neighbors in the all-pairs subset to generate
a set of candidate clusters, and then added the projected sequences into those
clusters.

ML models, features, and output layers. We constructed two representations of
the aptamer sequence: a one-hot encoding and kmer-counts encoding. In the one-
hot encoding, each nucleotide choice is represented as a binary value among the 4
possible bases; at a given position in the sequence, the observed aptamer nucleotide
is set to 1 and all other nucleotides are set to 0. The resulting vector contains 160
binary values. To provide direct, local contextual information, we also encode
counts for all k-mers up to length 4. The 340 additional values lead to a combined
input vector length of length 500.

A challenge in the model design was determining the best representation for the
output layers. The goal of the network was to predict the affinity of an aptamer
sequence to a target, but the training data was sequence counts from particle
display or these same counts binned into binary values, which we assumed to be
correlated with, but not an exact measure of, affinity. We implemented two
approaches. The fully connected approach directly connected the training count or
bin value to the hidden NN layers. The latent affinity approach, used only for the
Count model, added an affinity prediction layer between the fully connected NN
layers and the sequence count output, with each target affinity value connected to
all the sequence count outputs for that target. The motivation was that the hidden
layers would learn to predict an affinity for each target, and this affinity value,
multiplied by a single trained float parameter per output, would predict all the
sequence counts. The hope was that squeezing the predictions through this latent
affinity representation would create a model better able to predict affinity across
multiple conditions, though in practice the fully connected and latent affinity
approaches showed similar performance. Details of the selected models are
described below and diagrammed in Supplementary Fig. S6.

Counts ML model. The ML models predicted affinity by predicting the results of the
PD experiments, processed in one of three ways. The first model trained was the
Counts model, which directly predicts the normalized sequence count in each
positive and negative pool. For fully connected models, we then calculated affinity
to a target as the sum of one or more sequence count outputs, here, the sum of the
round 264 nM and 128 nM positive pools. For the latent affinity models, the affi-
nity values are in the latent affinity prediction layer. While multiple NN archi-
tectures were tested, in combinations of 0-3 convolutional layers followed by 0-3
fully connected layers, a naive fully-connected neural network with or without
convolutions performed well in practice. We used Vizier*! testing 100 potential
models via a random search, to identify optimal hyper-parameters. Specifically, we
explored the following hyper-parameters: number of hidden layers, number of
convolutional layers, choice of activation function nonlinearity, learning rate,
momentum, drop-out probability, balancing positives, and size of the hidden
layers. The models were ranked by the AUC over the top one percent of non-zero
output values in the test set. The selected Count model uses the latent affinity
output architecture, squared error loss, mini-batch size of 64, a learning rate of
0.00138, and momentum of 0.903 (Supplementary Fig. S6). We upsampled positive
sequences (those with a summed count of at least 1000 across all rounds) so they
made at least 10% of each training batch. In addition to the basic sum of counts, the
Counts model variant also encouraged the model to simultaneously learn inherent
properties of aptamers that were independent of the target and could be deter-
mined directly from the sequence. Secondary structure was a logical choice, as its
impact on aptamer affinity is well-established%. The intuition was that by simul-
taneously learning structure the model could encode biological properties that
would inform its protein target predictions. Rather than a complex secondary
structure representation, we used the partition function, a single floating point
value that aggregates the energy associated with all possible structures weighted by
their Boltzman probability®>.

Binned ML model. The Binned model variant simplified the data representation
from the underlying particle display experiment. By design, the PD experiment
should yield two pools of sequences (positive and negative) at each target con-
centration. This implies that each sequence could be represented with an array, b,
of binary labels, where the value at each position, b;, in the array indicates if the
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sequence was in the “positive” pool at concentration c;. In practice, a small number
of sequences were not clearly distinguishable as positive or negative, to account for
this we created a ternary label. The Binned model simply replaced the sequencing
counts with the sequence’s label in each of these stringency bins. Additionally, both
the Binned and SuperBin models used the AdamOptimizer with a learning rate
0.001. The selected Binned model uses the fully connected output architecture,
squared error loss, a learning rate of 0.00388, and momentum of 0.737 (Supple-
mentary Fig. S6).

SuperBin ML model. The SuperBin representation attempted to summarize all PD
experiments with a single number. Naively, we can consider a sequence present
in the positive pool at all tested affinities to have strictly higher affinity than one
present in only medium and low stringency, positive pools (which is similarly
higher than one present in zero or only the low stringency positive pool). In
practice, we observed that there are very few positive sequences, substantial
ambiguous information (from low sequencing counts), and conflicting labels
(e.g. sequences that appear in a positive bin at affinity a;, that were in a nega-
tive bin for some b; where i <j). We therefore created a final target repre-
sentation, in which we proposed seven levels of affinity which tries to take into
account this ranking as well as potential “borderline” assignments. Sequences
containing conflicting or ambiguous information were simply eliminated.

The selected SuperBin model uses the fully connected output architecture,
squared error loss, a learning rate of 0.00203, and momentum of 0.498 (Sup-
plementary Fig. S6).

ML derived aptamer sequences. Input seeds were derived both from existing
particle display aptamers (experimental seeds) as well as random sequences pre-
dicted to be high-affinity by an ML model (termed “ML seeds” to differentiate them
from truly random seeds used without an ml pre-screening step). For the ML seed
sequences, up to 1 billion random aptamers were generated and scored via the
model. The top 5000 (0.0005%) sequences from each model were selected and used
as input for walking.

We applied a straight-forward iterative mutation strategy to locally improve
each seed sequence. In short, we first created a “parent set” that contained only the
initial seed sequence. We then performed model inference on 10,000 random
mutations, each up to 4 substitutions away from sequence(s) in the parent set. The
top five sequences were selected for experimental validation and the top 200
mutants become the parent set for the next round of walking. This process was
repeated for five rounds.

The distribution of mutational distances between the generated sequences and
the input seeds was similar across the different models (Supplementary Fig. S5).
The generated aptamers, as well as their seeds, were synthesized and screened on
particle display at four different NGAL concentrations (the number of synthesized
sequences for each category is shown in Supplementary Table ST3). Positive and
negative pools were collected, sequenced, and validated as described above (Fig. 2C,
Supplementary Table ST1). Figure 3 shows the model-guided exploration
performance.

Computationally predicting core sequences. For each full-length sequence, we
examined all subsequences of at least 15 nt to estimate their putative efficacy as a
reduced length aptamer. Within the constrained 40 nt interval evaluated by the
SuperBin model, we placed each subsequence at every available start index. At this
index, we flanked the subsequence by prefix and suffix sequences consisting
entirely of “A”, “C,” “G,” and “T”; in total, this process generated 4 * (40—I+1)
aptamer variants, where  corresponds to the length of the subsequence. All variants
were scored by the model, yielding a distribution for each subsequence (Fig. 4).
Candidate sequences for validation were identified for testing by calculating the
median and variance for subsequences of each length (15, 19, 23, 27, 31, 35, and 39
nucleotides), and selecting candidates that maximized the median model score or
minimized variance. We also selected sequences with high low model score and
high variance to verify the effect of these parameters.

Characterization of individual full-length and truncated core aptamers. In
order to experimentally evaluate the binding performance of individual aptamer
sequences, we synthesized candidates to determine their affinity via a bead-based
fluorescence binding assay?’.

Preparation of aptamer particles for affinity measurement. For affinity measurement
of all full-length aptamer sequences, each individual sequence was synthesized and
purified by Integrated DNA Technologies (IDT) without modification. To prepare
aptamer particles for the fluorescence binding assay, aptamers were coated on to
forward primer-conjugated particles via PCR and converted to single-stranded
aptamer as previously described??.

For affinity measurement of aptamer core sequences which do not have primer
regions, all individual sequences were synthesized by Integrated DNA Technologies
(IDT) with a biotin conjugated to the 5’ end. To prepare aptamer particles for the
fluorescence binding assay, 1 pM of each biotinylated aptamer was first incubated
with 107 MyOne Streptavidin C1 (Thermofisher) particles in 100 ul PBSMCT
buffer (DPBS with 2.5 mM MgCl,, 0.9 mM CaCl,, 0.01% Tween 20) for 30 min at

room temperature. The aptamer particles were then washed in PBSMCT via a
magnetic separator to remove any unbound aptamer and then resuspended in 100
ul PBSMCT.

Full Kp measurement from aptamer particles. To determine the accurate Kp, dif-
ferent concentrations of NGAL protein (1-1024 nM at twofold increment or 1 nM
to 1 uM at 3.16-fold increment or 10 nM to 10 uM at 3.16-fold increment) were

first incubated with a fixed amount of the aptamer-coated particles (10# particles/1)
in 100 pl PBSMCT for 1h at room temperature. The unbound NGAL was mag-

netically washed away with PBSMCT. To fluorescently label the bound NGAL, 6
nM iFluor 647 His-Tag antibody (Genscript) was introduced to the mixture and

incubated for 30 min. The particles were magnetically washed with PBSMCT and
the median fluorescence intensities were quantified via FACS (BD Accuri C6) at

each concentration of NGAL. Kp, was derived using GraphPad Prism by applying
the single-site binding model.

Approximate Kp measurement. To determine approximate affinity, four con-
centrations of NGAL protein (4, 16, 64, and 256 nM) were tested using the same
approach as described above. The median fluorescence intensities of the bound
complex were quantified via FACS (BD Accuri C6) at each concentration of NGAL
and compared to the maximum fluorescence intensity (F,,,y). To assign the esti-
mated Kp, value to a given aptamer sequence, the following metric was applied. For
each concentration tested, the estimated Ky, was assigned if the median intensity
was < Foa/5 (Kp >4[T]), > Fra/5 but < Fo/3 (2[T] < Kp <4[T]), or > Fi./3
(Kp < 2[T]).

Secondary structure analysis. DNA structures analysis was performed using the
ViennaRNA package (v2.4.13)%. Free energies for individual sequences were cal-
culated at 37 °C using DNA parameters (Matthews model, 2004). The structure
with the lowest free energy for the full-length and 23 nt truncation of G12, G13
were plotted in Fig. 4. To assess if the TGGATAG was observed in a loop, we
visually inspected the top 10 lowest free energy predictions. Supplementary Table
ST3 identifies aptamers in which any of these predictions showed the motif
completely contained within a hairpin.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Analyzed datasets generated during the current study are available in the Supplementary
Information and via the github repository at https://github.com/google-research/google-
research/tree/master/aptamers_mlpd. Raw sequencing reads are available in the NCBI
SRA repository, PRINA672779. Source data are provided with this paper.

Code availability
Code for analysis of the provided datasets is provided as runnable IPython notebooks at
https://github.com/google-research/google-research/tree/master/aptamers_mlpd.
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