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A B S T R A C T

Insufficient response to treatment is the main cause of prolonged suffering from major depressive disorder (MDD).
Early identification of insufficient response could result in faster and more targeted treatment strategies to reduce
suffering. We therefore explored whether baseline alterations within and between resting state functional con-
nectivity networks could serve as markers of insufficient response to antidepressant treatment in two years of
follow-up. We selected MDD patients (N=17) from the NEtherlands Study of Depression and Anxiety (NESDA),
who received ≥ two antidepressants, indicative for insufficient response, during the two year follow-up, a group of
MDD patients who received only one antidepressant (N=32) and a healthy control group (N=19) matched on
clinical characteristics and demographics. An independent component analysis (ICA) of baseline resting-state scans
was conducted after which functional connectivity within the components was compared between groups. We
observed lower connectivity of the right insula within the salience network in the group with ≥ two anti-
depressants compared to the group with one antidepressant. No difference in connectivity was found between the
patient groups and healthy control group. Given the suggested role of the right insula in switching between task-
positive mode (activation during attention-demanding tasks) and task-negative mode (activation during the ab-
sence of any task), we explored whether right insula activation differed during switching between these two
modes. We observed that in the ≥2 antidepressant group, the right insula was less active compared to the group
with one antidepressant, when switching from task-positive to task-negative mode than the other way around.
These findings imply that lower right insula connectivity within the salience network may serve as an indicator for
prospective insufficient response to antidepressants. This result, supplemented by the diminished insula activation
when switching between task and rest related networks, could indicate an underlying mechanism that, if not
sufficiently targeted by current antidepressants, could lead to insufficient response. When replicated, these findings
may contribute to the identification of biomarkers for early detection of insufficient response.
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1. Introduction

Major depressive disorder (MDD) is a highly prevalent and disabling
disease (Mathers and Loncar, 2006), however, its etiology and patho-
physiology remain an enigma. The main indicator of prolonged suf-
fering of MDD is an insufficient response to different (classes of) anti-
depressants (Ruhe et al., 2006) which is associated with chronic
depression, long-term hospitalization(s), work absenteeism, suicide and
high financial costs (Gibson et al., 2010). Early prediction of non-re-
sponse to standard treatment will result in faster and more targeted
treatment strategies and reduce suffering. Despite promising results in
predicting antidepressant treatment outcomes based on demographic
and clinical variables (Iniesta et al., 2016; Novick et al., 2015;
Uher et al., 2012), early prediction of non-response with clinical data
only has appeared, to some extent, to be unreliable (Fekadu et al.,
2009). Therefore, biological pre-treatment markers are needed. Specific
alterations in neurocircuitries indicating insufficient response could
provide such markers.

Resting-state functional connectivity (RS-FC) provides a basis for
understanding neurocircuitries involved in the pathophysiology of
MDD (Greicius, 2008; Hamilton et al., 2015; Kaiser et al., 2015;
Kuhn and Gallinat, 2013; Northoff et al., 2011; Wang et al., 2012).
Abnormal functional connectivity in MDD has been found within the
default mode network (DMN) (Hamilton et al., 2011; Manoliu et al.,
2014; Sambataro et al., 2013), the salience network (Manoliu et al.,
2014) and the cognitive control network (CCN) (Alexopoulos et al.,
2012; Menon, 2011; Veer et al., 2010). The latter is also referred to as
‘task positive network’ (TPN). The DMN, also known as the task-nega-
tive network, consists of the medial prefrontal cortex (MPFC), posterior
cingulate cortex (PCC), precuneus and parietal cortex. Normally, the
DMN is more active during rest and internal self-referential processing
(Qin and Northoff, 2011), and is suppressed in the presence of an ex-
ternal task. Studies in MDD demonstrated an impaired de-activation
during tasks (DMN-persistence), in association with rumination (an
internally focused tendency to repetitively think about matters of dis-
tress) (Hamilton et al., 2011, 2015; Sambataro et al., 2013). The
function of the salience network, encompassing the dorsal anterior
cingulate cortex (dACC) and bilateral insula, appears to be important in
the selection and segregation of relevant internal and external stimuli in
order to guide behaviour (Menon and Uddin, 2010). Patients with MDD
have shown aberrant RS-FC within the salience network and between
the salience network and DMN. These aberrations are associated with a
selection bias towards negative stimuli, characteristic for MDD
(Manoliu et al., 2014). Finally, the CCN, involving the dorsolateral
prefrontal (DLPFC) and posterior parietal cortex (PPC) (Seeley et al.,
2007) is involved in attention, working memory and decision-making
(i.e. important high-level cognitive processes) (Menon and
Uddin, 2010). Decreased RS-FC within the CCN, associated with apathy
and dysfunctional executive behavior, has been demonstrated in late-
life MDD (Alexopoulos et al., 2012). Moreover, aberrant associations
between the DMN and CCN have been related to severity of rumination
(Hamilton et al., 2011; Manoliu et al., 2014).

Although substantial efforts to demonstrate alterations of resting
state networks in MDD, RS-FC studies investigating insufficient treat-
ment response and treatment resistant depression (TRD), defined as
non-response to at least two antidepressants (Berlim and Turecki, 2007;
Ruhe et al., 2012; Wijeratne and Sachdev, 2008), are scarce
(Dichter et al., 2015). Using a seed-based approach, Lui et al. (2011)
found reduced connectivity between prefrontal-limbic-thalamic areas
in both TRD patients and non-TRD patients compared to healthy con-
trols. This decrease was larger in the non-TRD patients (vs. TRD pa-
tients), especially between a left amygdala seed and the ACC and be-
tween a right insula seed and precuneus and ACC, indicating that (non-)
response can be attributed to distinct functional deficits. Furthermore,
Guo et al. (2013) demonstrated reduced RS-FC between the cerebellum

and DMN in TRD vs. non-TRD. Moreover, decreased RS-FC between the
DMN and CCN, and reduced RS-FC between the anterior and posterior
DMN has been found in TRD (de Kwaasteniet et al., 2015). These ob-
servations show a wide range of regional alterations that can be asso-
ciated to (insufficient) treatment response.

For the development of more targeted treatment strategies, clin-
icians should ideally be able to distinguish a future responder to anti-
depressants from patients needing several switches of antidepressants
early during treatment. In the present study, as a proxy for insufficient
treatment response, we therefore aimed to investigate, with an ex-
plorative approach, whether baseline alterations in neural connectivity
were an indicator for a switch of antidepressants during two years of
naturalistic follow-up.

2. Materials and methods

2.1. Participants

Participants were recruited from the multi-center naturalistic, ob-
servational and longitudinal Netherlands Study on Depression and
Anxiety (NESDA) (Penninx et al., 2008) conducted at the University
Medical Center Groningen, VU Medical Center of Amsterdam and
Leiden University Medical Center. Participants were recruited through
general practitioners, primary care, and specialized mental health in-
stitutions. After approval by medical ethical committees of all centers
and written informed consent, participant data was collected during a
baseline measurement (including the MRI scan), and at one and two
year follow-up measurements. Inclusion and exclusion criteria for the
total NESDA sample have been described by Penninx et al. (2008)

For the current analysis, MDD patients and healthy controls were
selected from the NESDA-MRI sample (N=301). See appendix A,
section A.1 for additional inclusion and exclusion criteria regarding this
sample. Resting-state scans were available for 248 participants. We first
selected MDD patients with a diagnosis of MDD (based on the
Composite Interview Diagnostic Instrument [CIDI]) in the month prior
to the baseline interview or a diagnosis of MDD in the 6 months prior to
baseline plus a current moderate illness severity (Inventory of
Depressive Symptomatology [IDS]) score ≥ 24; (Rush et al., 2008)
yielding 112 patients. Second, in order to include patients with com-
parable treatment needs, only patients receiving antidepressant treat-
ment between baseline and two year follow-up were selected, resulting
into 55 patients. Of these, two groups were identified. The first patient
group was treated with: (i) ≥2 adequate trials of antidepressants (AD)
during one episode between baseline and 2 year follow-up. Adequate
treatment was defined as daily use of medication, for ≥4 weeks, with
an adequate dose according to the Multidisciplinary guidelines for de-
pression (Spijker et al., 2013), and (ii) ≤1 adequate antidepressant step
at baseline to exclude existing treatment-resistance. We thus selected 17
patients (≥2 AD group) (see appendix A, Fig. A.1). The second patient
group had only 1 adequate AD treatment in the two years of follow-up
(1 AD group). This selection resulted in 38 patients. We subsequently
matched the 1 AD group to the ≥2 AD group by discarding participants
with extremes on baseline demographic and/or clinical characteristics
(IDS scores, Beck Anxiety Inventory (BAI) scores, age, sex, education
and scan location) until p > .2 (representing a power >0.95 with an
effect size of 0.5, determined through a post-hoc 2-tailed distribution
calculation by G*Power 3.1 software (Faul et al., 2009)). Matching
resulted in a sample of 32 patients in the 1 AD group. Appendix A, Table
A.1 and Table A.2 display treatment characteristics of both patient
groups and co-medication used in combination with the antidepressants
(≥2 AD group). In order to also obtain optimal demographic matching
on age, sex, education and scan location between the patient groups
and the healthy controls, we discarded demographic extremes until
p > .2, (representing a power >0.95 with an effect size of 0.5, de-
termined through a post-hoc 2-tailed distribution calculation by
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G*Power 3.1 software (Faul et al., 2009)). This resulted in a group of 19
of 41 healthy controls from the NESDA resting-state MRI sample with
no lifetime depression or anxiety diagnosis.

2.2. Data acquisition

Resting-state scans, as part of a fixed imaging protocol, were ac-
quired on a Philips 3.0-T MR-scanner at all scanning sites. During the
RS-fMRI scan, participants were asked to keep their eyes closed, lie as
still as possible and to stay awake. Duration of the RS-fMRI scan was
7.51min. See appendix A, section A.2 for details regarding the scan
parameters.

2.3. Analysis

2.3.1. Data preprocessing
Resting state fMRI images were preprocessed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm); see appendix A, section A.3 for details re-
garding all preprocessing steps (Ashburner, 2007).

2.3.2. Demographic data
Independent samples t-tests, analyses of variance (ANOVA), χ2-tests

and non-parametric Mann-Whitney U test were used to compare de-
mographic and clinical variables between both patient groups and
healthy controls. Because NESDA does not measure depression severity
at frequent intervals during follow-up, in this naturalistic cohort study
we had to rely on two IDS-measurements which were obtained separate
from the initiation and evaluation of the prescribed antidepressants. In
order to quantify group differences in depression severity, differences in
IDS-SR-scores at the 2 annual follow-up measurements (time) were
examined in a linear mixed model with main effects of group and time.
This model has the advantage that it can handle unbalanced or missing
data. Because, despite matching, we observed a non-significant differ-
ence in baseline IDS-SR-scores, we corrected the 2 follow-up measure-
ments for differences in baseline depression-severity by adding baseline
IDS scores as covariate (Pocock et al., 2002). This adjustment for pos-
sible baseline imbalance between treatment groups improves precision
of the estimated treatment differences. In this model, a significant main
effect for group indicates a general difference between the groups re-
garding the overall depressive symptomatology over the entire follow-
up period, while a significant main effect for time indicates a general
effect during the follow-up. A group*time interaction during these
follow-up measurements would not be of primary interest in this ana-
lysis, because this term would only indicate whether a possible differ-
ence between the groups (with IDS scores as dependent) could be

attributed more to follow-up year one or year two in either group.
Analyses were performed with SPSS v22.0 (SPSS Inc., USA); statistical
threshold was set to p < .05. We judged model-fit by Akaike's In-
formation Criteria (AIC).

2.3.4. fMRI analysis
The Group ICA FMRI Toolbox (GIFT) (Calhoun et al., 2001) was

used to perform an independent component analysis (ICA). See ap-
pendix A, section A.4 for details regarding all ICA settings. The in-
dividual image maps of components functionally relevant to our ob-
jective were used as input for separate second-level analyses. ANOVAs
were first used to test main effects of group. Thereafter, pairwise
comparisons were used to investigate differences between individual
groups. In order to lower the chance of type-I errors when testing for
multiple components, we applied a stringent false discovery rate (FDR)
cluster threshold of p < .01, with an initial threshold of p < .001 un-
corrected, and spatially masked with a effects of interest F-contrast
(Veer et al., 2010). A Bonferroni correction was applied to account for
multiple testing across six second level components, adjusting the p-
value threshold to 0.05/6=0.0083. Because differences in the use of
baseline ADs were present between both patient groups, we compared
groups, while adding a covariate for baseline AD use. In order to check
whether psychotherapy during follow-up influenced the results we also
conducted an analysis including receipt of psychotherapy during
follow-up as a covariate. Furthermore, as an additional precaution, we
addressed the possibility that findings were driven by baseline severity
by investigating whether an association between baseline severity
measures and connectivity findings was present.

2.4. Post-hoc ROI based analysis

Based on our results, we conducted a post-hoc analysis based on a
metric proposed by Hamilton et al. (2011) to explore whether our
finding in the insula could be attributed to dysfunctional DMN-TPN
switching. To warrant a more independent approach, since both ana-
lyses are conducted on the same sample, we therefore applied a seed
based correlation over time to identify DMN and TPN maps instead of
the ICA components in our primary analysis (see supplementary ma-
terial of Hamilton et al., 2011).

Here we will give a brief overview of the analysis method based on
the Hamilton metric (Hamilton et al., 2011), see appendix A, section
A.5 for more details regarding all steps. We used the preprocessed data
as described above. First, we used the preprocessed data and performed
additional steps to address the possibility of signal artifacts in voxel
time courses. Second, we extracted time course data from MPFC-PCC

Table 1
Demographic and clinical characteristics of the ≥2 AD group, AD group and healthy controls at baseline.

Treated with ≥2 AD (N=17) Treated with 1 AD (N=32) HC (N=19) Test-statistic p

Age (years) Mean (SD) 38.88 (10.13) 38.81 (11.59) 39.58 (9.66) F(2,65)= 0.03 .97
Sex Male/Female 9/8 11/21 10/9 X2(2)=2.33 .31
Education (years) Mean (SD) 11.12 (2.71) 12.16 (2.93) 12.32 (2.49) F(2,65)= 1.03 .36
Scan location A/L/G 5/7/5 11/9/12 6/7/6 X2(4)=0.97 .91
Illness severity (IDS) baselinea Mean (SD) 32.53 (8.26) 29.42 (9.38) 4.00 (3.30) t(44)= 1.01b .28
Anxiety severity baseline (BAI)a Mean (SD) 18.13 (8.77) 14.94 (8.20) 1.74 (2.62) t(44)= 1.21b .23
Anxiety comorbidity N (%) 11 (64.7) 18 (56.3) – X2(1)=0.33 .57
Months illness
(in past 5 years) Mean (SD) 22.76 (14.16) 25.03 (16.86) – U(47)=263 .85
No. of episodes Mean (SD) 9.53 (11.47) 6.19 (8.39) – U(47)=216 .21
Medication steps N (1/2/3/4) 0/14/2/1 32/0/0/0 – X2(3)=49.00 .00
Med use baseline N (%) 16 (94.1) 16 (50.0) – X2(1)=9.54 .00
Psychotherapy at baseline Yes/no 12/5 15/17 – X2(1)=2.52 .11
Psychotherapy during follow-up Yes/unknown 16/1 18/14 – X2(1)=7.50 .01

HC ] Healthy Controls, IDS = Inventory of Depressive Symptomatology, FU=Follow-up, BAI= Beck Anxiety Inventory, A=Amsterdam, L= Leiden,
G=Groningen.

a ≥2 AD sample N=15, 1 AD sample N=31.
b Test-statistic based on difference between the 1 AD group and the ≥2 AD group.
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seeds for each participant (Talairach coordinates MPFC: −1, 47, −4,
PCC: −5, −49, 41). Third, we identified DMN and TPN maps by cor-
relating seed-region time-course data against whole brain time series.
Of note, the original threshold used by Hamilton et al. (2011)
(p < .000001) resulted in empty DMN and TPN maps, possibly due to
scanner and site variability. Therefore, we applied a less stringent
threshold in order to create DMN and TPN maps and investigate
switching between these networks. Fourth, we examined activation in
the right insula during switching from the TPN to the DMN, defined at
initiations of ascent of DMN activity, (a TPN peak) and from the DMN to
the TPN, defined at initiations of ascent of TPN activity (a DMN peak).

After that, first-level general linear models were estimated that in-
cluded these TPN and DMN onsets regressors and the same noise re-
gressors as used in step 1 (see appendix A, section A.5.1). Contrast
images were calculated with DMN and TPN onsets separated and
combined to explore insula activity during switching in general, and for
DMN onsets > TPN onsets, and TPN onsets > DMN onsets to look at
insula functioning differences between TPN to DMN transition and
DMN to TPN transitions. On second level, between group differences in
right insula activation for these contrasts were explored with an
ANOVA. Because of the specific hypothesis regarding the insula, a small
volume correction (SVC) was applied for this region. For mask creation
we used the Automated Anatomical Labeling (AAL) mask of the right
insula created with the WFU PickAtlas toolbox (Maldjian et al., 2003,
2004; Tzourio-Mazoyer et al., 2002) to prevent bias selection driven by
ICA.

3. Results

3.1. Demographic and clinical variables

The three groups did not differ significantly in age, sex, years of
education and scan location. Severity of depression (IDS score), anxiety
(BAI score), illness duration, no. of episodes and receipt of psy-
chotherapy at baseline were not significantly different between the two
patient groups (Table 1). Medication use at baseline was significantly
higher in the ≥2 AD group (X2(1) = 9.54, p< .001) as well as receipt
of psychotherapy during follow-up (X2(1) = 7.50, p = .01).

3.2. Depression severity during follow-up

For IDS-SR-scores at year 1 or 2 of follow-up, group differences were
observed, when tested in the mixed model (F1,41.43 = 3.93; p = .054),
Furthermore, the mixed model revealed no main effect for time
(p = .18), nor for the group*time interaction (p = .50), while cor-
recting for baseline IDS-SR scores (see appendix A, Fig. A.2).

3.3. Independent component analysis

The Independent Component Analysis (GIFT) resulted in twenty-one
temporally and spatially separated components. After discarding CSF
and cerebellum components, fourteen components remained (Fig. 1),
similar to previous reports (Allen et al., 2011; Damoiseaux et al., 2006;

Fig. 1. Group ICA resting-state networks. The fourteen networks that were identified from the group ICA are shown. Images are z-statistics (ranging from 2 to 9)
overlaid on a MNI-152 standard image. Asterisks (*) indicate components that were included in the second level analysis.
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Veer et al., 2010). Six functionally relevant components were included
as input for second level analyses: Fronto-parietal (right), Fronto-par-
ietal (left), Dorsal attention, Salience, Default Mode posterior, Default
Mode anterior. We discarded visual, sensory-motor, auditory compo-
nents and other components of no interest.

3.4. Group differences

The one-way ANOVA revealed a main effect of group in the right
insula within the salience component (F2,65= 10.24, p = .003). No
main effects of group were found for the other five components.
Pairwise comparisons revealed lower connectivity within the salience
network (right insula) in the ≥2 AD group compared to the 1 AD group
(peak coordinates: x=42, y = −6, z=0; k=97, Z=3.86,
pFDR = 0.007). No difference in connectivity was found when com-
paring the healthy controls with the 1 AD group or the ≥2 AD group.
Visual inspection revealed that the right insula-salience connectivity in
the healthy controls was intermediate between the ≥2 AD and 1 AD
group (Fig. 2). The significant group difference remained after cor-
recting for baseline AD use (Z=4.89, pFDR = 0.005) and receipt of
psychotherapy during follow-up (Z=5.26, pFDR = 0.003). The ana-
lysis checking for a baseline association between severity measures and
insula connectivity revealed no main effect of IDS (t46 = −0.56,
p = .58), suggesting that our findings were not driven by severity (see
appendix A, Fig. A.3).

3.5. Post-hoc analysis

The ANOVA identified lower activation of the right insula (peak
coordinates: x=42, y = −12, z=0; k=36 voxels, Z=4.00,
pFDR = 0.008) in the ≥2 AD group compared to the 1 AD group at the
moment of a switch to DMN compared to a switch to TPN (Fig. 3). No
significant differences were observed in insula activity between the
healthy controls and both patient groups on this contrast. Furthermore,
no significant group differences were found for the contrasts DMN
+TPN switch combined, DMN and TPN onsets separately, and
TPN>DMN.

4. Discussion

The present study investigated whether distinct patterns of neural
connectivity before treatment could serve as an indicator for the need of
≥2 antidepressants trials in MDD treatment. Our results revealed that
decreased functional connectivity of the right insula with the salience
network appears to be associated with prospective insufficient re-
sponse. Post-hoc, in these patients requiring ≥2 antidepressant trials,
this same right insula appeared to be activated less when switching to
the DMN compared to switching to the TPN.

Previous neuroimaging studies investigated the association between
insula functioning and depressive pathology (Sliz and Hayley, 2012),
and showed that the insula plays an important role in MDD. Volume
reductions of the insula have been observed in patients with current
and remitted depression compared to healthy controls (Lee et al., 2011;
Takahashi et al., 2010). Furthermore, the insula appeared to be hy-
peractive in MDD in response to negative stimuli (Hamilton et al., 2012;
van Tol et al., 2012), and resting state studies have demonstrated de-
creased functional connectivity between the insula and the affective
brain network (Hamilton et al., 2011; Veer et al., 2010) and decreased
regional homogeneity (ReHo) in the insula (Liu et al., 2010; Yao et al.,
2009) in MDD patients compared to healthy controls. Moreover de-
creased insula activation was related with symptom reduction in MDD
(Opmeer et al., 2015). Our results contribute to these findings and
suggest that altered insula functioning might be related to (prospective)
non-response to antidepressants and potentially treatment resistance.

The insula is thought to mediate the ability to shift attention to-
wards and away from emotional subjective feelings (empathy,

happiness, love, anger, fear, sadness) through a joint activation with the
ACC, which together form the salience network (Craig, 2009). Because
dysfunctional emotion regulation has shown to play an important role
in MDD (Rive et al., 2013), and reduced insula activation has been
linked to a loss in the ability to experience emotions (Menon and
Uddin, 2010), the observed altered salience network connectivity could
also suggests that more persistent emotional dysregulation is associated
with an insufficient response. These hypotheses need further empirical
investigation in more rigorously controlled antidepressant trials in
combination with fMRI.

Moreover, the right insular cortex plays an important role in
switching between task negative DMN and TPN networks (Chang et al.,
2013; Hamilton et al., 2011; Marchetti et al., 2012; Menon and
Uddin, 2010; Sridharan et al., 2008). These networks have been pro-
posed to be negatively correlated both in rest and during tasks
(Marchetti et al., 2012). During rest people switch constantly between
DMN and TPN activity, which is orchestrated by the right insula
(Fox et al., 2005; Marchetti et al., 2012), with right insula activity
preceding the DMN to TPN switch (Seeley et al., 2007). In MDD, it has
been proposed that the DMN function is impaired in two ways: (i) in a
rest-to-task transition, the DMN remains active when it should deacti-
vate (DMN persistence/dominance), and (ii) the task positive network
is deactivated when it should be active (TPN deficiency)
(Marchetti et al., 2012). In our post-hoc analysis, supplementing our
primary finding of decreased connectivity of the insula with the sal-
ience network in the ≥2 AD group, we found that in the ≥2 AD group
the insula was less active relative to the 1 AD group especially when

Fig. 2. Connectivity differences between groups. Top: right insula showing
lower connectivity with the salience network in the ≥2 AD group compared to
the 1 AD group (Z=3.86, p= .007 FDR corrected on cluster-level). Figure
displays cluster with initial threshold of p < .001 uncorrected. Bottom:
Parameter estimates averaged across total insula cluster and 90% confidence
intervals showing decreased connectivity of the insula within the salience
network in the ≥2 AD group.
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switching from TPN to DMN compared to switching from DMN to TPN
activity. In the ≥2 AD group this lower activity suggests an easier
switch to the DMN-mode, possibly resulting in DMN-persistence, which
has been associated with treatment resistance before (Li et al., 2013).
However, because insula activity was especially decreased when
switching from TPN to DMN, this might also suggest that TPN-activity
could not be maintained, resulting in more frequent deactivation of the
TPN, which is indicative of TPN-deficiency, and has also been asso-
ciated with treatment resistance (Groves et al., 2018). Like in previous
reports (Figueroa et al., 2015; Hamilton et al., 2011,) patients and
controls did not differ in percentages of activity of the DMN and TPN,
for which we speculate that more advanced approaches (i.e. dynamic
functional connectivity (Figueroa et al., 2019), investigating the dura-
tions/probabilities of more detailed FC-states) might be more sensitive.

Antidepressants are suggested to target DMN-persistence by redu-
cing subgenual cingulate cortex, dorsal PCC and precuneus activation
as well as to reduce TPN deficiency by increasing DLPFC and VLPFC
function (Delaveau et al., 2011; Marchetti et al., 2012). However, we
here speculate that if antidepressant treatment is targeting these DMN/
TPN related regions only, in some subjects it might not interfere with
the truly defective switching-hub, i.e. aberrant insula function. Conse-
quently, in some depressed patients insula dysfunction is insufficiently
targeted or influenced by the available treatments, resulting in pro-
longed DMN-persistence, persisting symptoms of depression and even-
tually treatment resistance. This hypothesis should be further in-
vestigated in future placebo-controlled neuro-imaging studies.

Previous resting state studies have already highlighted the

involvement of the insula in non-responders and treatment resistant
patients. Insula hypometabolism was associated with poor response to
escitalopram in MDD patients (McGrath et al., 2013). Furthermore,
Guo et al. (2011) demonstrated decreased ReHo in the left insula in
TRD patients compared to non-TRD patients. However, Lui et al. (2011)
who focused on (seed-based) RS-FC indicators for TRD, reported at first
sight opposite findings: increased functional connectivity between the
right insula and the cingulate cortex in TRD relative to non-TRD pa-
tients. The increased FC with the ACC (also part of the salience net-
work) found by Lui et al. (2011) could either represent a compensatory
increase in FC, potentially to assist the insula by the ACC, an increase in
dysfunction in a more widespread part of the salience network or be
confounded by the extreme difference in mean disease duration be-
tween the TRD/non-TRD groups in their study compared to the more
balanced durations in our study (193 vs. 22 months, respectively).
Other possible explanations of discrepancy in findings, apart from ob-
vious differences in the analysis, patient selection, duration of MDD,
and difference levels of non-response, might be the ethnicity of the
sample (Chinese vs. European) (Serretti et al., 2007) or cultural dif-
ferences (Li et al., 2018).

Visual inspection of our results revealed that the right insula-sal-
ience connectivity in the healthy controls was intermediate between
both patient groups. This could be considered as surprising as one
might expect both patient groups to show a difference with the healthy
controls that points in the same direction. One possibility is that the
higher RS-FC of the 1 AD group may predict response as it has been
shown that changes in insula functioning occur with a variety of
treatments for MDD, suggesting an involvement of this region in med-
iating treatment response (McGrath et al., 2013). Although McGrath
et al., (2013) investigated insula functioning with FDG-PET, in light of
these findings, intact functional connectivity of the 1 AD group (as in
HC) could may represent a predictor of treatment response. However,
this is in need of empirical resting.

4.1. Limitations

A first limitation is that, due to our selection process the remaining
sample size of patients in need of ≥2 ADs is modest, and therefore
smaller group differences may not have been detected. Second, only
information on medication duration and daily dose was available.
Unfortunately, specific information about when in a certain episode the
medication was used exactly, was unspecified in NESDA, although a
proxy for this information could be derived from the duration of use,
especially when the duration of use summed up to most months of the
year. Furthermore, an AD switch could also have been initiated because
of side effects, however this occurs mostly early after initiation and we
only selected treatments as ‘adequate’ when the antidepressant was
prescribed for >4 weeks. We therefore expect, given our definition of
an adequate trial, that the confounding of switching due to adverse
effects is limited. Third, an AD switch could also have been initiated
because the initial AD interacted with other medication. However, in
clinical practice, at least in the Netherlands, interactions between an-
tidepressants and new/additional medication are usually considered
when a new drug is initiated. When checking for this, we did not
identify co-medication that could have forced the switch from the in-
itial antidepressant. We therefore assume that despite a technically
possible misclassification as insufficient response forced by drug-drug
interactions, this is not influencing the classification in these subjects.
Fourth, in this naturalistic cohort design, illness severity (IDS) data was
only collected at three visits (baseline, one year, and two years later).
Therefore, it was difficult to determine whether and when a certain
antidepressant led to symptom reduction, for which more stringent
trials are preferable. Fifth, we included heterogeneous patients initially
treated with two antidepressant classes (SSRIs/SNRIs). As such, we
investigated AD-treatment more in general, suggesting that observed
effects are independent of specific antidepressants, so this

Fig. 3. Post-hoc analysis: Between-group comparison during switching. Top:
right insula showing decreased activity in the ≥2 AD group compared to the 1
AD group for the contrast DMN onsets > TPN onsets (Z=4.00, p= .008 FDR
corrected on cluster-level). Figure displays cluster with initial threshold of
p < .001 uncorrected. Bottom: Parameter estimates and 90% confidence in-
tervals showing decreased activity of the insula in the ≥2 AD group.
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heterogeneity precludes translation to a specific AD. Therefore, the
merits of this study do not lie in the specificity of the biomarker for a
well described drug. However, we believe that our findings are im-
portant for the formulation of specific hypotheses in future (trial) stu-
dies. We would advocate that this biomarker of prospective insufficient
response to antidepressants would be replicated and validated in in-
dependent, potentially more specific, controlled trials. This would be
important before this work can be translated to clinical practice.
Subsequently, randomized controlled trials investigating biomarker-
based treatment versus treatment as usual are necessary to investigate
the true advantage of implementation of potential biomarkers. Sixth,
receipt of psychotherapy might be considered a confounder. Since the
NESDA dataset does not allow to investigate the effects of anti-
depressant treatment without considering effects or timing of psy-
chotherapy, clinical improvement in the groups cannot be attributed to
a specific treatment modality. However, both patient groups did not
differ significantly in receipt of psychotherapy at baseline, and receipt
of psychotherapy during follow-up as a covariate did not influence the
results. Furthermore, when exploring addition of psychotherapy during
follow-up, i.e. patients who had no psychotherapy at baseline but re-
ceived psychotherapy during follow-up (psychotherapy was added in
22% in the 1 AD group vs. 29% in the ≥2 AD group), we found that the
addition of psychotherapy was not significantly different between
groups (p = .56; X2-test). We therefore believe that our results, to the
best of our notion, are not primarily confounded by psychotherapy and
that the high number of patients that receive psychotherapy during
follow-up in the ≥2 AD group (94% vs. 56% in the 1 AD group) sub-
stantiates the notion that the ≥2 AD group represents a clinically more
difficult to treat group of patients. Overall, we believe our findings
provide important information in the search for biomarkers for early
identification of characteristics of non-response. Lastly, while sample
matching across groups is helpful in detecting differences without the
need to correct for additional confounding, resulting in more power to
examine the brain measures of interest, this approach could result in
reduced generalizability of our findings.

To summarize, we are aware that when considering our results in
depth, various factors as switching due to adverse effects or drug-drug
interactions might have influenced our classification and interpretation
of insufficient response, however we do believe that these concerns are
less relevant for the current sample and our finding therefore are va-
luable in providing starting points for research on long term effects of
insufficient response. Especially because the long term burden of MDD
is associated with multiple treatment steps due to insufficient response
(Johnston et al. 2019). We therefore believe that this research is im-
portant because it contributes to long term effects of non-response and
provides important naturalistic clinical information to finally aid to
improve chances of response.

4.2. Conclusion and future directions

We identified decreased functional connectivity of the insula within
the salience network as a potential biomarker for prospective in-
sufficient response. With a post-hoc analysis, we linked this diminished
connectivity of the insula to diminished insula activation when
switching between task and rest related networks in patients in need of
≥2 ADs. We hypothesize that this insula dysfunction might not suffi-
ciently be targeted by current antidepressants, which therefore can lead
to treatment resistance. This should be investigated further with pla-
cebo-controlled neuroimaging studies in MDD.

Our findings suggest that altered insula function may be a potential
neuroimaging biomarker for the prediction of prospective anti-
depressant non-response. More rigorously controlled studies are re-
quired to replicate aberrant insula functioning and insula-salience FC
alterations as such a predicting biomarker for antidepressant non-re-
sponse and treatment resistant depression.
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