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Abstract: Copper is an important national resource, which is widely used in various sectors of the
national economy. The traditional detection of copper content in copper ore has the disadvantages of
being time-consuming and high cost. Due to the many drawbacks of traditional detection methods,
this paper proposes a new method for detecting copper content in copper ore, that is, through the
spectral information of copper ore content detection method. First of all, we use chemical methods to
analyze the copper content in a batch of copper ores, and accurately obtain the copper content in
those ores. Then we do spectrometric tests on this batch of copper ore, and get accurate spectral data
of copper ore. Based on the data obtained, we propose a new two hidden layer extreme learning
machine algorithm with variable hidden layer nodes and use the regularization standard to constrain
the extreme learning machine. Finally, the prediction model of copper content in copper ore is
established by using the algorithm. Experiments show that this method of detecting copper ore
content using spectral information is completely feasible, and the algorithm proposed in this paper
can detect the copper content in copper ores faster and more accurately.
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1. Introduction

Copper is one of the oldest metals discovered by human beings. About 7000 years ago, casting of
bronze ware appeared in Eurasia [1]. The proven reserves of copper resources in the world are
2.478 billion tons. The top ten countries with global copper reserves are Chile, the United States, Peru,
Congo (Kinshasa), Australia, China, Russia, Mexico, Canada, and Argentina [2]. With the progress of
the times, the continuous innovation of science and technology and the continuous development of
world industrialization, the applications of copper are more and more extensive. As shown in Figure 1,
open-pit ore mining situation is commonly used.

Recovery is an important index in mineral processing technology, which reflects the level of mineral
processing technology and the quality of mineral processing work. For the copper content level in copper
ore, the mineral processing technology adopted is not the same. Therefore, how to quickly and accurately
measure the copper content in copper ore is particularly important. There are two kinds of traditional
copper ore content determination [3–5], the first is the flame atomic absorption method, which has high
accuracy, but low sensitivity and it is difficult to determine non-metallic elements by this technique.
The second is to use chemical reagents to detect copper ores. Although this method has the same high
accuracy, it is highly affected by the chemical reagents used, and the waste liquid causes great pollution.
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Therefore, how to measure copper content in copper ore stably and efficiently is a problem that must
be solved in mineral processing technology, which is of great significance to reduce costs and improve
efficiency. Spectral analysis technology is very mature, with the advantages of nondestructive testing,
fast detection speed, high resolution, low cost. In recent years, it has become a trend to use spectral analysis
instead of traditional analysis methods.Sensors 2020, 20, x FOR PEER REVIEW 2 of 17 
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under greenhouse conditions and found that Prosopis laevigata can grow normally under heavy metal 
pollution and is a potential plant for land reclamation. Chauhan and Mathur [10] proposed through 
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Mining in mining areas often leads to the destruction of the ecological environment, and it is
extremely easy to change the nature of the soil on the surface and damage the health of surrounding
residents. Therefore, the abandoned land after mining in the mining area should be reclaimed.
Phytoremediation [6] can effectively absorb heavy metals or other toxic substances in the soil,
thereby improving the soil. Luo [7] and others used commercial chrysanthemums to carry out heavy
metal soil remediation. The results showed that after three years of soil remediation, the Cd in the soil
decreased by 78.1%, and the Zn content decreased by 28.4%. In addition, the rice and green vegetables
grown from the repaired soil meet the requirements of dietary safety. Saleem et al. [8] planted four kinds
of jute products (HT, C-3, GC and SH) in the soil heavily polluted by copper to conduct experiments.
The experiments show that C-3 and HT have the strongest survivability in copper-contaminated soil
and may absorb Cu in the soil. Muro-Gonzalez et al. [9] conducted experiments under greenhouse
conditions and found that Prosopis laevigata can grow normally under heavy metal pollution and is a
potential plant for land reclamation. Chauhan and Mathur [10] proposed through experiments that
sunflower can effectively remove heavy metals in contaminated soil.

Spectral analysis is a quantitative analysis method based on the principle of spectroscopy by
detecting the characteristic wavelength and intensity of substances. Because it does not damage the
sample during analysis, the operation is relatively simple, and the analysis speed is relatively fast,
it has been widely used in many fields [11–16]. Because copper ore contains gangue minerals and other
impurities, these impurities more or less affect the final results of spectral data. Therefore, the spectral
data of copper ore contains many other spectral information related to the detection of copper ore
content, which causes the spectral data of copper ore to have too high dimensions and redundant
information. If the spectral data are directly used for modeling, the input dimension of the model will
be too high, the amount of calculation will be large, and the structure will be too large. Therefore,
the original spectral data of copper ore should be preprocessed, and dimensionality reduction is one of
the most effective preprocessing methods for high-dimensional data. Dimension reduction can reduce
the influence of noise on sample training as much as possible by removing the noise and redundant
information in the data set, so as to simplify the training and prediction of machine learning models.
As the data is compressed from high-dimensional to low-dimensional, the structure of the machine
learning model will become simpler, the accuracy of training will increase and the time required for
model training will also be greatly reduced.

Because the spectrum method can detect the sample quickly and without damage. So spectroscopy
is more and more used in geology. Spectral technology can effectively identify minerals and quickly
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analyze minerals to identify exploration minerals [17]. Zhou et al. [18] used the spectral information of
near standard soil samples to conduct hyperspectral modeling of lead content. The results show that this
method can solve the problems of complex composition in soil and weak spectral information of heavy
metals, and can further use remote sensing information to monitor soil heavy metals. Zhao et al. [19]
established linear regression model and partial least square regression model by using the multispectral
data obtained by UAV. The results show that the multispectral data can monitor the reclamation
effect efficiently and quickly. Shin [20] and others studied the spectral information of heavy metal
contaminated soil, and obtained that the spectral response of soil was positively correlated with the
concentration of heavy metal. Zhang et al. [21] carried out four processing methods for the spectral
data of heavy metal soil, and removed the noise of spectral information. Partial least squares regression
and RBF neural network are used to model. The results show that the content of heavy metals in waste
land can be effectively detected by using spectral information.

Principal component analysis (PCA) [22] is a simple and effective method for data processing,
compression and dimensionality reduction [23–25]. It can use a small amount of data to retain the
most important characteristics of the original data. PCA uses the direction of the largest variance of
the original data as the projection, because the maximum variance of the data gives the most important
information contained in the data. PCA can remove useless noise and reduce a lot of computation.
Therefore, we used PCA to preprocess the original spectral data of copper ore.

Because machine learning models can process a large number of data, analyze and fit the data,
and have strong generalization ability, in recent years, more and more researchers have begun to
use and study machine learning, which leads to the continuous development of machine learning
algorithms. Machine learning has made great progress in material science. Now more and more new
materials cannot be found and designed without machine learning. Reference [26] proposes that in
materials science, most of the existing experiments and computational modeling consume a lot of time
and resources. Therefore, the use of machine learning to discover the properties of new materials,
as well as the design and application of new materials, has been paid more and more attention. In this
paper, the application of machine learning in material science is discussed in detail. Through the
combination of material experiment and machine learning, a new idea is provided for the discovery of
new material parameter performance. Reference [27] proposed that the discovery of new materials
urgently needs to explore more advanced machine learning algorithms. Reference [28] summarized
the application of machine learning in material design and material discovery of rechargeable batteries,
discusses the problems of machine learning in the prediction of rechargeable battery performance,
the structure and accuracy of machine learning models, and the problem of sample dimensions.
Reference [29] discusses the importance of machine learning in the development and analysis of
lithium sulfur batteries, and analyzes the key factors affecting lithium sulfur batteries by using machine
learning method.

Extreme learning machine [30] (ELM) is a machine learning algorithm designed for single hidden
layer feedforward neural network proposed by Huang in 2006. Since the algorithm randomly generates
a hidden layer threshold and input weight, the algorithm does not need gradient back-propagation to
adjust the weight. In this algorithm, the number of hidden layer neurons can be designed according
to artificial experience or iterative optimization, and then the unique optimal output matrix can be
solved by solving equations. Because of its simple structure and fast learning speed, more and more
researchers begin to study this ELM algorithm deeply and use it in various fields [31–34]. Liang et al.
proposed an online learning extreme learning machine (OS-ELM) by introducing an online learning
mechanism into ELM [35]. This OS-ELM can update its own weights and thresholds with the training
of new samples, without the need to retrain the model to obtain new weights and thresholds. Then,
Huang et al. applied the integrated learning method to OS-ELM and proposed integrated online ELM
(EOS-ELM) [36]. In 2016, Qu and Lang changed the single hidden layer of ELM to two hidden layers
and proposed a two hidden layer extreme learning machine (TELM) [37]. In TELM, the number of
neurons in the first hidden layer and the second hidden layer are the same, and the neuron connection
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method is the same as that of ELM, which is that the neurons are fully connected. In this paper, the two
hidden layer Extreme learning machine with variable neuron nodes (VTELM) is proposed. The number
of nodes in the middle two layers can be different, and the regularization standard is used to constrain
the connection matrix between the second hidden layer and the output layer, which greatly improves
the generalization ability of the Extreme learning machine.

The chapters of this paper are arranged as follows: the first chapter introduces the spectral analysis,
principal component analysis and copper ore detection status. The second section introduces the
preparation of copper ore samples and the process of spectral testing. In the third chapter, the algorithm
flow of ELM and TELM is briefly described, and a two hidden layer extreme learning machine
algorithm with variable hidden layer nodes (VTELM) is proposed. In the fourth part, the VTELM
model is simulated and the simulation results are analyzed. Finally, the fifth part summarizes the main
conclusions of this study.

2. Data Acquisition and Processing

All the copper ore samples are from the Deerni copper deposit (Qinghai Province, P.R. China) with
a total of 251 samples. For copper ore samples, we used a SVC HR-1024 portable ground spectrometer
(Vista Company, city, state abbrev, USA) for spectral testing. The parameters of the spectrometer are
shown in Table 1.

Table 1. Parameters of SVC HR-1024.

Spectrometer Parameters Parameter Value

Spectral Range 350–2500 nm

Internal Memory 500 Scans

Channels 1024

Spectral Resolution (FWHM)
≤3.5 nm, 350–1000 nm
≤9.5 nm, 1000–1850 nm
≤6.5 nm, 1850–2500 nm

Bandwidth (nominal)
≤1.5 nm, 350–1000 nm
≤3.6 nm, 1000–1850 nm
≤2.5 nm, 1850–2500 nm

Minimum Integration 1 millisecond

Firstly, we clean and dry the copper ore samples collected, and then grind them. We chose to
perform experiments from 10:00 to 14:00 during the day, while the weather was clear and cloudless.
During the experiment, the probe of the spectrometer was perpendicular to the surface of the copper
ore sample, and the distance between the probe and the sample surface should be 300 mm, the scanning
time of the instrument was 1 s·times−1, and the whiteboard measurement value was corrected every
10 min. In order to reduce the measurement error, we conducted 10 spectral experiments on each
sample of the spectrometer for three consecutive days. At the end of the experiment, the spectral
information is collected, and the average value is taken as the spectral data (973 features). After the
spectral test is completed, the spectral data of copper ore samples are obtained by preprocessing the
measured spectral data such as band fitting. Figure 2 shows the spectrum of a copper ore.
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Figure 2. Spectrum of a copper ore.

3. Introduction to Neural Network

3.1. Extreme Learning Machine (ELM)

Single hidden layer Extreme learning machine is a kind of feedforward neural network. It consists
of input layer, one hidden layer and output layer. For N arbitrary copper sample (xi, ti), where xi =

[xi1, xi2, . . . ,xin]T
∈ Rn, ti = [ti1, ti2, . . . ,tim]T

∈ Rm, then the calculation formula of the extreme learning
machine is as follows (Equation (1)):

fL(x) =
L∑

i=1

βigi(x) =
L∑

i=1

βig(ωi ∗ x j + bi), j = 1, . . . . . . , N (1)

where L represents the number of neurons in the hidden layer of ELM; N represents the total number
of samples entering the model training; βi represents the weight vector between the hidden layer
and output layer; ωi is a random value, which represents the connection weight between the hidden
layer neuron and the input feature; g represents the activation function; bi represents the offset vector;
xj represents the input vector.

The calculation process of extreme learning machine is very similar to that of standard back
propagation neural network, but the output matrix of hidden layer is pseudo inverse matrix.
From Formula (1), we can draw the following conclusions:

Hβ = T (2)

In Equation (2):

H =


g(ω1 ∗ x1 + b1) ••• g(ωL ∗ x1 + bL)

•

•

•

•••

•

•

•

g(ω1 ∗ xN + b1) ••• g(ωL ∗ xN + bL)


N×L

(3)
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where: m is the number of outputs; H is the output matrix of hidden layer; T is the objective matrix of
the training set.

Since the threshold of the hidden layer of ELM and the connection weight between the hidden
layer and the input layer are randomly generated, the linear equation Hβ = T can be solved by the least
squares method:

Minimize:‖Hβ− T‖ (5)

Huang put forward two theorems on the basis of predecessors, and proved that the least square
solution in the ELM model is:

∧

β = H+T (6)

where H+ is the Moore Penrose generalized inverse of hidden layer output matrix H, and the least
square solution of Hβ = T is unique.

3.2. Two Hidden Layer Extreme Learning Machine (TELM)

The TELM neural network is based on ELM, changing one hidden layer into two hidden layers.
The number of neurons in the first layer and the first layer is the same, and the neurons in the previous
layer are connected to each neuron in the next layer. During the operation of the TELM model,
the connection weight between the first hidden layer and the input layer and the threshold value of the
first hidden layer neuron are randomly selected, while the two hidden layer neurons The number can
be obtained according to an empirical formula.

The TELM algorithm updates the output matrix of the second hidden layer by solving the
connection weight of the first hidden layer and the second hidden layer and the threshold of the
second hidden layer. Through calculation, the predicted output of TELM can be infinitely close
to the actual output. TELM algorithm also has the advantages that ELM algorithm does not have,
such as rarely falling into over fitting, updating the optimal solution and more suitable for big data
processing. After algorithm analysis and actual analysis, TELM has unparalleled advantages in
predictive regression and classification compared with ELM.

TELM network structure diagram is shown in Figure 3, algorithm flow chart is shown in Figure 4.
In the TELM algorithm, we mainly solve the value of parameters W1, B1, β.
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Firstly, we assume that the training sample data set of TELM neural network is {X,T} = {xi,ti}(i =

1,2, . . . ,Q), where X represents the input feature and T represents the feature. In TELM model, the first
layer of hidden layer has the same activation function and the same number of hidden layer nodes as
the second layer.

Then, in the algorithm design of TELM, the two hidden layers of TELM are regarded as one hidden
layer, so TELM can be regarded as ELM. We can imitate ELM to get the output matrix H as follows:

H = g(WX + B) (7)

It can be seen from the workflow of the TELM that W and B are the weights and thresholds of
hidden layers in ELM which are randomly initialized.

Next, by the ELM algorithm we can get matrix β:

β = H+T (8)

Now, add a second hidden layer to the ELM algorithm, so that the ELM contains two hidden
layers and restore it to TELM, and each hidden layer neuron is connected to each other, we can get the
prediction output matrix of the second hidden layer H1 is:

H1 = g(W1H + B1) (9)

Then the real output matrix H1* of the second hidden layer is:

H1∗ = Tβ+ (10)

where β+ is the generalized inverse of β.
Let H1 = H1*, which can maximize the predicted value of TELM close to the true value.
Now we assume the matrix WHE = [B1 W1], so the weights W1 and threshold B1 of the second

hidden layer can be solved as follows:

WHE = g−1(H1∗)HE
+ (11)

where H+
E is the generalized inverse of matrix HE = [1 H]T, 1 represents a Q-dimensional vector with

each element 1. g−1(x) is the inverse function of g(x).
From Equation (11) we solve the parameters W1 and B1, then we can re-solve the second hidden

layer prediction output H2:
H2 = g(W1H + B1) = g(WHEHE) (12)

Therefore, according to Figure 4 we can calculate β as:

βnew = H2
+T (13)

Finally, we can get the final output f (x) of the neural network as follows:

f (x) = H2βnew (14)
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In the calculation of β, when βTβ is nonsingular, β+ = (βTβ)−1βT.

3.3. Two Hidden Layer Extreme Learning Machine Algorithm with Variable Hidden Layer Nodes (VTELM)

The structure of the VTELM neural network is similar to the TELM structure. The difference is
that the neuron nodes of each hidden layer of VTELM can be different from each other. In the process
of VTELM model operation, because the connection weights of the first hidden layer and the input
layer, the connection weights of the second hidden layer and the first hidden layer, as well as the
threshold value of each hidden layer neuron are random values, we only need to set the nodes of the
first layer hidden layer and the second layer hidden layer. The VTELM algorithm solves the connection
weight between the output layer and the second hidden layer, which can make the final output of
the VTELM neural network tend to the actual desired output result. And in this algorithm, only the
neuron nodes of the first hidden layer and the second hidden layer need to be artificially set, and the
optimal solution can be obtained without setting other parameters.

The network structure of the VTELM neural network is shown in Figure 5, and the algorithm flow
can be represented in Figure 6. It can be seen from Figure 6 that VETLM only needs to solve the value
of β to get the optimal output.
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In Figure 5, {x1, x2, . . . ,xn} represents the input characteristics of training samples, ωij represents
the connection weight between the j-th neuron node in the input layer and the i-th neuron node in the
first hidden layer; ωki represents the connection weight value between the k-th neuron node in the
second hidden layer and the i-th neuron node in the first hidden layer; βkm refers to the connection
between the k-th neuron node in the second hidden layer and the m-th neuron node in the output layer
weight; {y1, y2, . . . ,ym} represents the output characteristics of training samples.
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In VTELM algorithm, in order not to lose generality, suppose the connection weight ω1 between
the first hidden layer and the input layer and the neuron threshold b1 of the first hidden layer are set
as follows:

w1 =



ω11 ω12 ••• ω1n
ω21 ω22 ••• ω2n

•

•

•

•

•

•

•••

•

•

•

ωl1 ωl2 ••• ωln


l×n

b1 =



b1

b2

•

•

•

bl


l×1

(15)

Let the connection weight ω2 between the first hidden layer and the second hidden layer and the
threshold b2 of neurons be set as:

w2 =



ω11 ω12 ••• ω1l
ω21 ω22 ••• ω2l
•

•

•

•

•

•

•••

•

•

•

ωz1 ωz2 ••• ωzl


z×l

b2 =



b1

b2

•

•

•

bz


z×1

(16)

The connection weight β between the second hidden layer and the output layer is:

β =



β11 β12 ••• β1m
β21 β22 ••• β2m

•

•

•

•

•

•

•••

•

•

•

ωz1 βz2 ••• βzm


z×m

(17)

Firstly, the number of training samples is Q, the input eigenmatrix is X, and the expected output
eigenmatrix is Y. There are n input features in the sample input, so there are n neuron nodes in the
input layer of VTELM; There are m output features in the sample output, so there are m neuron nodes
in the output layer of VTELM; Then assume that there are l neurons in the first hidden layer and z
neurons in the second hidden layer, and the activation functions of the two layers are the same.

X =



x11 x12 ••• x1Q
x21 x22 ••• x2Q
•

•

•

•

•

•

•••

•

•

•

xn1 xn2 ••• xnQ


n×Q

Y =



y11 y12 ••• y1Q
y21 y22 ••• y2Q
•

•

•

•

•

•

•••

•

•

•

ym1 ym2 ••• ymQ


m×Q

(18)

Then, in the algorithm design of VTELM, the connection weight ω1 between the first hidden layer
and the input layer and the neuron threshold b1 of the first layer are initialized randomly, then the
output matrix H1 of the first hidden layer is:

H1 = [g(ω1 ∗ x) + b1] (19)

The weights ω2 of the connection between the second hidden layer and the first layer and the
threshold value b2 of the second layer neurons are initialized randomly. Then, H1 is used as the input
matrix of the second hidden layer to calculate the output matrix H2 of the second hidden layer:

H2 = [g(ω2 ∗H1) + b2] (20)
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Therefore, parameter β is:
H2β = T (21)

It can be concluded that:
∧

β = H+
2 T (22)

In order to prevent the output from overfitting, improve the robustness and generalization
performance of the network, and make the network more stable, a regularization term is added to the
solution process β to constrain [38,39]. It can be expressed as:

argminE(W)
β

= argmin
β

(
1
2
‖β‖2 +

1
2
λ‖ε‖2), s.t.

Z∑
i=1

βig(ωi•x j + bi) − t j = ε j, j = 1, 2, . . .Q (23)

In Equation (23), the sum of squares of ‖ε‖2 error represents empirical risk; ‖β‖2 represents
structural risk, which originates from the principle of maximizing marginal distance in statistical theory.
By using Lagrange equation, the conditional extremum problem of Equation (23) can be transformed
into unconditional extremum problem:

l(β, ε,α) =
1
2
‖β‖2 +

λ
2
‖ε‖2−

Z∑
j=1

α j(g(ωi•x j + bi) − t j − ε j)z (24)

The simplified Equation (24) is:

l(β, ε,α) =
1
2
‖β‖2 +

λ
2
‖ε‖2 − α(H2β− T − ε) (25)

α = [α1,α2, . . . ,αN];α1 ∈ Rm( j = 1, 2, . . .N) stands for the Lagrange multiplier. Let the gradient
of Equation (25) be 0: 

∂l
∂β = βT

− αH2 = 0
∂l
∂ε = λεT + α = 0

∂l
∂α = H2β− T − ε = 0

(26)

If the input feature N is larger than any layer of neuron nodes, that is, N > L or N > Z, it can be
obtained by Equation (26):

β = (
I
λ
+ HT

2 H2)
−1

HT
2 T (27)

If the input feature N is less than any layer of neuron nodes, that is, N < L or N V< Z, it can be
obtained by Equation (26):

β = H2
T(

I
λ
+ H2HT

2 )
−1

T (28)

If the input feature n is equal to the neuron node of each layer, that is, N = L = Z, then:

β = H+
2 T (29)

where H+
2 is the Moore Penrose generalized inverse of H2. The methods of calculating the Moore-Penrose

generalized inverse of a matrix include: full rank decomposition method, inverse matrix method,

singular value decomposition method (SVD). When HT
2 H2 is nonsingular H+

2 =
(
HT

2 H2
)−1

HT
2 , or when

H2HT
2 is nonsingular H+

2 = HT
2

(
H2HT

2

)−1
.

Then the output of VTELM network is obtained as follows:

y = H2β (30)
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The basic steps of the final VTELM algorithm are:
(1) Firstly, we assume that the given training sample set is {X,T} = {xi,ti}(i = 1,2, . . . ,Q). Hidden layer

chooses the most appropriate activation function;
(2) Randomly select values for the weightω1 and threshold B1 of the first hidden layer, and calculate

the output matrix H1 of the first hidden layer by H1 = [g(ω1 × x)+b1];
(3) Randomly select values for the weight ω2 and threshold B2 of the second hidden layer,

and calculate the output matrix H2 of the second hidden layer by H2 = [g(ω2 × H1)+b2];
(4) Solve the connection weight β of the second layer and the output layer, and compare the input

features (N) and number of neuron nodes size (L,Z);
(5) If N < L or N < Z, then β = H2

T( I
λ + H2HT

2 )
−1

T;

(6) If N > L or N > Z, then β = ( I
λ + HT

2 H2)
−1

HT
2 T;

(7) If these two values are equal: β = H+
2 T;

(8) Calculate the final output of the VTELM algorithm: f (x) = g
{
ω2•[g(ω1•x) + b1] + b2

}
β.

4. Experimental Results and Discussion

4.1. Processing of Copper Ore Spectral Data

The spectral data obtained by the copper ore sample through the spectral test has 973 dimensions.
Due to the high dimensionality of copper ore and information redundancy, the network scale will
be too complicated, the network training accuracy will decrease and the modeling effect will be
worse. Therefore, principal component analysis (PCA) is used to simplify the spectral data, and the
cumulative contribution rate can reach 99.8% when the principal component dimension is 15, and then
the 15 dimensional principal component is used as the input of the network.

Figure 7 shows the cumulative contribution rate of the first three principal components and
Figure 8 shows the spatial distribution of the first three principal components. Therefore, the initial data
is compressed from 973 × 241 to 15 × 241, which reduces the interference of redundant information,
improves the operation speed of the network and improves the accuracy of the model.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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 Figure 8. Spatial distribution map.

4.2. Neural Network Comparison

First, this paper used ELM, BP, and RBF to establish inversion models of the copper content in
copper ore. Because of the small number of samples collected, in order to maximize the use of 251 sets
of data to test different models, our three models have adopted cross validation method for 10 times of
copper ore cross validation. Table 2 shows the test results of the three models, and compares the models
in terms of time consumption (s), root mean square error (RMSE) and coefficient of determination (R2).

Table 2. Copper content detection models based on different neural networks.

Model Type Time Consumption (s) R2 RMSE

BP 0.202432 0.62688 0.15404
ELM 0.025085 0.62834 0.13653
RBF 0.062342 0.13653 1.6936

In Table 2, it can be seen that the root mean square error of ELM is 0.13653, which is the lowest of
the three models. The root mean square error of BP is 0.15404, which is close to that of ELM, but the
training time of BP is 12 times that of ELM. Therefore, the ELM model is most suitable for copper ore
content detection.

4.3. Comparison of Copper Content Detection Models of Different Models

By comparing the experimental results of BP, ELM and RBF neural networks, we choose to use
ELM to detect copper ore content. However, due to the limitation of ELM, VTELM model is proposed
in this paper. In order to verify the superiority of VTELM, this paper uses ELM, TELM and VTELM
to establish the inversion model of copper content in copper ore, and the experiment is simulated in
MATLAB r2016a environment. Finally, by comparing the root mean square error, prediction time and
coefficient of determination of the prediction set, the performance of the copper content detection
model was evaluated.

Figure 9 shows the single optimal cross validation results of Cu content models of ELM, TELM and
VTELM for copper ores. Table 3 lists the performance of ELM, TELM and VTELM from the coefficient
of determination (R2), root mean square error (RMSE), time consumption (S), and the number of hidden
layer nodes. The results of specific analysis are as follows:
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Table 3. Results of copper content detection model test.

Model Type R2 RMSE S Number of Hidden Layer Nodes

ELM 0.74822 0.12112 0.020792 11
TELM 0.83589 0.075211 0.135268 48

VTELM 0.88309 0.055629 0.027361 46/137

First of all, from the test results, compared with ELM and TELM, VTELM has the smallest root
mean square error, which shows that the output value of VTELM is closer to the true value, so it can
detect the Cu content in copper ore more accurately;

Secondly, compared with ELM and TELM, VTELM model has higher coefficient of determination,
which indicates that VTELM has better goodness of fit and can be closer to the real value.

Third, the training time of TELM was significantly longer than that of ELM and VTELM, while the
training time of ELM and VTELM was similar. This is because VTELM does not need to solve the connection
weights of the two hidden layers and the threshold of the second hidden layer, and the time consumed is
mainly used to solve the output matrix β.

Finally, for hidden layer nodes, ELM, TELM and VTELM all adopt a trial method, that is, hidden layer
nodes iterate from 0 to 200 to find the best hidden layer nodes. For the copper ore Cu content detection
model, ELM needs 11 hidden layer nodes, TELM needs 48 hidden layer nodes, and for VTELM, the first
layer hidden layer nodes are 46, the second layer hidden layer nodes are 137. The more nodes in the
hidden layer, the stronger the nonlinearity can be expressed by the neural network, which can describe the
nonlinear characteristics of the fitting objective function more accurately, but the generalization performance
will be reduced [40,41]. However, VTELM requires the most hidden layer nodes, and the generalization
ability does not decrease. The results show that VTLEM has the highest accuracy and the strongest
generalization ability.

In summary, VTELM has stronger generalization ability than TELM and ELM, the model is more
accurate, and the calculation is more simple. Table 4 shows the detection method, chemical analysis
method and instrument analysis method of VTELM based on copper ore spectral data, and compares
them from three aspects of accuracy, time consumption and cost. It can be seen that the detection
accuracy of the instrumental analysis method is low, and the chemical detection method has a high
accuracy, but the cost is high and the time is long. The copper content detection method in copper
ore proposed in this paper based on spectral data and VTELM algorithm has the advantages of short
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time-consuming, low cost, and high prediction accuracy, which can meet the needs of copper ore
content identification.

Table 4. Comparison of detection methods.

Test Method Detection Accuracy (%) Time Consumed (h) Cost Detection (yuan)

Instrument testing 73 3 About 400
Chemical method 99 70 About 21,000

VTELM 98.4 3 About 300

In summary, the copper content detection model based on spectral data proposed in this paper is
an improved two hidden layer extreme learning machine algorithms with variable hidden layer nodes,
which has the optimal output matrix β and the weight matrix and hidden layer nodes of each hidden
layer. Its generalization ability is better than ELM and TELM, its running speed is faster than TELM,
and its coefficient of determination is the highest. Compared with the traditional instrument analysis
method, this method is simple to operate, high in accuracy, fast in detection speed and low in cost.

5. Conclusions

In view of the shortcomings of traditional copper ore detection methods, this paper proposes a
copper content detection model based on spectral data and VTELM, and validates the model with
collected copper ore samples. First, we collected 241 copper ore samples, used chemical analysis to
detect the copper ore to obtain the accurate copper content in the copper ore, and then performed a
spectral test on it to obtain the initial spectral data. Since the initial spectral data has a large dimension
and contains other useless information, PCA is used to reduce the dimension. Then, BP, ELM, and RBF
were modeled separately using the reduced-dimensional spectral information. The modeling results
showed that ELM has the fastest running speed and the smallest root mean square error. Due to the
limitations of the ELM model, and in order to further improve the generalization ability of the model
and reduce the difference between the predicted output of the model and the actual output, this paper
proposes the VTELM model and conducts modeling experiments on ELM, TELM, and VTELM.
By comparing the three models of ELM, TELM, and VTELM, VTELM has the highest coefficient of
determination, the smallest error, and the running time is much lower than that of TELM, almost the
same as ELM. Compared with the traditional methods, the copper content inversion model based on
the reflectance spectrum and VTELM algorithm has the advantages of high accuracy, high reliability
and fast detection speed. This paper provides a new idea for the detection method of the copper
content in copper ore.
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