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ABSTRACT 

P-glycoprotein (Pgp) is a drug transporter that plays important roles in multidrug resistance and drug pharmaco-
kinetics. The inhibition of Pgp has become a notable strategy for combating multidrug-resistant cancers and im-
proving therapeutic outcomes. However, the polyspecific nature of Pgp, together with inconsistent results in ex-
perimental assays, renders the determination of endpoints for Pgp-interacting compounds a great challenge. In 
this study, the classification of a large set of 2,477 Pgp-interacting compounds (i.e., 1341 inhibitors, 913 non-
inhibitors, 197 substrates and 26 non-substrates) was performed using several machine learning methods (i.e., 
decision tree induction, artificial neural network modelling and support vector machine) as a function of their 
physicochemical properties. The models provided good predictive performance, producing MCC values in the 
range of 0.739-1 for internal cross-validation and 0.665-1 for external validation. The study provided simple and 
interpretable models for important properties that influence the activity of Pgp-interacting compounds, which are 
potentially beneficial for screening and rational design of Pgp inhibitors that are of clinical importance. 
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INTRODUCTION 

Human p-glycoprotein (Pgp) is a 170 
kDa polypeptide (Juliano and Ling, 1976) 
comprising 1280 amino acids (Chen et al., 
1986) and encoded by multidrug-resistance 
genes (Fardel et al., 2012). Pgp is an ATP-
binding cassette (ABC) transporter belong-
ing to the ABCB subfamily (Hennessy and 
Spiers, 2007) that functions as a dynamic 
efflux pump (Aller et al., 2009) to transport 

substances out of cells (Hennessy and Spiers, 
2007). Notably, Pgp contains multiple bind-
ing sites that can non-specifically and simul-
taneously bind a wide range of structurally 
unrelated hydrophobic substances (Ambud-
kar et al., 2006) including anticancer drugs 
(Bansal et al., 2009).  

Pgp influences the pharmacokinetics of 
its substrate drugs due to its polyspecific 
binding nature and its expression in many 
physical barriers and pharmacokinetics-
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related organs (i.e., the gastro-intestinal (GI) 
tract, blood-brain-barrier (BBB), kidney, liv-
er, endothelium and placenta) that function 
to limit the cellular uptake, distribution, ex-
cretion and toxicity of many substances and 
xenobiotics (Fardel et al., 2012). The ability 
of Pgp to alter the pharmacokinetic profiles 
of its substrate drugs is considered to be a 
key factor that impairs treatment outcomes 
(Krishna and Mayer, 2000). In addition, the 
identification of Pgp substrates is essential 
for early ADMET screening, as recommend-
ed by FDA guidelines (U.S. Food and Drug 
Administration, 2012). Drug-drug interac-
tions and undesirable side effects are also 
important when drugs with narrow therapeu-
tic windows are co-administered with strong 
Pgp inhibitors (Amin, 2013; Aszalos, 2007; 
Wessler et al., 2013).  

Pgp is considered to be a lucrative target 
against multidrug-resistant cancers (Juliano 
and Ling, 1976). Pgp over-expression is 
found in many types of cancer and its associ-
ation with multidrug-resistance mechanisms 
has been attributed to impaired delivery of 
anticancer drugs to target cells (Hennessy 
and Spiers, 2007). Therefore, the inhibition 
of Pgp has been considered to be an effective 
strategy for improving the therapeutic out-
come of affected Pgp substrates, as well as 
combating multidrug resistance (Szakács et 
al., 2006).  

The promiscuity of Pgp is an important 
issue that renders the classification of its in-
teracting compounds a great challenge. 
Many experimental assays using multiple 
measurements and criteria are available for 
determining the end-points of Pgp-interact-
ing compounds as substrates, non-substrates, 
inhibitors and non-inhibitors (Heredi-Szabo 
et al., 2013; Li, 2005; Polli et al., 2001). The 
discordance of experimental assays has led 
to conflicting reports of their end-points 
(Seelig, 1998; Sharom, 1997). In addition, 
Pgp is a highly flexible protein containing 
multiple binding sites with different affini- 
 

ties for distinct compounds (Zeino et al., 
2014). Therefore, the classification of Pgp 
compounds is not an easy task because of the 
promiscuity of this transporter (Wang et al., 
2005). For these reasons, computational ap-
proaches have become versatile tools for ex-
ploring protein-ligand interactions (Nanta-
senamat et al., 2009; Nantasenamat et al., 
2010; Nantasenamat and Prachayasittikul, 
2015) and is thus crucial for understanding 
Pgp-ligand interaction. Recently, quantita-
tive structure-activity relationship (QSAR) 
studies (Ghandadi et al., 2014; Palestro et al., 
2014; Shen et al., 2014), classification mod-
els (Adenot and Lahana, 2004; Chen et al., 
2011; Klepsch et al., 2014; Levatić et al., 
2013; Li et al., 2014; Penzotti et al., 2002; 
Wang et al., 2011), molecular docking 
(Ghandadi et al., 2014; Palestro et al., 2014; 
Zeino et al., 2014) and homology modelling 
approaches (Yamaguchi et al., 2012) have 
been used in an attempt to address these con-
troversial issues. It is known that Pgp is one 
of the most studied drug transporters 
(Gottesman et al., 2002, 1996). Despite ex-
tensive studies, the classification rules for 
interacting ligands are still not fully under-
stood (Chen et al., 2012; Levatić et al., 
2013). 

Machine learning techniques are compu-
tational methods that have been successfully 
used for constructing predictive models and 
classifiers of Pgp-interacting compounds 
(Broccatelli, 2012; Gombar et al., 2004; 
Klepsch et al., 2014; Li et al., 2014). In this 
study, several machine learning classifiers 
were used to classify a large set of 2,477 
compounds (i.e., 1341 inhibitors, 913 non-
inhibitors, 197 substrates and 26 non-
substrates) as a function of their physico-
chemical properties (Figure 1). This study 
provides a glimpse of the underlying classi-
fication criteria for Pgp-interacting com-
pounds, which are potentially beneficial for 
the screening and design of Pgp inhibitors 
for clinical applications. 
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Figure 1: Schematic workflow of this study consisted of 4 major steps: (1) data sets preparation, (2) 
determining informative molecular descriptors, (3) coping with imbalanced data and (4) multivariate 
analysis. In step 1, redundant compounds, overlapping compounds, and compounds with MW > 1000 
Da were identified and removed. Next, in step 2 the resulting compounds from the aforementioned 
pre-processed data sets were geometrically optimized at the PM6 level, calculate a set of 13 de-
scriptors, apply feature selection to select informative descriptors for multivariate analysis. Subse-
quently, in step 3 the imbalanced number of positive and negative classes solved by making sure that 
positive class clusters were equivalent in number to that of the negative class where clusters providing 
the best predictive performance are selected as the representative clusters for model construction. 
Finally, in step 4 the balanced data set was subjected to data splitting via random selection into a 
training (85 %) and external test (15 %) set. Predictive models were constructed using DT, ANN and 
SVM algorithms. Predictive performance of the models were assessed by a set of statistical parame-
ters. I = inhibitors, NI = non-inhibitors, S = substrates, NS = non-substrates. 
 
 

 
MATERIALS AND METHODS 

Data set 
A data set of Pgp-interacting compounds 

was retrieved from the admetSAR database 
created by Cheng et al. (2012). The database 
is a compilation of chemical structures gath-
ered from different literature sources. It is 
represented in simplified molecular input 

line entry system (SMILES) format together 
with the Pgp classification labels (i.e., inhibi-
tors, non-inhibitors, substrates and non-
substrates). Owing to the inherent multiplici-
ty and heterogeneity presented in SMILES 
notation, it was necessary to convert them to 
a uniform representation using the command 
line version of MarvinSketch, version 6.3.1 
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(ChemAxon, 2014). Consequently, all newly 
generated SMILES, along with their Pgp 
class label, were combined within a single 
Excel worksheet. Compounds with molecu-
lar weight greater than 1000 Da and redun-
dant compounds were identified and re-
moved from further analysis. In addition, the 
compounds that were classified as belonging 
to more than one class were defined as over-
lapping compounds and were discarded from 
the analysis. This resulted in a final data set 
containing 1341 inhibitors, 913 non-
inhibitors, 197 substrates and 26 non-
substrates. A schematic workflow of the data 
set preparation is shown in Supplementary 
Figure S1. 
 
Geometry optimization and descriptor  
calculation 

SMILES of all compounds were convert-
ed to .mol files and further processed for 
suitable formatting using in-house developed 
scripts. All chemical structures were geomet-
rically optimized using Gaussian 09 at the 
semi-empirical level using the parameteriza-
tion method 6 (PM6) approach (Frisch et al., 
2009). The optimized structures were used 
for extraction and calculation of the molecu-
lar descriptors. Initially, a set of 13 simply 
interpreted descriptors, including 6 quantum 
chemical descriptors and 7 molecular de-
scriptors, was selected to represent the phys-
icochemical properties of the compounds. A 
set of 6 quantum chemical descriptors was 
calculated and extracted from the optimized 
chemical structures. The six quantum chemi-
cal descriptors included the mean absolute 
charge (Qm), energy, dipole moment (µ), 
highest occupied molecular orbital (HOMO), 
lowest unoccupied molecular orbital (LU-
MO) and the energy of the HOMO and LU-
MO gap (HOMO-LUMO). The optimized 
structures were further used as input files for 
the calculation of an additional 7 molecular 
descriptors using Dragon 5.5 Professional 
(Talete, 2007). The seven molecular de-
scriptors include molecular weight (MW), 
rotatable bond number (RBN), number of 
rings (nCIC), number of hydrogen bond do-

nors (nHDon), number of hydrogen bond 
acceptors (nHAcc), Ghose–Crippenoctanol–
water partition coefficient (ALogP), and the 
topological polar surface area (TPSA).  
 
Feature selection 

Feature selection was performed on the 
initial set of 13 descriptors using the SPSS 
version 18 software (Inc.) (IBM, SPSS Inc., 
USA). The inhibitor and non-inhibitor clas-
ses, along with their 13 descriptor values, 
were combined. The intercorrelation matrix 
of Pearson’s correlation coefficients was cal-
culated and a cut-off value of 0.7 was used 
for identifying collinear and redundant de-
scriptors. For any given pair of descriptors 
whose correlation coefficient values were ≥ 
0.7, one of them was discarded. The same 
procedure was carried out on the combined 
data of substrates and non-substrates. Final-
ly, the resulting set of descriptors was subse-
quently used for multivariate analysis. 
 
Solving the imbalanced data set issue 

The fuzzy C-means clustering (FCM) al-
gorithm is an unsupervised machine learning 
algorithm that is widely used for clustering, 
feature analysis and classifier design (Zhou 
et al., 2010). It is a clustering algorithm that 
confirms to what degree the samples belong 
to a certain class (Zhou et al., 2010). The 
principle of FCM is provided in the supple-
mentary information. In this study, the FCM 
algorithm was used to select representative 
samples from the positive class (i.e., inhibi-
tors and substrates) using the R software en-
vironment (R Development Core Team, 
2010). Firstly, clusters were generated from 
the ratio of the number of samples in the 
positive class to the number of samples in 
the negative class (non-inhibitors and non-
substrates). Second, the decision tree model 
was constructed using the generated clusters 
from the positive class data sets together 
with the negative class data set (Witten et al., 
2011). A combination of statistical parame-
ters comp of accuracy, sensitivity, specificity 
and Matthews’ correlation coefficient 
(MCC) were used for determining the best 
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clusters. Finally, the positive class clusters 
showing the best predictive performance 
were selected as the representative data set 
for further multivariate analysis (Table S1). 

 
Model development 

The classification structure-property rela-
tionship (CSPR) models were used for re-
vealing the relationships between the de-
scriptor values and the classification of Pgp-
interacting compounds. A random sampling 
method was used for dividing each data set 
into two separate groups containing 85 % 
and 15 % of the whole data, respectively. For 
each class (i.e., selected inhibitors cluster, 
non-inhibitors, selected substrates cluster 
and non-substrates), the data subset contain-
ing 85 % of the compounds was used in the 
construction of predictive models (consti-
tutes the internal validation). However, the 
second data subset containing 15 % of the 
compounds was used for external validation. 
Random sampling was performed by means 
of principal component analysis (PCA) using 
the R software environment (R Development 
Core Team, 2010). Finally, 85 % of the se-
lected positive class clusters (512 inhibitors 
and 23 substrates) were used, together with 
85 % of the negative class clusters (789 non-
inhibitors and 21 non-substrates) for the con-
struction of CSPR models (Figure 1). Three 
classifiers were employed for prediction, 
namely decision tree (DT), artificial neural 
network (ANN) and support vector machine 
(SVM). The former was calculated using the 
Weka software package version 3.7.11 
(Witten et al., 2011). The latter two classifi-
ers were calculated using an in-house auto-
mated data mining software program called 
AutoWeka (Nantasenamat et al., 2015), 
which was implemented as a Python wrapper 
built on top of Weka. The procedures for pa-
rameter optimization of each algorithm are 
illustrated in Figure 2. Information on the 
principles and parameter optimization meth-
ods for each classifier are provided in the 
Supplementary Information and Supplemen-
tary Tables S2–S4. 
 

Multivariate analysis ANN 
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& Momentum 

Classification models with  
best predictive performance 

Radial Basis 
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data sets 

SVM DT 

C, γ, ε  

 
Figure 2: Workflow of the parameter optimiza-
tion process of learning classifiers (e.g. ANN, 
SVM and DT). Parameter optimization was per-
formed as to search for the optimal value of 
learning parameters that will afford the best pre-
dictive performance. Identified optimal parame-
ters were then employed in construction of the 
final model. 
 
 
Validation of predictive models 

The k-fold cross validation (k-fold CV) 
method is widely accepted for the measure-
ment of predictive performance of classifica-
tion models (Ambroise and McLachlan, 
2002; Hastie et al., 2001; Subramanian and 
Simon, 2011). Briefly, a data set of n sam-
ples is randomly divided into k subsets. Sub-
sequently, k-1 subsets are used as the train-
ing set, whereas 1 subset is used as the test 
set. This process continues until every subset 
is used as the test set. In this study, 10-fold 
CV was used for internal validation of the 
constructed models. 

In addition to internal validation of the 
predictive models, external validation using 
external test sets was performed. As men-
tioned, 85 % of the compounds in each class 
are randomly selected for the construction of 
the models and internal validation. 

The remaining subset containing 15 % of 
the compounds were subsequently used for 
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external validation. Therefore, additional 
models were constructed by using the 85 % 
subset for each class as the training set while 
applying the resulting model on the 15 % 
subset that serve as the external test set (Fig-
ure 1).  
 
Statistical assessment of the predictive 
models  

The predictive performance of the CSPR 
models was assessed using a combination of 
statistical parameters (i.e., accuracy, sensitiv-
ity, specificity and MCC) to interrogate all 
aspects of the models, as shown in Equations 
[1]-[4].  

 

 FNFPTNTP

TNTP
Accuracy




                       [1] 

 FNTP

TP
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                                      [2] 

 FPTN
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    FNTNFPTNFNTPFPTP
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  [4] 

 
where TP is the number of true positives, TN 
is the number of true negatives, FP is the 
number of false positives or over-predictions 
and FN is the number of false negatives or 
missed predictions.  

The accuracy is used for determining the 
degree of correct predictions relative to the 
total number of samples. The sensitivity is a 
true positive rate that represents the actual 
positives that are correctly classified. The 
specificity is a true negative rate that deter-
mines the actual negatives that are correctly 
classified. Accuracy, sensitivity and specific-
ity were calculated as percentages. However, 
these parameters may not provide a compre-
hensive analysis of the models. Therefore, a 
balanced statistical parameter method, Mat-
thews correlation coefficient (MCC), was 
additionally used. The MCC is calculated 
using both true and false positives and nega-
tives. MCC is used as a balanced measure-
ment for binary classification, and it can be 

used with imbalanced data containing differ-
ent sizes of classes.  

 
RESULTS AND DISCUSSION 

Feature selection 
Redundant descriptors were identified 

and removed using a cut-off value of 0.7. 
The intercorrelation matrix for both models 
is displayed in Supplementary Figure S2. For 
the inhibitors/non-inhibitors set, 2 redundant 
descriptors (i.e., MW and TPSA) were re-
moved and the remaining 11 descriptors 
were used for the construction of the CSPR 
models. Similarly, 2 redundant descriptors 
(i.e., nHAcc and Energy) were removed from 
the substrates/non-substrates set, which re-
sulted in a set of 11 descriptors for subse-
quent CSPR model building.  

 
Coping with imbalanced data sets 

The data sets for the positive class com-
pounds (i.e., 1341 inhibitors and 197 sub-
strates) were clearly imbalanced relative to 
those of the negative class compounds (i.e., 
931 non-inhibitors and 26 non-substrates). 
Therefore, FCM was used to select repre-
sentative samples from the positive class 
(i.e., inhibitors or substrates). The results of 
the predictive performance of classification 
models constructed from the original data 
sets of positive class compounds and their 
clusters are provided in Table S1. The repre-
sentative clusters of positive class com-
pounds were selected with respect to their 
best predictive performance for multivariate 
analysis (i.e., 603 inhibitors and 27 sub-
strates). CSPR models of inhibitors/non-
inhibitors and substrates/non-substrates were 
separately constructed using DT, ANN and 
SVM analysis. For each class, a random 
sampling was performed by principal com-
ponents analysis (PCA) using the R software 
environment (R Development Core Team, 
2010) to create a training set (85 %) and an 
external test set (15 %), as summarized in 
Figure 1. 
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Multivariate analysis using DT, ANN and 
SVM  

Summaries of the true positive (TP), 
false positive (FP), false negative (FN) and 
true negative (TN) values for each classifier 
are provided in Table 1. Summaries of the 
predictive performance of the DT, ANN and 
SVM models of inhibitors/non-inhibitors and 
substrates/non-substrates are shown in Ta-
bles 2 and 3, respectively. A series of if-then 
rules for classifying compounds was ob-
tained from decision trees of inhibitors/non-
inhibitors and substrates/non-substrates, as 
displayed in Figures 3 and 4, respectively. 

The inhibitors/non-inhibitors model pro-
vided greater than 85 % accuracy, sensitivity 
and specificity for all investigated data sets, 
except for the sensitivity of the external test 
set (Sensext = 79.121 %). In addition, the 
MCC values showed that the models are ca-
pable of classifying both negative and posi-
tive classes, as evidenced by MCC values of 
0.832, 0.739 and 0.743 for training, 10-fold  
 
 

CV and external validation, respectively. 
The decision tree indicated that 8 de-

scriptors were selected for splitting data (i.e., 
nHAcc, HOMO-LUMO gap, ALogP, Qm, 
Energy, nCIC, RBN and LUMO). The 
nHAcc was selected as the root node with a 
cut-off criterion of 4 (Figure 3). Likewise, 
good performance was obtained for the sub-
strates/non-substrates model affording high 
accuracy, ranging from 88.89 to 100 %. 

Similar results were found for specificity, 
with values ranging from 80 to 100 %. As 
for the sensitivity, 100 % accuracy was ob-
tained for all investigated data sets. In addi-
tion, the model provided high performance 
for the prediction of both classes, as deter-
mined by the high MCC values (i.e., MCCtr 
= 1, MCCcv= 0.955 and MCCext= 0.800). No-
tably, only MW was selected from the set of 
11 descriptors in the construction of a single 
node decision tree for its classification with a 
cut-off value of 668.78 (Figure 4). 

 
 

 

Table 1: Summary of true and false positives/negatives of three classifiers 

 
DT  ANN  SVM 

 
Train CV Ext  Train CV Ext  Train CV Ext 

 
Inhibitors/non-inhibitors 

        

TP 456 439 72  463 448 73  453 444 72 
FP 56 73 19  49 64 18  59 68 19 
FN 48 90 8  71 87 13  83 89 16 
TN 741 699 116  718 702 111  706 700 108 

 
Substrates/non-substrates 

        

TP 23 23 4  23 23 4  23 23 4 
FP 0 0 0  0 0 0  0 0 0 
FN 0 1 1  0 0 0  0 0 0 
TN 21 20 4  21 21 5  21 21 5 

TP = true positive, FP = false positive, FN = false negative, TN = true negative. DT = decision tree, 
ANN = artificial neural network, SVM = support vector machine. Train = Training set, CV = 10-fold 
cross- validation set, Ext = external test set.  
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Table 2: Summary of predictive performance for classifying inhibitors and non-inhibitors using several 
machine learning classifiers 

 
Model 
 
 

 
No. of 
compounds 

 
No. of correctly 
classified  
compounds 

 
Statistical parameters  

 
Accuracy  
(%) 
 

 
Sensitivity 
(%) 

 
Specificity 
(%) 

 
MCC 

 
DT 
 
Training 

 
 
 
I = 512 
NI = 789 
Total = 1301 
 

 
 
 
1197 

 
 
 
92.006 

 
 
 
89.063 

 
 
 
93.916 

 
 
 
0.832 

CV 
 

I = 512 
NI = 789 
Total = 1301 
 

1138 
 

87.471 
 

85.742 
 

88.593 
 

0.739 
 

External I = 91 
NI = 124 
Total = 215 

188 
 
 

87.442 79.121 93.548 0.743 
 

 
ANN 
 
Training 
 
 

 
 
 
I = 512 
NI = 789 
Total = 1301 
 

 
 
 
1181 
 
 

 
 
 
90.776 
 

 
 
 
90.429 
 

 
 
 
91.001 
 

 
 
 
0.809 
 

CV 
 

I = 512 
NI = 789 
Total = 1301 
 

1150 88.378 87.500 88.973 
 

0.759 
 

External I = 91 
NI = 124 
Total = 215 

184 
 

85.581 80.220 89.516 0.703 
 

 
SVM 
 
Training 
 

 
 
 
I = 512 
NI = 789 
Total = 1301 
 

 
 
 
1159 
 

 
 
 
89.085 
 

 
 
 
88.477 
 
 

 
 
 
89.480 
 

 
 
 
0.774  
 

CV 
 

I = 512 
NI = 789 
Total = 1301 
 

1144 
 

87.932 
 
 

86.719 
 
 

88.720 
 
 

0.749  
 
 

External I = 91 
NI = 124 
Total = 215 

180 
 

83.721 
 

79.121 
 

87.097 
 
 

0.665 
 

I = inhibitors, NI = non-inhibitors, MCC = Matthews’ correlation coefficient, DT = decision tree, ANN = 
artificial neural network, SVM = support vector machine. Training = Training set, CV = 10-fold cross-
validation set, External = external test set. 
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Table 3: Summary of predictive performance for classifying substrates and non-substrates using sev-
eral machine learning classifiers 

 
Model 
 

 
No. of  
compounds 

 
No. of correctly 
classified  
compounds 

 
Statistical parameters  

 
Accuracy  
(%) 
 

 
Sensitivity 
(%) 

 
Specificity 
(%) 

 
MCC 

 
DT 
 
Training 
 
 

 
 
 
S = 23 
NS = 21 
Total = 44 
 

 
 
44 

 
 
100.000 

 
 
100.000 

 
 
100.000 
 

 
 
1.000 

CV 
 

S = 23 
NS = 21 
Total = 44 
 

43 97.727 100.000 95.240 0.955 

External S = 4 
NS = 5 
Total = 9 

8 88.89 100.000 80.000 0.800 

 
ANN 
 
Training 
 
 

 
 
 
S = 23 
NS = 21 
Total = 44 
 

 
 
44 

 
 
100.000 

 
 
100.000 

 
 
100.000 

 
 
1.000 

CV 
 

S = 23 
NS = 21 
Total = 44 
 

44 100.000 100.000 
 

100.000 
 

1.000 

External S = 4 
NS = 5 
Total = 9 

9 100.000 100.000 100.000 1.000 

 
SVM 
 
Training 
 

 
 
 
S = 23 
NS = 21 
Total = 44 
 

 
 
44 

 
 
100.000 

 
 
100.000 

 
 
100.000 

 
 
1.000 

CV 
 

S = 23 
NS = 21 
Total = 44 
 

44 100.000 100.000 
 

100.000 
 

1.000 

External S = 4 
NS = 5 
Total = 9 

9 100.000 100.000 100.000 1.000 

S = substrates, NS = non-substrates, MCC = Matthews’ correlation coefficient, DT = decision tree, 
ANN = artificial neural network, SVM = support vector machine. Training = Training set, CV = 10-fold 
cross-validation set, External = external test set. 
 



EXCLI Journal 2015;14:958-970 – ISSN 1611-2156 
Received: May 27, 2015, accepted: July 11, 2015, published: August 19, 2015 

 

 

 

967 

 
Figure 3: Decision tree for classifying inhibitors (I) and non-inhibitors (NI) 
 
 

 

Figure 4: Decision tree for classifying substrates 
(S) and non-substrates (NS) 
 
 

The inhibitors/non-inhibitors ANN model 
provided high predictive performance, as in-
dicated by MCC values of 0.759 and 0.703 
for 10-fold CV and the external test set, re-
spectively. The training set provided values 
greater than 90 % for accuracy, sensitivity 
and specificity, whereas values greater than 
87 % and 80 % for these three parameters 
were obtained for the 10-fold CV and exter-
nal test set, respectively. Notably, the sub-
strates/non-substrates ANN model provided 
remarkable prediction as evidenced by the 
100 % accuracy, sensitivity and specificity, 
as well as the MCC score of 1, which was the 
highest possible score. 

In summary, the three classifiers (e.g. 
DT, ANN and SVM) provided good predic-
tive classification models, as deduced from 
their high statistical parameters. For the clas-
sification of inhibitors/non-inhibitors, the 
highest MCC value (0.759) and accuracy 
(88.378) of 10-fold CV were afforded by the 
ANN model, whereas the best predictive per-
formance of the external test set was provid-
ed by decision tree analysis, which produced 
an MCC = 0.743 and accuracy = 87.442 %. 

As for the classification of substrates/ 
non-substrates, ANN and SVM afforded the 
same prediction performance level, produc-
ing correctly classified instances 100 % of 
the time in training, 10-fold CV and external 
validation. The decision tree model showed 
acceptable prediction with an MCC of 0.955 
and 0.800 for 10-fold CV and the external 
test set, respectively. However, it was found 
from the external validation that one non-
substrate was incorrectly classified as a sub-
strate. The chemical structure of this com-
pound (Supplementary Figure S3) and its 
calculated descriptor values are provided in 
the Supplementary Information. 
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From the decision tree model of the sub-
strates/non-substrates data set (Figure 4) it 
can be seen that MW was the single and most 
important feature for classification with a 
cut-off value of 668.78, and any compounds 
with their MW greater than this cut-off value 
were classified as substrates. The MW of this 
incorrectly classified compound is 692.80; 
therefore, it was misclassified as a substrate.  
 

CONCLUSION 

The promiscuity of Pgp renders the de-
termination of its ligand endpoints a great 
challenge. In this study, three classifiers (e.g. 
DT, ANN and SVM) were used to classify 
2,477 compounds as Pgp-interacting or non-
interacting, as a function of eleven important 
descriptors. The predictive model provided 
insights into important physicochemical 
properties governing the activity of com-
pounds towards the Pgp transporter, as well 
as suggesting pertinent classification criteria 
that could be beneficial for the screening and 
design of Pgp inhibitors for a wide range of 
therapeutic applications.  
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