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Constraints placed upon the phenotypes of organisms result from their

interactions with the environment. Over evolutionary time scales, these con-

straints feed back onto smaller molecular subnetworks comprising the

organism. The evolution of biological networks is studied by considering a net-

work of a few nodes embedded in a larger context. Taking into account this fact

that any network under study is actually embedded in a larger context, we

define network architecture, not on the basis of physical interactions alone,

but rather as a specification of the manner in which constraints are placed

upon the states of its nodes. We show that such network architectures posses-

sing cycles in their topology, in contrast to those that do not, may be

subjected to unsatisfiable constraints. This may be a significant factor leading

to selection biased against those network architectures where such inconsistent

constraints are more likely to arise. We proceed to quantify the likelihood of

inconsistency arising as a function of network architecture finding that, in the

absence of sampling bias over the space of possible constraints and for a

given network size, networks with a larger number of cycles are more likely

to have unsatisfiable constraints placed upon them. Our results identify a con-

straint that, at least in isolation, would contribute to a bias in the evolutionary

process towards more hierarchical -modular versus completely connected net-

work architectures. Together, these results highlight the context dependence of

the functionality of biological networks.
1. Introduction
Probabilistic models of biological networks serve as a bridge between theory

and experiment. On the one hand, parameters in a probabilistic model can be

fit to data obtained by measuring the levels of each variable. For example, in

gene-regulatory networks, gene expression can be measured using microarray

or sequence census methods [1–3]. On the other hand, one can model a biologi-

cal network as a deterministic or stochastic reaction network which tracks levels

of each molecule [4,5]. From the solution to this latter kind of model, one can

then obtain theoretical predictions for the parameters of the probabilistic

model in terms of reaction rates. Comparison of the parameters fitted from

data with the predicted values serves as a means for comparing theory with

experiment and can serve as a starting point for improving the theory or for

designing future experiments [6].
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An important feature of experimental science is that it

involves partial information. In the course of a single measure-

ment, one typically is not able to observe a biological network

in its entirety. Rather, one observes a subnetwork at a time and

only obtains a more complete picture by later combining these

partial views. This contrasts with theory, where one makes a

representation of a closed system that provides explicit values

for all quantities of interest. In order for a probabilistic model

to serve its purpose, it should also accomodate partial infor-

mation and thus we will explicitly consider the effects of (i)

carving out a subnetwork from its context and (ii) coarse-grain-

ing observables. Observables representing partial information

will generally arise in situations where a system is interacting

with another system. This situation arises in the context of

interpreting the potential existence of modular substructure

within biological network data deriving from any given organ-

ism as well as with respect to the interactions between an

organism and its environment.

Inconsistency arises when a network context places more

constraints on a subnetwork than it is capable of satisfying.

The impact of this issue on genetic interactions has been con-

sidered previously in the context of population genetics [7].

We exhibit a method of checking for such consistency and

evaluating its likelihood of arising in the context of building

probabilistic models of biological networks. When apparent

inconsistency is observed, it must arise from the network

context interacting with only partial information of the

states of a given subnetwork. This would indicate that infor-

mation about the network context must be included in order

to maintain a consistent model of the system.

In §2, we describe the relationship between representations

of biological networks and an abstraction of these referred to as

network architecture that indicates the manner in which a

subset of a network is connected to its context. We explain

the connection between stochastic process models of biological

networks and a generalization of the genotype–phenotype

map applying to arbitrary biological networks referred to as

network–network state maps in §3. Sections 4–6 contain

examples of the underlying mathematical justification for our

claims (more details of which are provided in the electronic

supplementary material), and they can be skipped by readers

who are primarily interested in the intuitive implications of

our analysis. In §4, we introduce the concept of network mod-

ules and define probability distributions over their states.

Sections 5 and 6 describe the different compatibility conditions

that arise for different biological network architectures and

demonstrate how these compatibility conditions lead to a set

of inequalities determining a space of probability distributions

for each network architecture. Sections 7 and 8 examine these

constraints for the example of the three-cycle network archi-

tecture. Section 9 computes the likelihood of unsatisfiable

constraints for all biological network architectures on four vari-

ables that possess cycles. Finally, §10 explains implications for

the evolution of biological network architectures of the result

that networks with a larger number of cycles are more likely

to have unsatisfiable constraints placed upon them.
2. Environments of biological networks
as abstract contexts

Most studies of biological networks focus on one type of

variable in isolation. For example, many studies focus on one
of metabolic networks, protein–protein interaction networks,

signalling networks, gene-regulatory networks, or population

and community dynamics in the context of ecological net-

works. A true biological network involves all of these acting

together to produce biological phenomena at all scales.

Models that integrate information about biological networks,

rather than focusing exclusively on particular types of mol-

ecules, will likely become more common in the near future

[8–10]. The systems biology graphical notation (SBGN) sup-

ports the ability to express many of these networks within the

context of a single formalism ([11], figure 1). Even when the

different types of biological variables are combined into a

single network, it is impossible to study all variables simul-

taneously. As a result, it is always the case that a subnetwork

is selected for investigation and the remainder of the network

is treated as an environment or context. In figure 1, we show

the SBGN process form of six simple examples of biological net-

works. In each case, we have selected a subset of variables that

form a subnetwork as an example of how one might proceed in

the investigation of a particular biological system. Once such a

subnetwork is chosen, it is possible to abstract away the vari-

ables that are not part of the subnetwork. This is represented

by the abstract influence (AI) network for each simple example

on figure 1b. The transformation from SBGN to the AI network

is given simply by collapsing the disconnected components of

the ancestors of each node in the focal subnetwork into single

AI nodes. This results in a bipartite graph that captures the

dependencies among the environmental factors as experienced

by the subnetwork and nothing more.

This AI graph is preciselyequivalent to an undirected hyper-

graph if one considers each of the AI nodes as a hyperedge

containing all of the nodes to which it connects. This is shown

as the SH graph in figure 1c for each of the simple examples of

the SBGN form of biological networks. Considering all possible

hypergraphs of this kind is equivalent to examining all possible

environmental dependency structures the subnetwork could be

subjected to. Because the AI is fundamental to understanding

how subnetworks depend upon their contexts, it is the structure

of the AI and equivalent SH graphs that we refer to as network
architecture throughout the paper. We note from this perspective

that cycles in the SBGN representation of the biological network

do not result in corresponding cycles in the AI graph and vice

versa. For instance, in example four of figure 1, there are no

cycles in the SBGN representation of the biological network,

whereas a single cycle exists in the hypergraph representation

of the AI graph. Furthermore, in example six, there is a cycle

in the SBGN representation, whereas there is no cycle in the

hypergraph representation of the AI.

More precisely, the collection of variables comprising

the subnetwork under consideration is referred to as L. The

different subsets, O, of biological variables, L, making up the

hypergraph representation of the AI are each referred to as

modules. A biological network architecture, G, may then be

represented by a subset of all possible such modules subject

to two conditions (see electronic supplementary material,

§S2). The first represents the fact each variable of the focal sub-

network must be included in at least one module. The second

represents the fact that any pair of constraints that are imposed

upon overlapping sets of variables must agree on those overlap-

ping variables. In expressing the latter condition, all of the

information present in a collection of lower order constraints

can be expressed as an effective higher order constraint if any

such higher order constraint exists at all. So, if there is a
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Figure 1. Abstract influence (AI) representation of biological networks. (a) The SBGN is capable of representing arbitrary biological networks including processes that
involve metabolites, signalling molecules, genes and enzymes [11]. Only a fragment of the SBGN language, where all nodes have equivalent types, is indicated here.
(b) We abstract from the SBGN representation of a biological network to a graph representing the AI graph indicating coupling among a subset of the entities
present in a biological network. (c) For economy of representation, we use a short hand (SH) hypergraph to denote the AI graph. The topology of the AI and SH
graphs are equivalent and this is what we refer to as network architecture.
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constraint that is imposed simultaneously upon two distinct

variables and another independent constraint imposed upon

only the first of the two variables, this situation can be expressed

in terms of a single constraint on both of the two variables.

When there is a relatively larger degree of independence in

the network context compared with the subnetwork, it is poss-

ible for inconsistency to arise. One canonical example of such

inconsistency arises in the study of ferromagnetism via the

Ising model on a triangular lattice where so-called frustration
arises in the couplings among the magnetic dipole moments

of three nearest neighbour atomic spins [12–14]. In this

example, the underlying lattice or graph represents interactions

among the spins of atomic nuclei according to their spatial

proximity. As we have described, in our model, the network

architectures to which we refer represent the manner in which

the network context places constraints upon a subnetwork.

Inconsistency is likewise capable of arising if there is a cycle

in the hypergraph representing this network architecture.
3. Coarse-graining dynamic network states as a
generalization of genotype – phenotype maps

Figure 2a shows a simplified representation of two different

biological networks, the correlation strengths among whose

variables are not known but are to be derived from obser-

vation of the levels of the entities corresponding to each

variable. For example, in the context of a gene-regulatory net-

work, the amount of a given transcript present in a cell can be

binned into a smaller number of discrete classes by setting

a collection of thresholds on the original dataset. If only a

single threshold is given, then the data can be binned into

two classes depending upon whether or not the original

measurement surpasses the given threshold in figure 2b.
The time series that results from such observations can be

used to infer various statistics that characterize the dynamics

of a biological network such as correlations between pairs

of variables.

If a large enough number of thresholds is available to dis-

tinguish among all possible counts of the variables under

investigation, then this observational protocol becomes

complementary to mechanistic models. There may be several

sources for stochasticity in the dynamics including small

numbers of the causal molecules and products as well as

environmental fluctuations upon which these dynamics are

conditioned [15–23]. Regardless of the fundamental nature

of biological networks with respect to their potential sto-

chasticity, empirical observations are usually regarded in a

statistical manner, and thus we focus here on stochastic

models. Mathematically, such a model may take the form

of a Markov chain whose dynamics are governed by a

master equation for probability distributions over molecule

counts. For example, in the case of a three variable network,

the master equation takes the form

dP(n1, n2, n3)

dt
¼
X

n0
1

X
n0

2

X
n0

3

Mn1 n2 n3

n0
1

n0
2

n0
3
(k)P(n01, n02, n03),

where P(n1, n2, n3) gives the probability of observing n1, n2

and n3 molecules of each of the three variables, respectively,

and M(k) is a Markov transition rate matrix that depends

upon some rate functions k that are determined by the net-

work architecture and the dynamics of the interactions. The

solution to this equation will converge towards a stationary

distribution Ps in the limit of long times. Any environmental

variable having a characteristic time scale longer than that of

the variables in the focal subnetwork would not be sensi-

tive to transients and would only exhibit control over or be

influenced by this stationary distribution.
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Figure 2. Coarse-graining of biological network data. (a) SBGN (top) and SH (bottom) representation of two different biological networks. (b) Example binary
coarse-graining of biological network data. For each sample, a measurement is taken for all three variables in the focal subnetwork. The levels are binned
into one of two classes represented by the red and blue bars representing relatively high and low levels, respectively. (c) Heat map representation of coarse-grained
data under the assumption of two different network architectures. The samples on top and the associated measurement structure correspond to the case where
constraints are placed on all three variables by a single element of the network context (figure 6, top row). The bottom represents the case where all three pairs are
each independently constrained by elements of the network context (figure 6, bottom row).
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Interactions between variables may be mediated by a

coarse-graining over counts of each variable using a function

that maps the states representing molecule counts as vectors

of natural numbers into some other variables. For example,

if ni are natural numbers, then a function f taking any

number less than or equal to some threshold T to 0 and

any number greater than T to 1 is a very simple example of

such a coarse-graining. For this specific form of the coarse-

graining function f, the coarse-grained stationary probability

distribution takes the form

Pcg(b1, b2, b3) ¼
X

n1[ f�1(b1)

X
n2[ f�1(b2)

X
n3[ f�1(b3)

Pcg(n1, n2, n3),

where b1, b2, b3 [ f0,1g. It is also possible to consider the case

where each variable is coarse-grained according to a different

threshold and into a different number of classes. An abstract

algebraic formulation of the coarse-graining process is

provided in electronic supplementary material, §S4.

The most familiar example of such a coarse-graining

process in biology is the genotype–phenotype map. The

genotype of an organism has a relatively straightforward

definition in terms of the sequence of nucleotides comprising

its genome. Phenotypes, on the other hand, can be descri-

bed at different levels of organization [24,25]. The concept

of phenotype was initially defined at the level of macro-

scopically observable physical characteristics such as shape,

size, colour and various combinations thereof [26]. However,

since the advent of molecular biology, an example of a lower

level mapping upon which the higher level map from

molecular states to macroscopic phenotypes depends is the
dynamic phenomenon that can be described by measuring

the transcription states of all genes comprising an organism’s

genome. These expression levels of subsets of interacting

genes determine which enzymes are produced, thus deter-

mining the rate at which metabolic reactions proceed. These

reaction rates could then be viewed as constituting the next

level of phenotypes. These in turn determine even higher

level phenotypes, ultimately culminating in macroscopically

observable ones where the concept of phenotype was orig-

inally introduced. In summary, any mapping from the

states of an underlying collection of molecules to a higher

level collective property of those molecules that may result

from their interaction can be viewed as a generalization of

the genotype–phenotype map, where the original conception

of the latter corresponds to the special case where (i) the

genes alone are sufficient to determine the higher level collec-

tive property and (ii) that higher level collective property is

observable at the whole-organism level.

A more realistic basis upon which to build phenotypes

than this outline of the historical trajectory contains is one

that is not limited to genes alone, but includes all entities

constituting a biological network. A phenotype must be a

function of the levels of, for example, all of the molecular con-

stituents that comprise it over time, even if more information

is required to fully specify it. The aforementioned coarse-

grained levels of biological network variables can thus be

viewed as collectively determining the lowest level in a hier-

archy of abstract phenotypes. In what proceeds, we will

assume that we have a finite set L of variables and a finite

set P of coarse-grained levels of each of those variables.
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These levels may have different units, but they can all be

mapped into unitless quantities that account for the relevant

scale of each variable. In general, each variable could take

values in a distinct set Pi, i [ I ranging over the variables,

whereby P would be required to represent <i[IPi rather than

a monolithic valuation set lacking any underlying substucture

with respect to the variables under consideration. Then

a possible state of our biological network is represented by a

function e: L! P and coarse-graining a stationary distribution

will lead to a probability distribution on the set of all maps,

denoted PL, from subnetworks represented by subsets of L to

the respective states of the variables that comprise them. We

will refer to this more fine-grained generalization of the

genotype–phenotype map, where arbitrary biological networks

are substituted for genes and arbitrary networks states are

substituted for phenotypes, as network–network state maps.
 e
12:20150179
4. Probability distributions over network
modules

Here, we describe examples of probability distributions over

network modules. A more general presentation is provided

in electronic supplementary material, §S3. As explained in

§2, for a given biological subnetwork, the hypergraph repre-

senting the dependencies in the network context consists of

subsets, O, of the variables, L, in the subnetwork. If we consider

the case in which we have two variables L ¼ fl1, l2g and there

are two values, P ¼ f0, 1g, then there are four possible assign-

ments of values to variables each of which constitutes a state of

the system. We will write the probability of each of these states

as pv1v2
s1s2

indicating that variable v1 is assigned value s1 and vari-

able v2 is assigned value s2. A probability distribution over the

states of the system for L is then given by

{p12
00, p12

01, p12
10, p12

11jp12
00 � 0, p12

01 � 0, p12
10 � 0, p12

11

� 0, p12
00 þ p12

01 þ p12
10 þ p12

11 ¼ 1}: (4:1)

This imposes the standard conditions that probabilities are

positive and sum to one. If we have the subset of L given by

O ¼ fl1g, then a probability distribution over its states

is given by

{p1
0, p1

1jp1
0 � 0, p1

1 � 0, p1
0 þ p1

1 ¼ 1}: (4:2)

In order to be consistent, the distribution expressed in equation

(4.1) should be related to that of equation (4.2) via a marginali-

zation matrix

p1
0

p1
1

 !
¼ 1 1 0 0

0 0 1 1

� � p12
00

p12
01

p12
10

p12
11

0
BBB@

1
CCCA: (4:3)
5. Compatibility of distributions on network –
network state maps

Here, we provide an example of compatibility conditions

on network–network state maps. A more general mathemat-

ical characterization of these constraints is provided in

electronic supplementary material, §S5. When one has a

non-trivial network architecture (corresponding to the SH

hypergraph like those in figure 1), there will typically be
more than one way of obtaining a probability distribution

on a set by marginalizing a distribution on a larger set.

For instance, if we have a network with three binary varia-

bles and two edges, fl1, l2g and fl1, l3g, then we can obtain

a probability distribution on the set fl1g either by margina-

lizing probabilities defined over fl1, l2g as was done above

or by marginalizing probabilities defined over fl1, l3g
to obtain

p1
0

p1
1

 !
¼ 1 1 0 0

0 0 1 1

� � p13
00

p13
01

p13
10

p13
11

0
BBB@

1
CCCA: (5:1)

For an arbitrary choice of the quantities p12
00, . . . , p12

11, p13
00, . . . ,

p13
11, there is no reason that these two procedures should

yield the same answers for p1
0 and p1

1. If one requires that

they do yield the same answer, then one must impose con-

sistency conditions. In our example, these conditions are

as follows:

p12
00 þ p12

01 ¼ p13
00 þ p13

01 (5:2)

and

p12
10 þ p12

11 ¼ p13
10 þ p13

11 (5:3)

More generally, given a hypergraph G, we will be interes-

ted in two types of consistency conditions. We will say that

a collection of probabilities associated to a hypergraph is

locally consistent if, whenever two hyperedges share a subset

in common, the probabilities for that subset obtained by

marginalizing the probabilities associated to one of the

hyperedges will agree with those obtained by marginalizing

the probabilities associated to the other hyperedge. In our

example above, there were only two hyperedges present, so

the conditions we exhibited constitute the entirety of the

local consistency conditions for that hypergraph. We will

denote the set of all locally consistent probability distribution

associated to a hypergraph G as L(G).

We will say that a collection of probabilities associated

to a hypergraph is globally consistent if there exists a joint

probability distribution on the totality of variables associated

to the hypergraph such that the probabilities associated to

any hyperedge are marginals of that joint distribution.

In terms of our example, that would mean that there exist

probabilities p123
000, p123

001, . . . , p123
111 such that the following

conditions hold:

p12
00

p12
01

p12
10

p12
11

p13
00

p13
01

p13
10

p13
11

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

p123
000

p123
001

p123
010

p123
011

p123
100

p123
101

p123
110

p123
111

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (5:4)

We will denote the set of all globally consistent

probability distribution associated to a hypergraph G
as M(G).

Because marginalizing from a set of random variables to

a smaller set of variables can be accomplished by first mar-

ginalizing to an intermediate set and then marginalizing

from the intermediate set down to the smaller set, it follows
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that global consistency implies local consistency. We will

now see what conditions are needed in addition to local

consistency to ensure global consistency.

As in our example, we can express marginalization

from the set L of all variables down to a hypergraph G in

the form v ¼ Gx, where x is a vector whose components

are probabilities associated to L, v is a vector whose com-

ponents are probabilities associated to G, and G is a suitable

matrix. The consistency conditions can be expressed

in terms of the fundamental spaces (kernel and cokernel)

associated to this matrix [27]. In order for a vector v to

be expressible as Gx for some x, we must satisfy the condi-

tion that v . u ¼ 0 for all u [ coker(G). In our example,

the cokernel of the matrix is spanned by the following two

row vectors:

( 1 1 0 0 �1 �1 0 0 ) (5:5)

and

( 0 0 1 1 0 0 �1 �1 ): (5:6)

This leads to the conditions

p12
00 þ p12

01 � p13
00 � p13

01 ¼ 0 (5:7)

and

p12
10 þ p12

11 � p13
10 � p13

11 ¼ 0: (5:8)

Note that these are precisely the local consistency conditions

which we exhibited earlier. It can be shown that the condition

that u . v ¼ 0 for all u [ coker(G) will always be exactly

the local consistency conditions (electronic supplementary

material, §5).

To obtain the global consistency conditions, we note that,

if v ¼ Gx, then we also have v ¼ Gy for any vector y such

that x2y lies in the kernel of G. Choose a subspace T of

column vectors which is transverse to ker(G) such that

the union of T and ker(G) span the column space. Then the

equation v ¼ Gx has a unique solution if we restrict x to lie

in T. In order for a column vector to represent a legitimate

probability distribution, its components must all be non-

negative. Hence, we conclude that v being globally consistent

is equivalent to the following system of equations and

inequalities having a solution:

v ¼ Gx,

x [ T,

x� y [ ker(G)

and y � 0:

9>>>=
>>>;

(5:9)

By using a method, such as Fourier–Motzkin elimination,

to remove redundant inequalities, one can eliminate the

quantities x and y from this system to obtain inequalities

involving only the components of v. These are the global

consistency conditions.

In our example, ker(G) is spanned by the following two

column vectors:

1
�1
�1
1
0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

0
0
0
0
1
�1
�1
1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (5:10)
As our transverse space T, we will choose the space spanned

by the following basis:

1
0
0
0
0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

0
1
0
0
0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

0
0
1
0
0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

0
0
0
0
1
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

0
0
0
0
0
1
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

0
0
0
0
0
0
1
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (5:11)

With this choice, the condition x [ T reduces to the equations

x4 ¼ x8 ¼ 0. The conditions x 2 y [ ker(G) then become

y1 � x1 ¼ x2 � y2 ¼ x3 � y3 ¼ y4 (5:12)

and

y5 � x5 ¼ x6 � y6 ¼ x7 � y7 ¼ y8: (5:13)

If we solve these for the x’s, substitute the result into the

equation v ¼ Gx and eliminate the y’s between the resulting

equations and the inequalities y � 0, we find the conditions

v � 0. This, of course, is just the condition that the proba-

bilities be positive. Thus, for the case of this simple

hypergraph, local consistency suffices to ensure global con-

sistency. In §6, we will see that this is not always the case

and that the inequalities obtained by elimination impose

more conditions on the probabilities than just positivity.
6. Example of unsatisfiable constraints
We will now exemplify equations and inequalities that need to

be satisfied in order to guarantee the consistency conditions

for the case of three variables that form the simplest non-

trivial cycle where inconsistency may arise. Suppose that L ¼
fl1, l2, l3g, P ¼ f0, 1g, G ¼ ffl1, l2g, fl2, l3g, fl3, l1gg.

Local consistency means that the probability for the vari-

able l1 to be associated to a given state is equivalent in case

we marginalize over all the other variables contained in the

biological network modules of which l1 is a component. Math-

ematically, this reduces to two equations corresponding to the

cases when the state of l1 is 0 or 1. If we do likewise with l2 and l3
in place of l1, we obtain the set of local consistency conditions:

p12
00 þ p12

01 ¼ p1
0 ¼ p13

00 þ p13
01, p12

00 þ p12
10 ¼ p2

0 ¼ p23
00 þ p23

01,

p13
00 þ p13

10 ¼ p3
0 ¼ p23

00 þ p23
10, p12

10 þ p12
11 ¼ p1

1 ¼ p13
10 þ p13

11,

p12
01 þ p12

11 ¼ p2
1 ¼ p23

10 þ p23
11, p13

01 þ p13
11 ¼ p3

1 ¼ p23
01 þ p23

11:

9>>=
>>;

(6:1)

These result from applying the method outlined in §5 to enu-

merate all local consistency conditions. Using the local

consistency conditions for our example, we can derive a set

of inequalities that determine L(G),

p12
00 ¼ 1þ p12

11 � p23
10 � p23

11 � p13
10 � p13

11 � 0,

p12
01 ¼ �p12

11 þ p23
10 þ p23

11 � 0,

p12
10 ¼ �p12

11 þ p13
10 þ p13

11 � 0,

p23
00 ¼ 1� p23

10 � p13
01 � p13

11 � 0,

p23
01 ¼ �p23

11 þ p13
01 þ p13

11 � 0

and p31
00 ¼ 1� p13

10 � p13
01 � p13

11 � 0,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(6:2)

combined with the trivial inequalities that force all probabilities

to be non-negative. Substituting the numbers from figure 3a
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Figure 3. Model of inconsistent network state data. (a) An example structured according to the bottom row of figure 2c. The graph contains three nodes each
representing one of the variables depicted in figure 2a. The dashed grey line coming from each variable points to the single variable marginal distribution depicted
in the associated table. The pairwise edge marginal distributions are placed along the edges. The highlighted table entries (top) represent the constraint probabilities
on the network – network state maps represented by the equivalently coloured arrows (bottom). The binary values representing variable states derive from the
coarse-graining process over continuous network state data depicted in figure 2b. (b) (top-left) Representation of 300 samples comprising a dataset consistent with a
uniform distribution over all network – network state maps from the model in (a). (top-middle) The joint probability distribution given in the top-left panel. The
green bars in the bottom three panels represent the marginalization of this joint distribution according to the structure of the graph. The yellow bars in the bottom
three panels represent the ostensible marginal distributions determined via the sum-product algorithm (loopy belief propagation) [28]. (top-right) A schematic
where the top grey ellipse represents the space of joint probability distributions on three variables and the hexagon represents the pairwise marginals within
their natural embedding space (figure 4). For this data, maximum-likelihood estimation (exact) and loopy belief propagation (approximate) yield equivalent
points within the space of pairwise marginals. (c) Same as (b), but with data consistent with figure 2c bottom, which in the limit of a large amount of data
would converge to the ostensible node and edge marginal distributions in (a). For the given dataset, maximum-likelihood estimation and loopy belief propagation
yield different points within the natural embedding space of the pairwise marginals.
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(which are p12
00 ¼ 0:1, p12

01 ¼ 0:4, p12
10 ¼ 0:4, p12

11 ¼ 0:1, p13
00 ¼ 0:4,

p13
01 ¼ 0:1, p13

10 ¼ 0:1, p13
11 ¼ 0:4, p23

00 ¼ 0:4, p23
01 ¼ 0:1, p23

10 ¼ 0:1,

p23
11 ¼ 0:4) into equation (6.2), demonstrates that the local

conditions are satisfied.

The global consistency conditions form an underdeter-

mined system of linear equations for the putative global

distribution so their solution will assume the form of a

linear subspace. The following equations arise as a result of

eliminating x from the equations determined by the

conditions v ¼ Gx, x [ T, x� y [ ker G:

p123
001 ¼ p12

00 � p123
000,

p123
010 ¼ p13

00 � p123
000,

p123
100 ¼ p23

00 � p123
000,

p123
110 ¼ p23

10 � p13
00 þ p123

000,

p123
011 ¼ p13

01 � p12
00 þ p123

000,

p123
101 ¼ p12

10 � p23
00 þ p123

000

and p123
111 ¼ 1� p12

00 � p13
00 � p23

00 � p123
000:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(6:3)
The remaining condition y � 0 from equation (5.9) states that

all the probabilities p123
ijk must be positive numbers, which is

only possible if the putative marginals satisfy suitable

inequalities given by

p123
000 � min(p12

00, p13
00, p23

00, 1� p12
00 � p13

00 � p23
00)

and p123
000 � max(0, p13

00 � p23
10, p12

00 � p13
01, p23

00 � p12
10):

)
(6:4)

A minimal set of inequalities is then expressed by substitut-

ing the equalities from equation (6.2) into the inequalities

determined by equation (6.4) and eliminating redundancies

resulting in

p12
11 � p23

11 þ p13
01 � 0,

1þ p12
11 � p23

10 � p13
10 � p13

01 � p13
11 � 0,

�p12
11 þ p23

10 þ p13
11 � 0

and � p12
11 þ p23

11 þ p13
10 � 0:

9>>>>>>=
>>>>>>;

(6:5)

The inequalities from equation (6.2) and equation (6.5)

combined with the non-negativity inequalities together
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determine the global polytype M(G). For the example given in

figure 3a, the first of the inequalities in equation (6.5) is

demonstrated to be unsatisfied in equation (6.6)

0:1� 0:4þ 0:1 � 0,

1þ 0:1� 0:1� 0:1� 0:1� 0:4 � 0,

�0:1þ 0:1þ 0:4 � 0

and � 0:1þ 0:4þ 0:1 � 0:

9>>>=
>>>;

(6:6)

This indicates that data consistent with figure 3a could not

derive from the network depicted there.
J.R.Soc.Interface
12:20150179
7. Cyclic network contexts can impose
unsatisfiable constraints

Each node of the SH graph in figure 3a can be associated to the

probability distribution that specifies probabilities for each

biological variable to be observed in each of the states deter-

mined by the coarse-graining process described in §3. Each

edge of the graph specifies a joint probability distribution for

both of the nodes it contains (or connects) to simultaneously

take on a given pair of values. Note that this does not imply

the existence or absence of a physical interaction between the

variables represented by these two nodes. Together, these

probabilities represent constraints that the network context

may impose upon the network. We assume three variables

are observed via all possible pairwise combinations and that

via the coarse-graining process we have binned the state of

each variable into one of two classes. Each node of the graph

in figure 3a represents a probability distribution over the

observation of each variable in either of the two states estab-

lished in the coarse-graining process. Each of the probability

tables adjacent to each edge in the graph assigns a probabi-

lity distribution to the set of maps from the nodes connected

by the edge to all possible combinations of the network

states. As these maps take collections of biological net-

work variables as input and produce collections of network

states as outputs, we refer to them as network–network state

maps and thus to the associated probability distributions as

probability distributions over network–network state maps.

Suppose the normalized contingency tables in figure 3a are

meant to represent the ostensible structure and parameters of a

biological process. It is often necessary to attempt to infer the

parameters of such a model from data under the assumption

that the structure of a given network architecture falls within

the model class defined by a given graph. Figure 3b represents

a case in which a hypothetical dataset is consistent with its deri-

vation from a joint probability distribution, whereas figure 3c
represents a case of inconsistency where the pairwise distri-

butions are each individually consistent distributions, but,

together, the three pairwise distributions are not consistent

with any joint distribution over the states of all three network

variables. This inconsistency is made possible by the fact that

the network architecture in figure 3a contains a cycle [29–31]

and that we have given an ostensible dataset leading to the

inference of parameters that could not possibly derive from a

joint probability distribution over all three network variables.

If this situation arises, it indicates some systematic error in

the transfer of information whether it occurs intrinsically to the

system, wherein a network has inconsistent constraints placed

upon it by its network context or as part of the scientific data

collection process. In the former case, this can be resolved by
modifying the inconsistent constraints in such a manner that

they become consistent with or without modifying the network

architecture in doing so. In the latter case, this may result from

employing a model which (i) takes insufficient account of

the network context and (ii) relies on coarse-grained obser-

vations. In either case, the synthetic gene circuit schematized

in electronic supplementary material, figure S4, serves as one

mechanism implementing the example presented in electronic

supplementary material, §S5.1. It consists of four genes each of

which is capable of taking on three different states [32]. How-

ever, observing two out of the three states measured pairwise

from three out of the four genes could result in data that

would appear to be inconsistent. Such an observation would

demonstrate without having to have knowledge of the correct

network architecture, that the current model is insufficient to

represent the underlying process.

For the case of the architecture in figure 3a, and moreover

for any network architecture of any size that contains one or

more cycles, the possibility of finding a joint distribution over

all network variables that satisfies all constraints capable of

being imposed upon it requires the implicit assumption

that the structure of the network context can be viewed sim-

ultaneously as that of figure 2c top and that of figure 2c
bottom. The spaces of probability distributions correspond-

ing to the constraints that can be imposed upon the two

network architectures contrasted in figure 2c are different.

We can now apply the process described in §5 to classify

the geometries and thus relationships among the spaces of

probability distributions associated to constraints that can

be imposed on all possible network architectures with a

given number of variables.
8. Geometry of probabilistic constraints
on network states

The relationships among possible network architectures are

given by the lattice, which in this case indicates ordering by

subset inclusion, of reduced subsets of biological network

variables (i.e. collections of subsets of variables where no

subset in the collection is a subset of another one, §2 and elec-

tronic supplementary material, §S2). For example, figure 4a
shows the lattice of reduced subsets of three variables. We

are only interested in those subsets that contain at least one

instance of each variable. Restricting to the subsets of vari-

ables satisfying this condition corresponds to the region

highlighted with a grey background in figure 4a. Each net-

work architecture corresponds to a different modularization

of the network–network state maps by the network context.

For example, figure 4b shows in the same vertical order the

different maps induced by the three architectures highlighted

in green in figure 4a.

We consider those network architectures found lower in the

lattice of figure 4a to be of higher modularity because each cor-

responds to the increasing restriction from placing constraints

on higher- to placing constraints on lower- order correlations

among variables. Figure 4b top corresponds to the least modu-

lar network architecture because constraints are placed upon

correlations among all three variables. Figure 4b middle exhi-

bits an elevated degree of modularity because constraints are

placed upon correlations among pairs of variables. Similarly,

figure 4b bottom is even more modular because constraints

are placed upon each variable individually.
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Figure 4. Relationship between biological network models and spaces of probability distributions. (a) The collection of all possible network architectures over three
variables forms a lattice represented here by its Hasse diagram. An analogous lattice of network architectures exists for any number of variables. The Hasse diagram
shows the manner in which network architectures are hierarchically related and are thus able to be embedded within one another. (b) Explicit examples of net-
work – network state maps over three network architectures from (a) highlighted in green are represented as arrows mapping the variables represented as nodes of
the graph underlying the network architecture into the collection of network state values determined by the coarse-graining chosen in figure 2b. There is a different
collection of possible network – network state maps depending upon the structure of the network architecture. (c) Each collection of network – network state maps,
one representative for each network architecture depicted in (b), is associated to a space of probability distributions defined over it. Moreover, the spaces of prob-
ability distributions associated to each graph are related via marginalization maps. The top level represents a joint probability distribution (i.e. D7: the eight-
dimensional probability simplex) which can be marginalized to the middle space (i.e. D�3

3 : the union of three copies of the four-dimensional probability simplex)
which in turn can be marginalized to the bottom space (i.e. D�3

1 : the union of three copies of the two-dimensional probability simplex). The light grey polytope in
the middle, L(G), represents the space of distributions consistent with the marginalization map from the middle to the bottom. The dark grey polytope, M(G),
represents the space of probability distributions consistent with marginalization from the top to the middle.
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Each of the network architectures in figure 4a can be associ-

ated to a pair of spaces of probability distributions over

network–network state maps. These correspond to the spaces

of globally, M(G), and locally, L(G), consistent distributions

described in §5 and electronic supplementary material, §S5.

Figure 4c schematically depicts the relationships among the

probability distributions associated to the corresponding archi-

tectures and network–network state maps in figure 4b. For

figure 4c(i), M(G) ¼ L(G). The inconsistency noted in the pre-

vious section between the architectures figure 4b(i) and (ii) is

a result of the differing geometries in figure 4c(ii). There, the

smaller darker grey region, M(G), defined by the inequalities

expressed in equations (6.2) and (6.5) corresponds to the

space of probability distributions defined over all possible

network–network state maps associated to the network

architecture in figure 4b(ii). Similarly, the lighter grey region

defined by equation (6.3) alone corresponds to L(G) for

figure 4b(ii) and thus M(G) , L(G) in the latter case.
9. Naive likelihood of sampling unsatisfiable
constraints

Relationships between spaces of potential constraints placed

upon patterns of network states like that of figure 4c(ii)

occur for all network architectures defined over any number

of variables so long as there exists at least one cycle in the

corresponding network architecture, §7. For the case of three

variables, there is only one class of graphs containing a cycle,
which is that of figure 4b(ii). For the case of four variables,

there are nine different classes of hypergraphs containing

cycles and these nine classes can be split into two groups

depending upon whether or not the edges of the graphs are

each restricted to represent correlations among only two vari-

ables. Electronic supplementary material, figure S5, shows

the components of the analogous lattice to that of figure 4a as

well as these different classes of network architectures on

four variables having cycles.

Given this larger collection of network architectures with

cycles, we can assess the relative sizes of the spaces M(G) and

L(G) (figure 4c(ii)) of probability distributions over network–

network state maps. We assess the likelihood of choosing a

point in M(G) at random by computing the ratio of the

volume of M(G) (associated to the non-modular network

architectures analogous to that of figure 4b(i) with a single

edge containing all four variables), whose architecture and

thus volume is fixed, to that of L(G), whose volume varies

according to each of the cyclic graphs associated to a network

architecture on four variables. We refer to this number as the

global : local volume ratio or Vol(M(G))/Vol(L(G)) (see §5 and

electronic supplementary material, §§S5 and S6). The compari-

son defined by this ratio is meaningful since L(G) (electronic

supplementary material, equation S23) and M(G) (electro-

nic supplementary material, equation S24) are of the same

dimension. In the case where the constraints defining L(G) are

eliminated, the analogue of this volume ratio would be 0 for

all G. This volume ratio determines the a priori likelihood

of observing inconsistency for a given network architecture.
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tures, respectively. The (hyper)graph associated to each value of the volume ratio is displayed along the x-axis of each panel. (c,d ) Natural dimension of the space of
probability distributions associated to M(G) and L(G) for each hypergraph.
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The consistency check involved in computing this ratio can be

used as a test demonstrating, for those cases exhibiting incon-

sistency, that the model being used is incorrect in the sense

that it does not correspond sufficiently to the actual network

context determining the constraints placed upon the network.

Consider the probability of locally versus globally consistent

observations ( p(L(G)O) versus p(M(G)O), respectively) separately

from the probability of locally versus globally consistent models
( p(L(G)M) versus p(M(G)M), respectively) that accurately reflect

the underlying process. We can then estimate the probability

of having a locally consistent model despite obtaining glo-

bally consistent observations, p(L(G)MjM(G)O), via a simple

application of Bayes’ theorem

p(L(G)MjM(G)O)

¼ p(M(G)OjL(G)M)p(L(G)M)

p(M(G)OjL(G)M)p(L(G)M)þ p(M(G)OjM(G)M)p(M(G)M)
,

where p(M(G)OjM(G)M) ¼ 1, the volume ratio described above

corresponds to p(M(G)OjL(G)M), and one could consider the

impact of different prior probabilities, p(L(G)M), of having a

locally consistent model.

Figure 5a,b shows the results of computations of this

global : local volume ratio for 14 different hypergraphs.

Figure 5c,d shows the dimension of the spaces within which

these volumes are computed. The spaces are equivalent and

thus the volume ratio equal to one for graphs lacking cycles
(e.g. the first three graphs along the x-axis of figure 5a). For

the nine network architectures in figure 5a,b containing

cycles, the volume ratio is strictly less than one. This quan-

tifies the probability that the network architecture depicted

along the x-axis will be able to satisfy the constraints that

the associated network context is capable of placing upon it.
10. Potential for unsatisfiable constraints may
bias the sampling of network architectures
by evolutionary processes

The satisfiability of constraints capable of being placed on

the various architectures is logically a function of whether

or not the network architecture is cyclic or acyclic. For

those network architectures containing cycles, there are cer-

tain functional requirements that can be achieved so long as

only local and not global consistency is required of them.

Once global consistency is imposed as in the structure corre-

sponding to the joint correlations among all variables, those

functions that were accessible when only local consistency

was imposed are unavailable. For acyclic network architec-

tures, there is no difference between the satisfiability of

locally or globally imposed constraints. Figure 6 right

shows a schematic of one potential scenario by which a

given cyclic network architecture may be selected against.



network context qualitative dynamics

Figure 6. Constraints imposed on stochastic biological networks and evolutionary dynamics by network architecture. Schematic of a potential network context (left)
for each of the hypothetical stationary probability distributions associated to the fitness peak established by the blue and red points within the spaces of probability
distributions represented on the right. Either of the two network architectures represented on the left are capable of achieving the stationary distribution
over network – network state maps specified by the blue stationary distribution associated to a hypothetical fitness peak. On the other hand, only the network
architecture from the top (and not the bottom) is capable of achieving the red stationary distribution representing an alternative potential fitness peak.
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The black points in the centre represent an initial condition of

a stochastic process that is selected for its ability to achieve

one of two different stationary distributions represented by

the blue and the red points, respectively. This is equivalent

to placing a fitness landscape given by a function whose

maximum is located at the given points and defined over

the relevant space of probability distributions. The network

architecture represented in the top row of figure 6 is able to

achieve as its stationary distribution any of the constraints

capable of being imposed upon it that are consistent with

its architecture because it is acyclic. On the other hand, the

network architecture in the bottom row is incapable of

achieving certain constraints that may be imposed upon it

by a network context consistent with its architecture because

it is cyclic.

When selective pressure is induced equivalent to the

distribution located at the blue point, or at any other

point within the dark grey region, either of the architectures

are essentially equivalent with respect to the statistics of

samples from their corresponding probability distributions

and they can thus be considered as members of an evolutio-

narily neutral space. On the other hand, selective pressure

equivalent to the probability distributions located at the red

point differentiates between the networks of the top and

bottom row or equivalently between the network of the

bottom row when global consistency is imposed versus

the same network when only local consistency conditions

are imposed. The same qualitative relationship holds true

for the spaces of probability distributions of all network

architectures of any size and for any number of different

levels in the discrete coarse-graining of network states so

long as the graph associated to the relevant correlations

among variables contains at least one cycle.

The distinction between cyclic and acyclic network architec-

tures with respect to the ability to have unsatisfiable constraints
placed upon them is sharp. However, within the class of cyclic

network architectures, the likelihood of having unsatisfiable

constraints imposed on a given network architecture increases,

at least approximately, with the number of cycles in the given

network architecture (figure 5 and §9). This indicates that the

strength of selection against network architectures with a

larger number of nested cycles is likely to be stronger than

that against network architectures with a relatively smaller

number of cycles. Initiating an evolutionary process with a

large network containing many nested cycles may then result

in the elimination of some via any process that can result in

cycle breakage until the number of nested cycles decreases suf-

ficiently so that the intrinsic strength of selection against cycles

reaches equilibrium with the rate at which new cycles form. One

possibility, depending upon the overall relationship between

these rates, is a hierarchical-modular one where a globally

hierarchical network has a number of cyclic modules, each of

whose size is small relative to the overall size of the network,

interspersed throughout.
11. Discussion
When biological networks are studied, we remove a subnet-

work from a larger context [33]. Depending upon the scale

of the study, the boundary between subnetwork and network

context may vary. For example, in a relatively small-scale

study, the subnetwork may consist of a few genes and metab-

olites where the context comprises other genes, metabolites

and intracellular structures. For relatively large-scale models

attempting to take into account all of the processes com-

prising a single-celled organism, the network context

consists of the variables in that organism’s environment.

In even larger scale studies of multicellular organisms, popu-

lations or communities, the same general principle applies by
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appropriately shifting the boundary between the subnetwork

and network context.

One salient feature applying at any scale is that the structure

of the network context plays a crucial role in determining

whether or not unsatisfiable constraints on the stochastic dyna-

mical patterns of network states may arise at all. We note based

on previously existing results that mutually incompatible

constraints are only capable of arising when the network archi-

tecture contains a cycle. Moreover, our results suggest the

likelihood of mutually incompatible constraints arising relative

to network architecture increases with the number of cycles in

that network architecture. An evolutionary process exhibiting

uniform sampling over the space of network architectures

and the space of possible constraints within each network archi-

tecture would thus be expected to exhibit a bias towards the

breakage of cycles. One would not expect such a bias to elimin-

ate the existence of cycles in biological networks. However, it is

reasonable to expect on the basis of this result a kind of hierarch-

ical modularity: where modules that may possess cycles and are

small relative to the overall size of the network exist within a

globally hierarchical network structure. Of course, there are

other factors which may contribute to the development of

such network architectures.

It will be important in future work to examine this predic-

tion more closely in the context of developing bottom-up

stochastic process models that allow for the explicit encoding

and solution of models of more complex biological networks

[34,35]. It is possible that the specific dynamics of a given net-

work context may lead to apparent access to correlations that

are otherwise inaccessible. In the case of gene-regulatory net-

works, this may occur via a form of cis-regulation that

enables the breakage of statistical dependence in a time-

dependent manner (electronic supplementary material,

figure S4). But such a scenario seems much less plausible

than the ability to resolve inconsistency by breaking cycles

in the network architecture. In the long term, the latter corre-

sponds to what is observed in hierarchically organized
transcription factor networks [21,36–38]. The mechanism

outlined here is consistent with previous analyses of hierarch-

ical-modular gene-regulatory network architectures [36–42].

To contribute to the broader goal of establishing an inte-

grated framework that synthesizes hypothesized intrinsic and

extrinsic constraints necessary to understand the functioning

and evolution of biological systems, here we have traced a path

from biological network architecture to network state constraint

satisfiability, and, via the impact of network states on higher

level properties culminating in macroscopically observable

phenotypes, to evolutionary processes. In the particular context

of gene-regulatory networks, one goal of measuring gene

expression at transcriptomic scale is to uncover the structure of

the generative process encoded in the interactions involved,

but, so far, even the most sophisticated methods of describing

them at the mechanistic level are only solvable for extremely

simple regulatory network architectures [34,35]. This fact has,

in part, motivated computational biologists to develop a large

collection of algorithms to infer aspects of this structure [1,43]

and experimental biologists to compare networks on the

basis of their hierarchical and modular architecture [44]. Our

model and its framework put forward a class of fundamental

constraints that may impact the expected structure of biological

networks. The fact that the satisfiability of the space of possible

constraints that can be imposed upon a network is dependent

upon the structure of the network context provides a mechanism

by which natural selection may exhibit a fundamental bias in its

sampling of biological network architectures.
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40. Segrè D, Deluna A, Church GM, Kishony R. 2005
Modular epistasis in yeast metabolism. Nat. Genet.
37, 77 – 83. (doi:10.1038/ng1489)

41. Wagner GP, Pavlicev M, Cheverud JM. 2007 The
road to modularity. Nat. Rev. Genet. 8, 921 – 931.
(doi:10.1038/nrg2267)

42. Erwin DH, Davidson EH. 2009 The evolution of
hierarchical gene regulatory networks. Nat. Rev.
Genet. 10, 141 – 148. (doi:10.1038/nrg2499)

43. De Smet R, Marchal K. 2010 Advantages and
limitations of current network inference methods.
Nat. Rev. Microbiol. 8, 717 – 729. (doi:10.1038/
nrmicro2419)

44. Ideker T, Krogan NJ. 2012 Differential network
biology. Mol. Syst. Biol. 8, 565. (doi:10.1038/msb.
2011.99)

http://dx.doi.org/10.1038/nature09333
http://dx.doi.org/10.1038/nature09333
http://dx.doi.org/10.1126/science.1216379
http://dx.doi.org/10.1126/science.1216379
http://dx.doi.org/10.1016/j.tig.2012.01.006
http://dx.doi.org/10.1126/science.1231456
http://dx.doi.org/10.1126/science.1231456
http://dx.doi.org/10.1146/annurev-biophys-083012-130401
http://dx.doi.org/10.1146/annurev-biophys-083012-130401
http://dx.doi.org/10.1006/jtbi.2001.2423
http://dx.doi.org/10.1006/jtbi.2001.2423
http://dx.doi.org/10.1086/279202
http://dx.doi.org/10.2307/2324660
http://dx.doi.org/10.2307/2324660
http://dx.doi.org/10.1214/009053606000000263
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1016/j.bpj.2014.01.014
http://dx.doi.org/10.1016/j.bpj.2014.01.014
http://dx.doi.org/10.1038/nrg2102
http://dx.doi.org/10.1073/pnas.0811999106
http://dx.doi.org/10.1103/PhysRevE.80.041921
http://dx.doi.org/10.1038/msb.2009.52
http://dx.doi.org/10.1126/scisignal.2001014
http://dx.doi.org/10.1016/j.molcel.2012.05.028
http://dx.doi.org/10.1016/j.molcel.2012.05.028
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1038/ng1489
http://dx.doi.org/10.1038/nrg2267
http://dx.doi.org/10.1038/nrg2499
http://dx.doi.org/10.1038/nrmicro2419
http://dx.doi.org/10.1038/nrmicro2419
http://dx.doi.org/10.1038/msb.2011.99
http://dx.doi.org/10.1038/msb.2011.99

	Potential unsatisfiability of cyclic constraints on stochastic biological networks biases selection towards hierarchical architectures
	Introduction
	Environments of biological networks as abstract contexts
	Coarse-graining dynamic network states as a generalization of genotype-phenotype maps
	Probability distributions over network modules
	Compatibility of distributions on network-network state maps
	Example of unsatisfiable constraints
	Cyclic network contexts can impose unsatisfiable constraints
	Geometry of probabilistic constraints on network states
	Naive likelihood of sampling unsatisfiable constraints
	Potential for unsatisfiable constraints may bias the sampling of network architectures by evolutionary processes
	Discussion
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


