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Background: Acute lung injury (ALI) caused by hypobaric hypoxia (HH) is frequently observed in high-
altitude areas, and it is one of the leading causes of death in high-altitude-related diseases due to its rapid 
onset and progression. However, the pathogenesis of HH-related ALI (HHALI) remains unclear, and 
effective treatment approaches are currently lacking. 
Methods: A new mouse model of HHALI developed by our laboratory was used as the study subject 
(Chinese patent No. ZL 2021 1 1517241 X). Real-time quantitative polymerase chain reaction (RT-qPCR) 
was used to detect the messenger RNA (mRNA) expression levels of PDZ-binding kinase (PBK), sirtuin 1 
(SIRT1), and PTEN-induced kinase 1 (PINK1) in mouse lung tissue. Hematoxylin and eosin staining was 
used to observe the main types of damage and damaged cells in lung tissue, and the lung injury score was 
used for quantification. The wet-dry (W/D) ratio was used to measure lung water content. Enzyme-linked 
immunosorbent assay was used to detect changes in inflammatory factors and oxidative stress markers in 
the lungs. Western blotting verified the expression of various mitochondrial autophagy-related proteins. 
The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) method was used 
determined the health status of mitochondria based on changes in mitochondrial membrane potential. 
Transmission electron microscopy was used to directly observe the morphology of mitochondria. Multicolor 
immunofluorescence was used to observe the levels of mitochondrial autophagy markers. Other signaling 
pathways and molecular mechanisms that may play a role in epithelial cells were analyzed via through RNA 
sequencing. 
Results: Low pressure and hypoxia caused pathological changes in mouse lung tissue, mainly ALI, 
leading to increased levels of inflammatory factors and intensified oxidative stress response in the lungs. 
Overexpression of PBK was found to alleviate HHALI, and activation of the p53 protein was shown to 
abrogate this therapeutic effect, while activation of SIRT1 protein reactivated this therapeutic effect. The 
therapeutic effect of PBK on HHALI is achieved via the activation of mitochondrial autophagy. Finally, RNA 
sequencing demonstrated that besides mitochondrial autophagy, PBK also exerts other functions in HHALI. 
Conclusions: Overexpression of PBK inhibits the expression of p53 and activates SIRT1-PINK1 axis 
mediated mitochondrial autophagy to alleviate HHALI.
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Introduction

With the growing prevalence of acute lung injury (ALI) 
caused by hypobaric hypoxia (HH), clinical physicians 
are facing a significant challenge in treatment (1). In low-
pressure atmospheres, such as at high altitudes, a decrease in 
oxygen partial pressure leads to reduced tissue oxygenation 
and triggers HH-related physiological responses (2). At the 
microscopic level, inadequate oxygen supply disrupts normal 
mitochondrial metabolism and imposes stress on biological 
systems (3). Mountaineers climbing at extreme altitudes may 
experience acute mountain sickness, severe hypoxia, and high-
altitude cerebral edema, which can be life-threatening (4).  
In both humans and animal models, exposure to HH  
(>2,500 m) rapidly activates inflammatory processes (5,6). 
The pathological processes primarily induced by HH involve 
oxidative stress and inflammatory responses (7). The lungs, as 
the main organ for gas exchange and oxygen regulation, play 
a crucial role. Therefore, in hypoxic conditions, in addition 
to the brain, the lung is susceptible to damage and can 

progress to ALI, especially injury to type II alveolar epithelial 
(ATII) cells (8-10). HH weakens the activity of mitochondrial 
energy synthesis complexes (complexes I, II, III, IV) and 
disrupt mitochondrial dynamics, impairing the cellular 
energy reservoir (11). Damaged mitochondria and excessive 
metabolic substrates can be removed through mitochondrial 
autophagy, which protects healthy mitochondria and prevents 
cascading reactions triggered by sustained oxidative stress 
caused by mitochondrial damage (12). HH induces molecular 
changes associated with oxidative stress, inflammation, and 
protein kinase activation (13).

P D Z - b i n d i n g  k i n a s e  ( P B K ) ,  a l s o  k n o w n  a s 
T-lymphokine-activated killer cell-originated protein kinase 
(TOPK), is a serine/threonine kinase that participates in 
cell cycle regulation and mitotic progression (14,15). It 
is predominantly expressed in actively proliferating cells, 
particularly in hair follicle cells and embryonic cells (16,17). 
PBK/TOPK is primarily involved in the regulation of cell 
cycle and apoptotic pathways (17), and by phosphorylating 
its substrates to activate downstream signaling cascades, 
it plays significant roles in multiple cellular processes, 
including growth, development, cell apoptosis, and 
inflammation (16,17). PBK/TOPK also figures prominently 
in ischemic injury and is involved in ischemic protection 
and postischemic processing (18). Research suggests that 
the downregulation of PBK after paclitaxel treatment can 
enhance cell apoptosis, autophagy, and p53 levels. PBK 
hinders paclitaxel-induced cell death by inhibiting p53 (19). 
PBK/TOPK is also significantly involved in cell growth, 
DNA damage repair, immune response, and inflammation 
processes (20,21). At present, the treatment methods for 
HHALI are still very scarce. This study aims to explore a 
new treatment method, and PBK has been found to play 
a role in HHALI for the first time. However, the role of 
PBK in HHALI remains unclear, and thus the aim of this 
study was to examine the specific molecular mechanisms of 
PBK in HHALI. We present this article in accordance with 
the ARRIVE reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-188/rc).

Highlight box

Key findings 
• For the first time, we report that PDZ-binding kinase (PBK) can 

serve as a potential therapeutic target for hypobaric and hypoxic 
acute lung injury (ALI).  

What is known and what is new? 
• In previous studies, PBK has been found to regulate the cycle 

and apoptosis of various tumor cells and to be involved in the 
occurrence and development of tumors.

• We investigated the molecular mechanisms by which PBK 
participates in normal lung epithelial cell apoptosis and its 
main signaling pathways, and demonstrated that PBK alleviates 
hypobaric and hypoxic ALI through mitochondrial autophagy.

What is the implication, and what should change now? 
• PBK may be a potential therapeutic target for hypobaric and 

hypoxic ALI, providing a certain theoretical basis and guiding 
significance for high-altitude medical treatment.
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Methods

Grouping of animal and cell models

Twenty-five Balb/c mice (male, 4 weeks, 20 g) were 
randomly divided into five groups (n=5; labeled group a, 
b, c, d, and e) via a random computer selection of animal 
numbers. Adenovirus transfection and the application of 
activators are all administered through nasal drops in mice. 
The groups were as follow: group a, adeno-associated virus 
serotype 5 (AAV5)-normal control (NC); group b, AAV5-
NC + HH; group c, AAV5-PBK + HH; group d, AAV5-PBK 
+ HH + p53 activator (kevetrin hydrochloride); and group e, 
AAV5-PBK + HH + p53 activator (kevetrin hydrochloride) 
+ sirtuin 1 (SIRT1) activator (resveratrol). The Beas-2b cell 
line was also divided into five groups: group A, lentivirus 
(LV)-NC; group B, LV-NC + HH; group C, LV-PBK + 
HH; group D, LV-PBK + HH + p53 activator (kevetrin 
hydrochloride); and group E, LV-PBK + HH + p53 activator 
(kevetrin hydrochloride) + SIRT1 activator (resveratrol). 
After the mice were anesthetized with phenobarbital, the 
lungs were extracted for subsequent experiments. The HH 
conditions for the animal and cell models were established 
using the hypobaric and hypoxic chamber developed by 
our laboratory. Balb/c mice were exposed to an extreme 
altitude of 8,500 m (33.1 kPa), while the Beas-2b cell line 
was exposed to an altitude of 6,500 m (44.0 kPa). The 
Beas-2b cell line was obtained from the Chinese Typical 
Culture Collection Center (Wuhan University Preservation 
Center), and Balb/c mice were purchased from Beijing 
Hualianke Biological Technology Co., Ltd, Beijing, China. 
The anesthetic use for all animal procedures in this study 
was propofol. All animal experiments were approved by the 
Animal Welfare and Ethics Committee of Tianjin Medical 
University General Hospital (No. IRB2023-DW-122), in 
compliance with national guidelines for the care and use of 
animals. A protocol was prepared before the study without 
registration.

Hematoxylin and eosin staining

Mouse lungs were fixed in paraffin and sliced into 4 μm 
sections. The sections were dried in an oven at 60 ℃ for  
1–2 hours, which was followed by deparaffinization in xylene 
for 15 minutes. Subsequently, the sections were sequentially 
immersed in ethanol solutions of 100%, 95%, 75%, and 
50% for 3 minutes each. After being rinsed with distilled 
water for 1 minute, the sections were stained with safranin. 
The sections were differentiated with a 1% hydrochloric 

acid ethanol solution, which was followed by a second rinse 
with a 0.2% ammonium hydroxide solution. After washing, 
the sections were stained with eosin and observed after being 
dried and mounted them in a fume hood.

Lung injury score

The degree  of  lung in jury  was  as sessed  us ing  a 
semiquantitative method. Each slice was scored by two 
pathology experts, with five different perspectives being 
observed for each slice. The severity of lung injury 
was classified into five levels: 0 (normal) to 4 (severe). 
Specifically, the pathological indicators included the degree 
of inflammatory cell infiltration, the degree of lung tissue 
congestion and hemorrhage, the degree of pulmonary 
edema, the degree of thickening of alveolar walls, and the 
formation of pulmonary hyaline membranes (22).

Real-time fluorescence quantitative polymerase chain 
reaction

The total RNA from and cells was extracted using TRIzol 
and reverse transcribed into complement DNA (cDNA) 
with 1 μg of RNA. The experiment was conducted using 
a 25 μL reaction system, including 12.5 μL of 2× Talent 
quantitative polymerase chain reaction (qPCR) premix,  
1 μL of forward primer (10 mM), 1 μL of reverse primer 
(10 mM), 1 μL of cDNA, and 9.5 μL of RNase-free double-
distilled water (ddH2O). The primer sequence is provided 
in Table 1.

Flow cytometry

An Annexin V-fluorescein isothiocyanate (FITC)/propidium 
iodide (PI) cell apoptosis detection kit (Solarbio, Beijing, 
China) was used to detect cell cycle and apoptosis. The 
adherent cells were digested with 0.25% trypsin, centrifuged 
at 9.7 ×g for 5 minutes, and resuspended in precooled 1× 
phosphate-buffered saline (PBS). After centrifugation at 
1,000 rpm for 5 minutes, the cells were resuspended in 
300 μL of 1× binding buffer. After adding 5 μL of annexin 
V-FITC to cells, it was incubated at room temperature for 
20 minutes in the dark. Flow cytometry was conducted for 
5 minutes after PI was added.

Western blotting

After cells were lysed with protein lysis buffer, total protein 
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was extracted, and the protein concentration was determined 
using the bicinchoninic acid (BCA) method. The total 
protein amount was calculated, and 20 μg protein samples 
were loaded. The protein samples (20 μg) were separated 
by electrophoresis and transferred onto a membrane. 
After the membrane was blocked at room temperature for 
2 hours, it was incubated overnight at 4 ℃ with primary 
antibodies against PBK, SIRT1, PTEN-induced kinase 1 
(PINK1), p53, parkin, caspase3, BCL2 apoptosis regulator 
(BCL2), BCL2-associated X, apoptosis regulator (BAX), and 
GAPDH. Subsequently, the membrane was incubated at 
room temperature with secondary antibodies (anti-rabbit 
or anti-mouse; 1:2,000) for 2 hours, which was followed 
by enhanced chemiluminescence detection and protein 
expression analysis using ImageJ software (US National 
Institutes of Health).

Enzyme-linked immunosorbent assay

The optical density (OD) values of interleukin 1β (IL-1β), 
tumor necrosis factor α (TNF-α), total-superoxide dismutase 

(T-SOD), and malondialdehyde (MDA) were measured 
at 450 nm using an enzyme-linked immunosorbent assay 
(ELISA) reader according to the instructions of the kit 
(Bioss, Beijing, China). A standard curve was plotted for the 
samples, and the concentrations were calculated.

5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-
dazoylcarbocyanine iodide (JC-1) mitochondrial 
membrane potential detection

After the cells were incubated with JC-1 staining solution 
(Beyotime) for 20 minutes, the changes in mitochondrial 
membrane potential in cells were evaluated by measuring 
the fluorescence intensity under laser confocal microscopy. 
The wavelength of J monomers was 495/519 nm, while the 
wavelength of J aggregates was 550/570 nm. Quantitative 
measurements were performed using ImageJ software.

Observation of mitochondrial morphology under 
transmission electron microscopy

After the five sets of cell samples were rinsed with sterile 
PBS solution two or three times, the cells were placed in a 
sterile centrifuge tube as longitudinal sections with a cross-
sectional area of about 1 mm3 and a length of a strip, after 
which precooled 2% glutaraldehyde fixative solution was 
added. The electron microscope samples were fixed in a 1% 
osmium tetroxide solution for 2 hours, dehydrated with a 
gradient of ethanol and acetone, embedded in epoxy resin, 
and polymerized in a 65 ℃ oven for 48 hours. Following this, 
the samples were sectioned into semithin slices, and specific 
regions were selected for observation under a transmission 
electron microscope.

Wet-dry ratio

The right lung lobe of mice was extracted, and its weight 
was measured using a precision balance, with the result 
being recorded as the wet lung weight. The wet lung was 
placed in a container and air-dried at 60 ℃ in an oven for  
72 hours. Subsequently, the lung weight was measured as the 
dry lung weight. The wet-dry (W/D) ratio was calculated by 
dividing the wet lung weight by dry lung weight.

Multicolor immunofluorescence

When the Beas-2b cell line was cultured to 70% of the 
culture dish, 95% alcohol was used to fix the cells. After 

Table 1 Messenger RNA primer sequence

Target gene Orientation Primer sequence (5'-3')

β-actin 
(mouse)

Forward AAGACCTCTATGCCAACACAG

Reverse GGAGGAGCAATGATCTTGATC

PBK  
(mouse)

Forward TTGCTATGGAGTATGGAGGTG

Reverse GATACTTTAGCCCTCTTGCCA

SIRT1 
(mouse)

Forward CACTGTTGGTTGACTTCATCTTCC

Reverse CGGTGCTGACTCCTCACATT

PINK1 
(mouse)

Forward TATCTCGGCAGGTTCCTCCA

Reverse CGGACTTGAGATCCCGATGG

GAPDH 
(human)

Forward GGAGCGAGATCCCTCCAAAAT

Reverse GGCTGTTGTCATACTTCTCATGG

PBK  
(human)

Forward ATCCCGGCCTCTCCGTTTAT

Reverse GTTATGAAGGCAGGAGCAGTC

PINK1 
(human)

Forward TTGCCCCTAACACGAGGAAC

Reverse ACGTGCTGACCCATGTTGAT

SIRT1 
(human)

Forward CTACTGGCCTGAGGTTGAGG

Reverse GGACGGAGGAAAAGAGCGAA

RNA, ribonucleic acid; PBK, PDZ binding kinase; SIRT1, Sirtuin 
1; PINK1, PTEN induced kinase 1; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase.

https://www.ncbi.nlm.nih.gov/gene/65018
https://www.ncbi.nlm.nih.gov/gene/55872
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triton was used to penetrate the cell membrane, the first 
antibody (LC3B, TOMM20) was incubated overnight at 4 ℃, 
and the second antibody (Rabbit anti sheep) was stained with 
fluorescent dye and incubated for 2 hours. After thorough 
washing, the above steps were repeated, and the fluorescence 
excitation of the corresponding dye was observed.

Differential gene and pathway enrichment analysis

Differential analysis was conducted based on transcriptome 
sequencing data between the LV-NC group and the LV-
PBK group to identify differentially expressed genes [log2 
fold change (FC) =1 and P=0.05], and duplicate genes were 
normalized. The functions of different genes in the two 
groups were analyzed using Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG). Pathway 
enrichment was analyzed using gene set enrichment analysis 
(GSEA) [false discovery rate (FDR) <0.25, adjusted P value 
<0.05], with the selected annotated gene set files being “h.all.
v2023.1.Hs.symbols.gmt” (specifically defined biological 
states or processes), “c3.all.v2023.1.Hs.symbols.gmt” 
(microRNA and transcription factor features), and “c7.all.
v7.4.symbols.gmt” (immunological features).

Statistical analysis

Bioinformatics analysis was performed using version the 
R software version 4.2.1 (www.r-project.org). Correlation 
analysis, differential analysis, and functional enrichment 
analysis were conducted using the “psych”, “DESeq2”, 
“enrichplot”, and “clusterProfilter” packages in R. GSEA 
was performed using GSEA software version 4.3.2 e (www.
gsea-msigdb.org/gsea). Data analysis was conducted using 
statistical SPSS 26.0 (IBM Corp.), ImageJ, and GraphPad 
Prism 8 (GraphPad Software). The data are presented as 
the mean ± standard deviation. After the homogeneity 
of variance was tested, intergroup comparisons were 
performed using one-way analysis of variance. The level of 
statistical significance was set at P<0.05.

Results

The type of injuries in bronchial epithelial cells and Balb/c 
mouse lungs exposed to HH

After HH exposure, pathological changes in mouse lungs 
mainly included inflammatory cell infiltration, pulmonary 
congestion, interstitial edema, thickening of alveolar walls, 

and continuous interruption of alveoli, indicating ALI 
(Figure 1A). Lung injury scores were evaluated using the 
aforementioned method, and the lung injury score of the HH 
group was significantly higher than that of the control group 
(Figure 1B), indicating that mouse lungs undergo a certain 
degree of acute pathological changes after exposure to HH 
for 4 days. The W/D ratio in lung increased, indicating an 
increase in the degree of pulmonary edema (Figure 1C). Flow 
cytometry results showed an increase in cell apoptosis of Beas-
2b under HH. Secretion of inflammatory factors (TNF-α 
and IL-1β) increased in injured lungs (Figure 1D-1G).  
Under exposure to an altitude of 6,500 m, the expression 
levels of PBK and PINK1 mRNA in Beas-2b decreased, while 
the expression level of SIRT1 mRNA did not show significant 
changes. The expression level of PBK mRNA in mouse lungs 
also decreased (Figure 1H-1K).

Construction of the PBK-overexpressing Beas-2b and Balb/
c mouse model

Adenovirus-specific over-expression of PBK was conducted 
in mouse lungs, leading to elevated expression levels of 
PBK mRNA and protein in the lung (Figure 2A-2C). The 
stable cell line was obtained by transfecting Beas-2b with 
lentivirus, resulting in an increased expression level of PBK 
mRNA (Figure 2D,2E) and a corresponding increase in the 
relative expression level of the protein (Figure 2F).

Overexpression of PBK alleviated pulmonary edema and 
mitigated HHALI

After construction of the PBK-overexpressing Beas-
2b and Balb/c mouse models, the therapeutic effect of 
PBK also manifested macroscopically in mouse lungs. 
The reduction of inflammatory areas in the lungs of 
PBK-overexpressing mice was clearly visible and was 
accompanied by vasodilation and alleviation of pulmonary 
congestion symptoms. This effect was also abolished by p53 
agonists and was reversed by SIRT1 agonists (Figure 3A). As 
observed by hematoxylin and eosin (HE) staining of lung 
tissue pathological sections, the lungs in the HH group and 
p53 agonist group showed inflammatory cell infiltration, 
red blood cell extravasation, interstitial edema, thickening 
of alveolar walls, and discontinuity of alveoli, while the lung 
injury scores in the group c and group e were significantly 
lower than those in the group b and group d (Figure 3B,3C). 
In terms of the degree of pulmonary edema, the lung water 
content in the group c and group e was lower than that in 
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the group b and group d (Figure 3D).

Upregulation of PBK reduced cell apoptosis

We found that the overexpression of PBK significantly 
reduced the apoptosis rate of Beas-2b cells exposed to HH 
(Figure 4A,4B). This therapeutic effect was abolished by the 
p53 agonist, but reappeared after SIRT1 was reactivated. 
The apoptosis levels of the group C and the group E were 
significantly alleviated compared to the group B and the 

group D (Figure 4C-4F), indicating a pronounced mitigation 
of apoptosis-related protein expression in mouse lungs.

Overexpression of PBK reduced the secretion of 
inflammatory factors in the lungs and lowered the 
oxidative stress levels

Under HH conditions, the levels of inflammatory factors 
(IL-1β and TNF-α) in mouse lungs significantly increased 
(Figure 5A,5B). There was also an increase in the levels of 
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metabolic products of peroxides (MDA) and a decrease in the 
levels of antioxidant stress enzymes (T-SOD) (Figure 5C,5D).  
The activation of p53 protein counteracted the therapeutic 
effect of PBK, while the activation of both p53 and SIRT1 
reconstituted the alleviating effect of PBK.

Overexpression of PBK improved mitochondrial health in 
the Beas-2b cells exposed to HH

The activity and health of mitochondria were detected 
using the JC-1 method. The process of conversion from 
red fluorescence to green fluorescence indicated a gradual 
decrease in mitochondrial health. Exposure to HH reduced 
the health of cellular mitochondria, while overexpression of 
PBK exerted a certain degree of protection for mitochondria. 
The protective effect of PBK on mitochondria was inhibited 
by p53, whereas SIRT1 had the opposite effect (Figure 6A,6B).  
The health of mitochondria was evaluated based on the 

ratio of average fluorescence intensity between red and 
green fluorescence, with a lower ratio indicating better 
mitochondrial health and better activity, and vice versa.

Overexpression of PBK promoted mitochondrial autophagy 
and maintained normal mitochondrial morphology in 
Beas-2b cells

The multicolor immunofluorescence technique was 
employed to observe the expression levels of microtubule-
associated protein 1 light chain 3 beta (LC3B) in cells. 
Translocase of outer mitochondrial membrane 20 
(TOMM20) was labeled with brown fluorescence to indicate 
the position of mitochondria. Blue fluorescence indicated 
4,6-diamino-2-phenyl indole (DAPI), and red fluorescence 
indicated LC3B. After exposure to HH, the fluorescence 
intensity of LC3B in cells decreased significantly. In 
groups C and E, the fluorescence intensity of LC3B was 
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Figure 3 The regulatory effect of PBK on pulmonary pathological changes in mice. (A) Macroscopic observations of dissected lungs from 
Balb/c mice; (B-D) lung injury scoring, and W/D ratio of Balb/c mice, the black arrow represents the obvious damage area (HE, ×200). ***, 
P<0.001. PBK, PDZ binding kinase; W/D ratio, wet-dry ratio; AAV, adenovirus; HH, hypobaric hypoxia; NC, normal control.

significantly higher than that in groups B and D (Figure 
7A,7B). We observed that the morphology of mitochondria 
tended to be normal in groups C and E, whereas in groups 
B and D, mitochondria exhibited enlargement, swelling, 
disordered cristae, and unclear matrix aggregation. 
Additionally, a positive correlation was observed between 
the quantity of autophagosomes in the cytoplasm and the 
proportion of healthy mitochondria. This suggests that 
autophagosomes are capable of identifying and engulfing 
dysfunctional mitochondria (Figure 7C).

Expression levels of proteins associated with mitochondrial 
autophagy

The fluorescence staining of mitophagy-related proteins 

(parkin, SIRT1, and PINK1) showed a similar trend to that 
of LC3B. This suggested that the overexpression of PBK can 
activate mitophagy in Beas-2b cells, with this effect being 
achieved through the p53-SIRT1-PINK1 axis (Figure 8A-8F).

Analysis of differential genes and protein interactions

We performed differential gene analysis between the LV-
NC group and the LV-PBK group, and 510 differentially 
expressed genes were identified (|log2FC| >1 and P<0.05; 
Figure 9A). We selected the top 57 differentially expressed 
genes based on |log2FC| to generate a heatmap (Figure 9B).  
We conducted protein interaction analysis  of the 
differentially expressed genes with |log2FC| >4 using the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
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Figure 4 The role and mechanism of PBK in the apoptosis of mice and cells. (A,B) The apoptosis rate of the five groups of Beas-2b cells; 
(C-F) expression levels of apoptosis-related proteins caspase 3, Bax, and Bcl2 in the five groups of Balb/c mouse lungs. *, P<0.05; **, P<0.01; 
***, P<0.001. PBK, PDZ binding kinase; Bax, BCL2 associated X, apoptosis regulator; Bcl2, BCL2 apoptosis regulator; AAV, adenovirus; LV, 
lentivirus; NC, normal control; HH, hypobaric hypoxia.
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(STRING) database (https://cn.string-db.org/) to observe 
the interactions between them. Figure 9C shows the proteins 
with connections. To investigate whether PBK plays a 

role in other pathways, we conducted correlation analysis 
between PBK and key proteins in nine classic pathways, 
including NF-κB. PBK was significantly correlated with 

https://cn.string-db.org/
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Figure 5 The regulatory effect of PBK on inflammatory factors and oxidative stress response. (A,B) Concentrations of IL-1β and TNF-α 
in the serum of Balb/c mice. (C,D) Concentrations of MDA and T-SOD in the Balb/c mouse lung homogenates. ***, P<0.001. PBK, PDZ 
binding kinase; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin 1 beta; MDA, malondialdehyde; T-SOD, total-superoxide dismutase; 
AAV, adenovirus; HH, hypobaric hypoxia; NC, normal control.
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PI3K/AKT, Wnt, and TGF-β, and other classic signaling 
pathways (Figure 9D).

Functional enrichment analysis

GO and KEGG enrichment analysis revealed functional 
differences between the LV-NC group and the LV-PBK 
group. The GO clustering plot displayed the top five 
enriched terms, including defense response to viruses, 
defense response to symbionts, response to viruses, 
leukocyte chemotaxis, and cell chemotaxis (Figure 10A). 

In the categories of biological processes (BP), cellular 
components (CC), and molecular functions (MF), the top 10 
enriched results included signal receptor agonists, collagen-
containing extracellular matrix, and positive regulation of 
cytokine production (Figure 10B). In the KEGG enrichment 
analysis, top five most enriched pathways included TNF 
signaling pathway, IL-17 signaling pathway, rheumatoid 
arthritis, Epstein-Barr viral infection, and the interaction 
between viral proteins and cytokines and cytokine receptors 
(Figure 10C). The bubble chart in Figure 10D displays the 
top 35 most enriched pathways.
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Figure 6 The effect and mechanism of PBK on mitochondrial activity. (A,B) Red and green fluorescence staining was used to assess the 
mitochondrial membrane potential in Beas-2b cells. Red fluorescence represented JC-1 aggregates, while green fluorescence represented 
JC-1 monomers. The average fluorescence intensity was calculated, and statistical analysis was performed based on the green-red 
fluorescence ratio. ***, P<0.001. PBK, PDZ binding kinase; JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine; LV, lentivirus; 
NC, normal control; HH, hypobaric hypoxia; MFI, mean fluorescence intensity.

Different gene sets were selected for GSEA to identify 
the pathways of the LV-PBK group (FDR <0.25 and adjusted 
P value <0.05). The GSEA enrichment plot in Figure 10E 
shows the top 10 most active pathways in the hallmark gene 
set, indicating significant enrichment of these pathways in 
the LV-PBK group, including for reactive oxygen species, 
epithelial–mesenchymal transition, inflammatory response, 
and oxidative phosphorylation. Enrichment analysis was also 
performed on the transcription factor, microRNA feature, 
and immune feature gene sets, with the top 10 most active 
pathways being presented in Figure S1A,S1B. The results 
of functional enrichment analysis revealed the potential 
mechanisms or key nodes involved in disease occurrence 
and development, which may further inform treatment and 
improve the prognosis of patients.

Discussion

ALI and acute respiratory distress syndrome are pulmonary 
diseases (23), characterized by acute onset, histological 
evidence of lung parenchymal injury, increased permeability 
of  the alveolar–capil lary barrier,  development of 
inflammatory response (i.e., cytokine storm and neutrophil 
recruitment), and respiratory dysfunction characterized 
by decreased PaO2 (24,25). ALI is typically associated 
with extensive airway inflammation, hypoxemia, tissue 

disruption, and a lack of effective treatment (26). Plateau 
areas account for a large proportion of China’s land area, 
and it is not uncommon for many mountaineers to suffer 
from HHALI due to rapid mountaineering. There are 
diverse causes of ALI. Patients who develop ALI due to 
low-pressure and low-oxygen conditions typically have a 
history of exposure to high-altitude regions and may also 
have concurrent damage to other high-altitude organs, such 
as high-altitude cerebral edema. However, there is currently 
no good treatment for HHALI. We have found for the first 
time that PBK may play a therapeutic role in ALI caused by 
low pressure and hypoxia.

In this study, we used a newly developed HHALI 
Balb/c mouse model. For the first time, we simulated 
the extreme altitude of 8,500 m using an HH animal 
culture chamber. Under this pressure condition, the 
mouse lung tissue experienced acute injury within a short 
period of time (4 days). Exposed to extreme altitude, 
we observed pathological changes in mouse lung tissue, 
primarily characterized by pulmonary edema, pulmonary 
hemorrhage, alveolar septal rupture, and inflammatory 
cell infiltration. According to the literature, chronic injury 
was mainly characterized by thickening of the vascular 
intima, pulmonary hypertension, and interstitial thickening 
(26,27). Additionally, we compared the HHALI mouse 
models created in other studies (28,29). Combining these 

https://cdn.amegroups.cn/static/public/JTD-24-188-Supplementary.pdf
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observations with macroscopic examination, we can 
conclude that the model we established is ALI, not chronic 
lung injury. Flow cytometry results showed an increase 
in bronchial epithelial apoptosis rate and an elevation in 
the Bcl2-caspase 3 ratio in mouse lung tissue after 6 hours 
of exposure to HH conditions. Most researchers believe 
that apoptosis is a metabolically active process in which 
cell death occurs and exhibits characteristic morphological 
features, including cell membrane shrinkage, chromatin 
condensation, nuclear fragmentation, and membrane 
blebbing. In contrast, when cells undergo accidental death 

due to extreme or rapid injury, necrosis occurs, leading to 
plasma membrane dissolution, cell swelling, and release of 
intracellular contents that promote inflammation (30-32). 
Our flow cytometry experiments also indicated a significant 
increase in apoptosis in the lungs under HH. PBK 
expression decreased after exposure to HH. PBK is involved 
in cell cycle and apoptosis and regulates cell proliferation. 
Therefore, we believe that PBK has an indispensable role in 
cell apoptosis after exposure to HH. Our experiments also 
indirectly support the conclusions in the literature stating 
that the SIRT1–PINK1 axis is critical to mitochondrial 
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Figure 7 The effect and mechanism of PBK on mitochondrial the autophagy-related protein LC3B and mitochondrial morphology. 
(A,B) Multicolor immunofluorescence of Beas-2b cells was performed, with red fluorescence representing LC3B and brown fluorescence 
representing TOMM20. The average fluorescence intensity was calculated, and statistical analysis was conducted based on the green-red 
fluorescence ratio. (C) The microstructure of five cell groups was observed (Transmission electron microscope, ×10,000), with mitochondria 
morphology indicated by the black box (Transmission electron microscope, ×15,000), and autophagosomes indicated by the red box 
(Transmission electron microscope, ×15,000). *, P<0.05; **, P<0.01. PBK, PDZ binding kinase; LC3B, microtubule associated protein 1 light 
chain 3 beta; TOMM20, translocase of outer mitochondrial membrane 20; LV, lentivirus; NC, normal control; HH, hypobaric hypoxia.
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Figure 8 PBK affected the expression of downstream proteins and signaling molecules. Expression levels of PBK, p53, SIRT1, PINK1, and 
parkin proteins in the lungs of Balb/c mice. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significance. PBK, PDZ binding kinase; SIRT1, Sirtuin 
1; PINK1, PTEN induced kinase 1; PTEN, mutated in multiple advanced cancers 1; AAV, adenovirus; NC, normal control; HH, hypobaric 
hypoxia.

autophagy (32,33). In our study, when PBK regulated SIRT1, 
there was no significant change in the transcription level of 
SIRT1, while the protein level significantly increased. This 
indicates that PBK regulates SIRT1 by activating its protein 
activity. 

During HHALI, inflammatory factors and oxidative stress 
markers generally increase in the lungs (34,35). Increased 
levels of inflammatory factors (IL-1β, TNF-α) in the serum 
indicate that the body is under stress. In a HH environment, 
the body triggers an immune response due to hypoxia. 
Inflammatory factors can only serve as markers for early 

onset of hypoxia and cannot be used as criteria for assessing 
ALI. ALI occurred in mice exposed to low-pressure and low-
oxygen conditions, with a rapid increase in inflammatory 
factors in the serum. Following PBK overexpression, 
there was a decline in inflammatory factors associated with 
the reduction of reactive oxygen species, indicating that 
inflammatory factors alone cannot be used as indicators of 
injury mitigation. In the mouse model used in our study, there 
was a similar upward trend observed for inflammatory factors 
and oxidative stress markers. Activation of inflammatory 
and oxidative stress responses occurred in mouse lung tissue 
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Figure 9 Analysis of other genes and signaling pathways that may interact with PBK. (A) Volcano plot of the differential genes between the 
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under HH, which may be related to cell apoptosis (36,37). 
We speculate that inadequate oxygen supply for maintaining 
normal mitochondrial metabolism in HH environment 
results in oxidative stress reactions in mitochondria (38).  
This then leads to an increase in the generation of 
peroxides and superoxides (39), as well as a reduction in the 
synthesis of enzymes, such as peroxiredoxins, that mitigate 
oxidative stress reactions (40,41). As a result, the generated 
peroxides and superoxides are recognized as antigens by 
the body, initiating a vascular defense response against 
antigens and activating local inflammatory reactions. The 

recruited inflammatory cells release a substantial amount 
of inflammatory factors, which subsequently damage 
normal cells in the region, resulting in increased apoptosis 
following cell injury (42). The ruptured cells further release 
a significant amount of peroxides, superoxides, and lysozyme 
substances, intensifying cell damage and establishing a 
vicious cycle (43), a cycle which was interrupted by PBK in 
our study. When cells are deprived of oxygen, mitochondria 
undergo oxidative stress. In this condition, upregulation of 
PBK can inhibit the transmission of the signaling molecule 
p53, leading to the activation of the downstream SIRT–
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Figure 10 Database analysis of the biological processes potentially involving PBK. (A) Cluster diagram of the top five most enriched 
terms in the GO enrichment analysis. (B) Cluster diagram of the top five most enriched pathways in the KEGG enrichment analysis. (C) 
Significantly enriched GO terms according to the differential genes between the LV-NC and LV-PBK groups. (D) The top 35 most enriched 
KEGG pathways of the differential genes between the LV-NC and LV-PBK groups. (E) The top 10 most activated states of the biological 
pathways in the LV-NC and LV-PBK groups according to GSEA. FC, fold change; GO, Gene ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; TNF, tumor necrosis factor; IL-17, interleukin 17; FDR, false discovery rate; GSEA, gene set enrichment analysis; 
PBK, PDZ binding kinase; LV, lentivirus; NC, normal control; BP, biological process; CC, cellular component; MF, molecular function.
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PINK1 axis (44). Under normal circumstances, hypoxia and 
other stress conditions activate the guardian of the genome, 
p53, ultimately resulting in cell cycle arrest (45) to promote 
the DNA repair mechanism. During this process, p53 
promotes the transcription and activation of downstream 
target genes that are involved in DNA damage repair. Once 
the damage is repaired, the cell resumes the cell cycle or 
restores its normal cellular function (46). If the damage to 
DNA exceeds a certain threshold or reaches an irreversible 
state, the cell will be unable to completely restore genomic 
integrity, which leads to the sustained activation of p53 
(47,48), ultimately resulting in cell senescence, autophagy, 
and potentially programmed cell death. A study has 
indicated that there is a complex cascade relationship 
between p53 and SIRT1, which interact with and mutually 
influence each other during mitochondrial autophagy 
and cell apoptosis processes (46). Building upon this, we 
conducted further research and discovered that p53 can bind 
to the promoter region of the SIRT1 gene, inhibiting the 
transcription of SIRT1 and reducing its expression level (49); 
moreover, SIRT1 can weaken the activity of the p53 protein 
through deacetylation (50). Based on findings reported 
in the literature, we speculated that when mitochondria 
undergo oxidative stress due to hypoxia, PINK1 recognizes 
unhealthy mitochondria and induces mitophagy, thereby 
removing mitochondria in an oxidative stress state and 
reducing oxidative stress. This results in a decreased release 
of peroxides and superoxides and the reduced recruitment 
of inflammatory cells (51), ultimately alleviating hypoxia-
induced cell apoptosis at the source (52,53). During 
oxidative stress response, a significant amount of reactive 
oxygen species is released, recruiting inflammatory cells and 
resulting in a massive release of local inflammatory factors. 
Overexpression of PBK activates autophagy, leading to 
the engulfment of dysfunctional mitochondria, reducing 
the release of reactive oxygen species, and alleviating local 
damage. In this study, we used Beas-2b cells and Balb/c mice 
as experimental materials, established HH cell and animal 
models, and overexpressed PBK in cells and mouse lungs 
using a lentivirus and adenovirus, respectively. We found 
that Beas-2b cells and Balb/c mice overexpressing PBK were 
more resistant to HH compared to wild-type cells and mice. 
Macroscopic observation and HE staining of mouse lungs 
revealed that PBK overexpression significantly alleviated 
HHALI, reducing pathological manifestations caused by HH 
in mice, such as pulmonary edema, pulmonary congestion, 
and inflammatory cell infiltration, and decreasing lung injury 
scores. In addition, the secretion of inflammatory factors 

and oxidative stress markers in mouse lungs was reduced 
due to PBK upregulation, resulting in decreased lung water 
content and reduced degree of pulmonary edema. In chronic 
inflammation, the activation of macrophage autophagy can 
promote macrophage polarization towards the M2 subtype, 
while conversely, it encourages macrophages to polarize 
towards the M1 subtype. When a substantial number of 
macrophages polarize towards the M1 subtype, organs 
sustain ongoing immune responses, leading to fibrosis in 
local tissues, which may be associated with chronic damage 
in local tissues. This study primarily focuses on ALI, with no 
significant fibrosis or macrophage recruitment observed in 
HE staining. Therefore, this type of immune response may 
not function as the cellular mechanism of ALI. The increase 
in the Bcl2-BAX ratio and the decrease in caspase3 expression 
in mouse lung tissue, which are related to apoptosis, 
indicated a certain degree of reduction in apoptosis levels 
in lung tissue after PBK overexpression. The role of PBK in 
promoting cell proliferation and reducing cell apoptosis is 
mediated by the p53 protein (54,55). p53 is considered to be 
a tumor suppressor, and while PBK can activate SIRT1, p53 
can inhibit the activation of the SIRT1 protein to some extent 
(56,57). Moreover, the overexpression of PBK can reduce 
the level of p53 protein in mouse lung tissue. Activation 
of p53 can block the protective mechanisms against HH-
induced ALI, such as reduced apoptosis, decreased secretion 
of inflammatory factors, decreased oxidative stress levels, 
and increased mitochondrial autophagy levels caused by 
PBK overexpression. Simultaneous activation of p53 and 
SIRT1 was demonstrated to reverse the aggravated lung 
injury caused by p53 activation (58-60). This points to the 
presence of the upstream and downstream relationship of 
the PBK, p53, and the SIRT1–PINK1 axis. Multiple studies 
point to the complex cascade relationship between p53 
and SIRT1 (46,47). In this study, we conducted additional 
research.

We performed transcriptome sequencing on the 
successfully constructed PBK-overexpressing cell line. First, 
through differential analysis, we identified the genes that 
have been reported in other literature and are relevant to 
our study. GSEA was used to successfully identify enriched 
pathways with high enrichment scores related to hypoxia, 
injury, and inflammation, confirming the authenticity 
and validity of the sequencing data (61). Based on this, 
we conducted a series of analyses, in which we identified 
numerous highly scored microRNAs and transcription 
factors through enrichment analysis. This facilitated the in-
depth analysis of the upstream and downstream molecular 



Sun et al. The role and mechanism of PBK in HHALI2098

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(3):2082-2101 | https://dx.doi.org/10.21037/jtd-24-188

mechanisms of PBK that mitigate ALI caused by low 
pressure and low oxygen via mitochondrial autophagy, 
as well as the potential alternative pathways. However, 
substantial follow-up experiments are still needed for 
verification. Furthermore, we also identified a few immune-
related pathways and factors via enrichment. However, 
this has significant limitations, such as whether PBK has an 
impact on other lung cells and how to specifically activate 
PBK to protect against HHALI, which is still worth further. 
This study is entirely animal experiments, and further 
research should take human specimens from HHALI 
for further verification. Our team plans to use single-
cell transcriptome sequencing at a later stage in research 
to conduct in-depth analysis of tissue samples, further 
elucidating their underlying mechanisms.

Conclusions

In this study, we found that PBK can serve as a novel 
potential therapeutic target for HHALI. This therapeutic 
effect is achieved by inhibiting the activation of p53 protein, 
thereby promoting the mitochondrial autophagy induced 
by the SIRT1-PINK1 axis and thus reducing the secretion 
of local inflammatory factors and oxidative stress response. 
Through RNA sequencing, we further discovered that PBK 
may be involved in other signaling pathways in alleviating 
HHALI, and these should be explored in more detail in 
subsequent experiments. Further research is needed, as 
there are still several issues related to this subject which 
remain unclear, such as how PBK regulates p53 and whether 
this process involves any protein molecule interactions or 
changes in protein structure.
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