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The emergence of the plasmid-mediated colistin resistance gene mcr-1 is threatening
the last-line role of colistin in human medicine. With mcr-1-positive Escherichia coli
(E. coli) isolated from food animal being frequently reported in China, the prevalence
of mcr-1 in food animal has attracted public attention. In the present study, a total
of 105 colistin-resistant E. coli strains were isolated from 200 fecal samples collected
from six swine farms in northeastern China. mcr-PCR revealed that the prevalence of
mcr-1 in colistin-resistant E. coli was 53.33% (56/105). mcr-1-positive E. coli showed
extensive antimicrobial resistance profiles with the presence of additional resistance
genes, increased expression of multidrug efflux pump-associated genes, and increased
biofilm formation ability. MLST differentiated all the mcr-1-positive E. coli into 25
sequence types (STs) and five unknown ST, and the most common ST was ST10
(n = 11). By phylogenetic group classification, the distribution of all mcr-1-positive E. coli
belonging to groups A, B1, B2, and D was 46.43, 35.71, 5.36, and 5.36%, respectively.
Conjugation experiment demonstrated that most of the mcr-1 were transferable at
frequencies of 2.68 × 10−6–3.73 × 10−3 among 30 representative mcr-1-positive
E. coli. The plasmid replicon types IncI2 (n = 9), IncX4 (n = 5), IncHI2 (n = 3), IncN (n = 3),
and IncP (n = 1) were detected in the transconjugants. The results of growth assay,
competition experiment, and plasmid stability testing showed that acquisition of mcr-
1-harboring plasmids could reduce the fitness of bacterial hosts, but mcr-1 remained
stable in the recipient strain. Due to the potential possibility of these mcr-1-positive E. coli
being transmitted to humans through the food chain or through horizontal transmission,
therefore, it is necessary to continuously monitor the prevalence and dissemination of
mcr-1 in food animal, particularly in swine.
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INTRODUCTION

The discovery and use of antibiotics in human medicine was
regarded as one of the vast medical advancements over the
past decades, and antibiotics also play an important role in
food-animal agriculture (Worthington and Melander, 2013). The
increasing amount of animal protein for human consumption
accelerates the development of modern animal production.
However, the widespread use of antibiotics in livestock has posed
a significant public health threat, which can potentially increase
selection pressure on antibiotic-resistant bacteria (ARB) and
further promote the dissemination of ARB in livestock (You
and Silbergeld, 2014). Moreover, the animal-origin ARB can be
transmitted to humans through the environment and food chain
as well as through direct contact (Graham et al., 2009).

Escherichia coli is one of the major pathogens in the swine
industry, which is associated with gastrointestinal diseases
and systemic infections, including diarrhea, edema disease,
septicemia, polyserositis, mastitis, and urinary tract infections
(Fairbrother et al., 2005). These diseases can lead to morbidity,
mortality, and delayed growth, which are responsible for
considerable economic losses and restrict the development of the
swine industry. To maintain health and productivity, antibiotics
are widely administered to treat E. coli infections in farms
to swine via oral, either in feed or in water (Fairbrother
et al., 2005). Among a variety of antibiotics used in swine
farms, polypeptides and aminoglycosides are most frequently
administrated (Sabine et al., 2017).

Colistin is a kind of cationic polypeptides and a member of
the polymyxin family, including polymyxins A, B, C, D, and
E. Only polymyxin B and polymyxin E (colistin) are currently
used clinically. Due to the broad-spectrum activity against a
wide range of Gram-negative bacteria (GNB), colistin is widely
used in pig production to control intestinal infections caused by
Enterobacteriaceae (Landman et al., 2008). The routine use of
colistin in human medicine was abandoned in the 1970s due to
its major side effects, including nephrotoxicity and neurotoxicity
(Landman et al., 2008). However, with the emergence of
multidrug-resistant Gram-negative bacteria (MDR-GNB) and
the paucity of novel classes of antibiotics entering the clinic,
colistin has been reintroduced to human clinical use as a last-
line treatment option for severe infections caused by MDR-GNB
(Falagas and Kasiakou, 2005). The rapid rise and dissemination
of MDR-GNB led to the increased amounts of colistin used in
humans and animals with the inevitable risk of accelerating the
emergence of colistin resistance (Kempf et al., 2013).

Colistin resistance was commonly thought to be
chromosomally mediated, until a novel plasmid-mediated
colistin resistance gene mcr-1 was characterized in E. coli isolated
from animals and humans in China at the end of 2015 (Liu
et al., 2016). Because of the rapid horizontal spread of colistin
resistance by plasmids, the discovery of mcr-1 has attracted
public attention among physicians and veterinarians. To date,
the cases of bacteria harboring mcr-1 gene have been found in 47
different countries across six continents (Asia, Europe, Africa,
North America, South America, and Oceania) from humans,
animals, and environmental samples (Shi et al., 2020). Due to the

high prevalence of mcr-1-positive E. coli originating from food
animal than from humans, food animal production, particularly
pig production, has been singled out as the major cause of mcr-1
amplification and spread (Rhouma et al., 2016).

In this study, we aimed to investigate the prevalence and
characteristics of mcr-1 in swine farms in northeastern China by
determining (1) the carriage rate of mcr-1 in colistin-resistant
E. coli isolated from swine fecal samples; (2) the antimicrobial
resistance profiles of mcr-1-positive E. coli isolates; (3) the
presence of additional resistance genes, the relative expression
levels of multidrug efflux pump-associated genes, and biofilm
formation ability in mcr-1-positive E. coli isolates; (4) the genetic
relationship of the mcr-1-positive E. coli isolates by multilocus
sequence typing (MLST) and phylogenetic group; and (5) the
transferability, conjugation frequency, fitness cost, and plasmid
stability of mcr-1.

MATERIALS AND METHODS

Sample Collection and Bacterial Strain
Identification
Between July 2016 and June 2017, a total of 200 fecal
swabs were collected from six swine farms in northeastern
China, including Heilongjiang (Harbin), Jilin (Changchun), and
Liaoning (Shenyang). In each province, two geographically
distinct swine farms were selected; 40 fecal swabs were randomly
collected from 40 different pigs in each farm in Harbin, and 30
fecal swabs were randomly collected from 30 different pigs in each
farm in Changchun and Shenyang. Fecal swabs were collected
by placing a wet cotton swab at the animal anus of 2∼5 cm
with minor rotation. The samples brought to the laboratory were
immediately streaked out on MacConkey agar and incubated at
37◦C for 18 h. The putative E. coli isolates on MacConkey agar
(bright pink with a dimple) per sample were transferred to eosin
methylene blue agar for further purification and were incubated
at 37◦C for 18 h. Randomly selected colonies with typical E. coli
morphology were selected from each sample for PCR detection
of 16S rRNA gene and for sequencing (Seurinck et al., 2003).
All confirmed E. coli isolates were stored at –80◦C for further
studies.

Colistin Resistance Screening and
Confirmation of mcr-1-Positive Strains
To isolate colistin-resistant E. coli, all the strains were screened
on the MacConkey agar containing 2 µg/ml of colistin. The DNA
templates of all colistin-resistant isolates were extracted using
the DNA extraction kit (TIANGEN, Beijing, China) following
the instructions of the manufacturer. The presence of mcr-1 in
colistin-resistant E. coli was determined by PCR amplification
and followed by Sanger sequencing as described previously
(Liu et al., 2016).

Antimicrobial Susceptibility Testing
The susceptibility of all mcr-1-positive strains to 26
antibiotics, namely meropenem, ertapenem, imipenem,
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ampicillin, ampicillin–sulbactam, amoxicillin/clavulanic acid,
cefuroxime, ceftazidime, cefepime, ceftriaxone, cefoxitin,
aztreonam, gentamicin, amikacin, kanamycin, streptomycin,
ciprofloxacin, levofloxacin, tetracycline, doxycycline, tigecycline,
chloramphenicol, florfenicol, fosfomycin, sulfisoxazole,
and nitrofurantoin, was determined by the standard disk
diffusion method in accordance with the Clinical and
Laboratory Standards Institute (CLSI); the interpretation of
the susceptibility result was according to CLSI (document
M100), 2018, except those for florfenicol and sulfisoxazole
which were interpreted according to the CLSI VET01-
A4, and tigecycline was interpreted in accordance with the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) 2017. The E. coli ATCC 25922 was used as a
quality control strain.

Detection of Additional Antimicrobial
Resistance Genes
The presence of carbapenemase genes (blaKPC, blaNDM ,
blaOXA−48, and blaIMP) (Doyle et al., 2012), extended spectrum-
β-lactamase (ESBL) genes (blaCTX−M) and non-ESBL genes
(blaTEM , blaSHV , blaOXA−1) (Dallenne et al., 2010), pAmpC
genes (blaCMY , blaFOX , and blaDHA) (Dallenne et al., 2010),
tetracycline resistance genes [tet(A), tet(B), tet(C), and tet(M)]
(Ng et al., 2001), aminoglycoside resistance genes [rmtA, rmtB,
rmtC, rmtD, armA, nmpA, and aac(3)-IV] (Yeganeh Sefidan
et al., 2019), fluoroquinolone resistance genes [qnrA, qnrB,
qnrC, qnrD, qnrS, oqxAB, qepA, and aac(6′)-Ib-cr] (Ciesielczuk
et al., 2013), streptomycin/spectinomycin resistance genes
(strA, strB, and aadA) (Srinivasan et al., 2007), fosfomycin
resistance genes (fosA and fosA3) (Lee et al., 2012), florfenicol
resistance gene (floR) (Li et al., 2015), and sulfonamide resistance
genes (sul1, sul2, and sul3) (Hammerum et al., 2006) was
examined by PCR. The positive products were validated with
Sanger sequencing, then all the obtained sequences were
compared using Blast with those published in the NCBI
database1.

Phylogenetic Groups and Multilocus
Sequence Typing Analysis
The genetic relatedness of mcr-1-positive strains was investigated
by MLST as previously described for E. coli (Tartof et al.,
2005). Furthermore, a two-step multiplex PCR was performed
to determine the phylogenetic group, and the primers used
(chuA, yiaA, and TspE4.C2) and details were the same as
previously described (Clermont et al., 2000). Phylogenetic
trees for all sequence types (STs) were constructed using the
neighbor-joining method with MEGA software (Kumar et al.,
2018). Annotation for each isolate and tree embellishment were
visualized using Itol2.

1http:/www.ncbi.nlm.nih.gov/blast
2https://itol.embl.de/

Detection of the Relative Expression
Levels of Genes Encoding Efflux Pumps,
Porins, and Regulators by Quantitative
Real-Time PCR
Eleven representative strains were chosen from all mcr-1-positive
E. coli for the detection of the relative expression levels of genes
encoding efflux pumps (acrA, mdfA, ydhE, acrE, tolC, mdtE, and
mdtF), regulators (marA, soxS, fisF, dsrA, and evgA), and porin
protein-encoding genes (ompC and ompF). Total RNA of mcr-
1-positive strains and a reference strain E. coli ATCC 25922
was extracted using TRIzol reagent (Thermo Fisher Scientific,
Waltham, MA, United States), and cDNA was synthesized with
5×All-In-One MasterMix (ABM, Richmond, Canada) following
the instructions of the manufacturer. The mdh gene was used
as the housekeeping gene. Quantitative real-time PCR (BioEasy
SYBR Green High ROX Master Mix, Bioer, Hangzhou, China)
was performed according to the methods described by Vinué et al.
(2015). The relative expression levels of the tested genes were
calculated using the 2−11CT method as described by Huang W.
et al. (2020).

Detection of Biofilm Formation Ability
All mcr-1-positive isolates were inoculated into 15 ml tubes
containing 5 ml Luria–Bertani (LB) broth and then cultured
overnight in a shaking incubator at 37◦C. The biofilm
formation assay of these isolates was then conducted in 96-
well polystyrene flat-bottom microtiter plates as described
previously (Teh et al., 2010). To quantify the biofilm formation
ability, the absorbance values of the solution were measured
at 590 nm using an automated Multiskan FC reader (Thermo
Fisher Scientific). The experiment was repeated independently
three times.

Conjugation Experiment and Plasmid
Replicon-Type Analysis
The transferability of mcr-1 was tested by conjugation experiment
with mcr-1-positive E. coli as donors and rifampicin-resistant
E. coli EC600 as recipient strains. The MacConkey agar plates
containing rifampicin (256 µg/ml) and colistin (2 µg/ml) were
used to select mcr-1-positive transconjugants. PCR analysis
and DNA sequencing were carried out to confirm that
transconjugants were derivatives of the recipient strain E. coli
EC600. The transfer frequency of mcr-1 was determined as
described in a previous study (Liu et al., 2016). The replicon types
of the transconjugants were determined according to previous
studies (Carattoli et al., 2005; Johnson et al., 2012).

Growth Assay and in vitro Competition
Experiment
To assess the fitness impact of mcr-1 carriage on the host,
growth assay and in vitro competition experiment were
carried out. Growth curves for the recipient (EC600) and
mcr-1-positive E. coli transconjugants were performed in
96-well flat-bottom plates (Corning Inc., Corning, NY,
United States) as described previously (Long et al., 2019).
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FIGURE 1 | The resistant rate of mcr-1-positive E. coli to other antibiotics. MEP, meropenem; ETP, ertapenem; IMP, imipenem; AMP, ampicillin; CXM, cefuroxime;
CAZ, ceftazidime; FEP, cefepime; CRO, ceftriaxone; FOX, cefoxitin; ATM, aztreonam; SAM, ampicillin–sulbactam; AMC, amoxicillin–clavulanic acid; GEN, gentamicin;
AMK, amikacin; KMC, kanamycin; STP, streptomycin; CIP, ciprofloxacin; LEV, levofloxacin; TEC, tetracycline; DOC, doxycycline; TGC, tigecycline; CMH,
chloramphenicol; FFC, florfenicol; FOS, fosfomycin; SFN, sulfisoxazole; NFT, nitrofurantoin.

In vitro competition experiments were conducted using
mcr-1-positive E. coli transconjugants competing with
EC600. Twenty-four-hour competition experiments were
performed as described previously (He et al., 2017).
Growth assay and in vitro competition experiment were
performed in triplicate.

Plasmid Stability Testing
To estimate the stability of the plasmid harboring mcr-
1, plasmid stability experiments were performed using mcr-
1-positive E. coli transconjugants as described previously
(Sota et al., 2010).

RESULTS

Prevalence of mcr-1 in Colistin-Resistant
E. coli
A total of 176 E. coli strains were isolated from 200 fecal
samples collected from six swine farms located in northeastern
China, and the E. coli isolates showed high resistance rate to
colistin (59.66%, 105/176). Colistin-resistant E. coli colonies were
identified in 66.20% (47/71), 54.90% (28/51), and 55.56% (30/54)
E. coli strains isolated from swine farms in Heilongjiang, Jilin, and
Liaoning, respectively. mcr-PCR and sequencing revealed that 56
E. coli were positive for mcr-1, the carriage rate was extremely
high (53.33%, 56/105), and the prevalence of mcr-1 in colistin-
resistant E. coli isolated from swine farms in Heilongjiang, Jilin,
and Liaoning was 46.81% (22/47), 53.57% (15/28), and 63.33%
(19/30), respectively.

Antimicrobial Susceptibility of
mcr-1-Positive E. coli
The susceptibility of 56 mcr-1-positive E. coli isolates to other
antimicrobials was determined. The percentages of resistance
rate are presented in Figure 1. There were a high rate of
resistance (60–100%) to gentamicin, kanamycin, streptomycin,
ciprofloxacin, levofloxacin, tetracycline, chloramphenicol,
florfenicol, doxycycline, and sulfisoxazole; a moderate rate
of resistance (20–60%) to ampicillin, ampicillin–sulbactam,
amoxicillin–clavulanic acid, amikacin, and fosfomycin; and
a low rate of resistance (<20%) to meropenem, ertapenem,
imipenem, cefuroxime, ceftazidime, cefepime, ceftriaxone,
cefoxitin, aztreonam, and nitrofurantoin. There were no strains
that were resistant to tigecycline. As shown in Table 1, most of
the mcr-1-positive E. coli were multidrug resistant.

Presence of Additional Resistance
Genes in mcr-1-Positive E. coli
Molecular features revealed that most mcr-1-positive E. coli
carried additional resistance genes, as shown in Figure 2. Overall,
blaTEM (n = 56, 100%) was the most common non-ESBL gene
in our study, followed by blaSHV−1 and blaOXA−1 that were
identified in three (5.36%) and five (8.93%) isolates, respectively.
In addition, the ESBL gene blaCTX−M was detected in eight
(14.86%) mcr-1-positive E. coli isolates. The detected pAmpC
genes were blaCMY (n = 10, 17.86%), blaFOX−5 (n = 5, 8.93%),
and blaDHA−1 (n = 2, 3.57%). The carbapenemase genes (blaKPC,
blaOXA, and blaIMP) were not detected, and only blaNDM−5
was detected in two (3.57%) isolates. Among aminoglycoside
resistance genes, only rmtA [7, 12.50%) and aac(3)-IV (25,
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TABLE 1 | Characteristics and antimicrobial resistance profiles of mcr-1-positive E. coli.

Strains ST Phylogroup Antimicrobial resistance

HLJ173 1,421 B1 ATM/GEN/KMC/STP/CIP/LEV/TEC/CMH/SFN

LN58 410 A AMP/CAZ/FEP/CRO/FOX/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

LN122 1,463 B1 AMP/SAM/AMC/CIP/LEV/TEC/SFN

LN191 20 B1 GEN/KMC/STP/CIP/LEV/SFN

LN252 20 A AMP/SAM/AMC/GEN/KMC/CIP/LEV/DOC/CMH/FFC/SFN/AMK

JL124 5,229 B1 AMP/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN/AMK

HLJ226 New ST1 B1 GEN/KMC/STP/CIP/LEV/CMH/FFC/SFN/FOS

LN72 1,0580 A TEC/CMH/FFC/SFN/FOS

LN176 93 A AMP/ATM/SAM/AMC/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

JL226 New ST4 B1 AMP/SAM/AMC/GEN/KMC/STP/CIP/TEC/DOC/CMH/FFC/SFN/NFT/AMK

JL125 48 A GEN/KMC/STP/DOC/CMH/FFC/SFN/FOS

HLJ8 10 Unknown AMP/CXM/CAZ/FEP/CRO/GEN/KMC/CIP/TEC/DOC/CMH/FFC/SFN/AMK

JL252 9,159 Unknown GEN/KMC/STP/CMH/FFC/SFN/FOS

LN74 10 A AMC/SFN

HLJ212 10 A AMP/TEC/DOC/CMH/FFC/SFN/FOS

HLJ84 New ST5 B1 AMP/GEN/KMC/STP/CIP/LEV/TEC/CMH/FFC/SFN/AMK

LN20 617 A GEN/KMC/STP/TEC/DOC/CMH/FFC/SFN

LN203 2,935 B1 KMC/STP/CIP/SFN

JL114 3,944 A AMP/CAZ/FEP/CRO/LEV/TEC/DOC/CMH/FFC/SFN/FOS

HLJ464 3,944 A AMP/FEP/LEV/DOC/FOS

LN221 3,944 B1 SAM/FOS

LN220 398 B1 AMP/SAM/AMC/KMC/STP/CIP/LEV/DOC/CMH/FFC/SFN

JL7 3,014 B2 AMP/SAM/AMC/CMH/FFC/SFN/FOS

JL127 1,421 B1 SAM/AMC/GEN/KMC/STP/CIP/LEV/DOC/SFN/AMK

HLJ174 3,856 A CIP/LEV/TEC/DOC/SFN

HLJ456 New ST3 B1 TEC/DOC/CMH/FFC/SFN

HLJ438 New ST2 B1 AMP/CAZ/FEP/CRO/FOX/GEN/KMC/STP/TEC/CMH/FFC/FOS

HLJ56 4,379 B1 GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

LN106 156 B2 AMP/CXM/SAM/AMCGEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN/AMK

LN19 1,589 A GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

HLJ63 410 A AMP/CXM/CAZ/FEP/CRO/FOX/TEC/DOC/CMH/FFC/SFN/FOS

LN251 20 B1 CIP/LEV/TEC/DOC/CMH/FFC/SFN

JL128 5,229 B1 ATM/AMC/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

JL47 5,229 B1 AMP/GEN/KMC/STP/CIP/LEV/TEC/SFN/AMK/FOS

HLJ70 898 B1 CXM/ATM/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

HLJ43 898 A AMP/SAM/AMC/GEN/KMC/STP/CIP/LEV/TEC/CMH/FFC/SFN/FOS

JL43 224 D CXM/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN/NFT

LN66 131 D GEN/KMC/STP/TEC/CMH/FFC/SFN

LN186 93 B1 AMP/CXM/ATM/AMC/GEN/KMC/STP/CIP/LEV/TEC/CMH/FFC/SFN/AMK/FOS

JL55 48 A AMP/SAM/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

JL63 48 A AMP/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

HLJ79 48 A AMP/GEN/KMC/STP/TEC/CMH/FFC/SFN/AMK/FOS

HLJ194 772 B2 AMP/ATM/GEN/KMC/STP/TEC/DOC/CMH/FFC/FOS

LN190 772 A AMP/CXM/TEC/DOC/CMH/FFC/SFN

HLJ188 772 Unknown CXM/GEN/KMC/STP/TEC/DOC/CMH/FFC/SFN/AMK

LN59 617 B1 AMP/CXM/CAZ/FEP/CRO/GEN/KMC/STP/CIP/LEV/TEC/CMH/FFC/SFN/AMK

JL176 165 A AMP/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC

HLJ187 6,730 Unknown AMP/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

HLJ336 10 A AMP/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

JL9 10 A AMP/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN

JL33 10 A AMP/CXM/FEP/CRO/FOX/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/NFT/AMK/FOS

HLJ230 10 D MEP/ETP/IMP/AMP/CXM/CAZ/FEP/CRO/FOX/GEN/KMC/STP/TEC/CMH/FFC/FOS/SFN

HLJ222 10 A AMP/SAM/GEN/KMC/STP/CIP/LEV/TEC/DOC/CMH/FFC/SFN/FOS

(Continued)
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TABLE 1 | Continued

Strains ST Phylogroup Antimicrobial resistance

LN182 10 A AMP/SAM/AMC/GEN/KMC/STP/CIP/LEV/TEC/CMH/FFC/SFN/FOS

LN215 10 A AMP/ATM/GEN/KMC/STP/CIP/LEV/TEC/CMH/FFC/SFN

JL79 10 D AMP/SAM/AMC/KMC/STP/TEC/CMH/FFC/FOS/SFN

44.64%] were detected. As for fluoroquinolone resistance genes,
there were 10 (17.86%), 7 (12.50%), 31 (55.36%), 2 (3.57%),
and 9 (16.07%) isolates harboring qnrD, qnrS, oqxAB, qepA, and
aac(6′)-Ib-cr, respectively, but there were no strains harboring
qnrA, qnrB, and qnrC. The number of isolates harboring tet(A),
tet(B), and tet(M) was 27 (48.21%), 20 (35.71%), and 31 (55.36%),
respectively. The plasmid-encoded floR gene that conferred
chloramphenicol resistance was detected in 38 (67.86%) mcr-1-
positive strains. The isolates positive for sulfonamide resistance
genes comprised 33 (58.93%) strains harboring sul1, followed
by 24 (42.86%) and 18 (32.14%) strains harboring sul2 and
sul3, respectively. The strA and strB were closely associated with
streptomycin resistance, which were detected in 34 (60.71%) and
39 (69.64%) isolates. The fosA (n = 9, 16.07%) and fosA3 (n = 17,
30.36%) were prevalent in fosfomycin-resistant isolates.

Molecular Genotyping of mcr-1-Positive
E. coli
The genotyping results of mcr-1-positive E. coli are summarized
in Table 2. The mcr-1-positive isolates were distributed into
phylogroups A (n = 26), B1 (n = 20), B2 (n = 3), and D
(n = 3), and the phylogroup was undefined for four isolates.
MLST differentiated the 56 mcr-1-positive E. coli into 25 STs
and five unknown ST (untypable). As shown in Figure 3, the
most common ST was ST10 (n = 11), followed by ST48 (n = 4),
ST20 (n = 3), ST3944 (n = 3), ST772 (n = 3), ST5229 (n = 3),
ST617 (n = 2), ST410 (n = 2), ST93 (n = 2), ST898 (n = 2), and
ST1421 (n = 2), and then by single ST isolates, including ST165,
ST10580, ST3856, ST1589, ST398, ST1463, ST4379, ST2935,
ST156, ST3014, ST131, ST224, ST6730, and ST9159. Moreover,
ST10, ST48, and ST617 are different by one or two alleles and
they correspond to clonal complex CC10. As shown in Figure 2,
phylogenetic analysis of all mcr-1-positive E. coli underlined the
evidence for the horizontal transfer of mcr-1.

Relative Expression Levels of Genes
Encoding Efflux Pumps, Porins, and
Regulators in mcr-1-Positive E. coli
According to the results of MLST, 11 STs were predominant
among mcr-1-positive E. coli. One representative strain of E. coli
was chosen from each ST for subsequent detection. As shown in
Figure 4, compared with the E. coli ATCC 25922, the relative
expression levels of acrA, mdtE, mdtF, marA, soxS, fisF, ompF,
and ompC were increased in all tested mcr-1-positive E. coli. The
expression of mdfA, ydhE, acrE, tolC, and dsrA was increased
in four, seven, four, five, and four strains, respectively, and the
expression of evgA was reduced in all tested mcr-1-positive E. coli.
The results indicated that upregulation of the expression of efflux

pump-related genes could be used to explain the multidrug
resistance of mcr-1-positive E. coli.

Biofilm Formation Ability of
mcr-1-Positive E. coli
As shown in Figure 5, among the 56 mcr-1-positive E. coli
strains, 28 (50.00%) strains showed significantly increased ability
of biofilm formation compared with the E. coli ATCC 25922
(p < 0.05 or p < 0.01), and two (3.57%) strains showed
significantly decreased ability of biofilm formation (p < 0.05).
However, the remaining strains (26/56, 46.43%) showed no
significant changes in their ability of biofilm formation.

Transferability of mcr-1 and Plasmid
Replicon Types in mcr-1-Positive
Transconjugants
The transferability of mcr-1 and conjugation frequencies are
exhibited in Table 3. Among 30 representative mcr-1-positive
E. coli, majority of the strains (n = 26) were capable of transferring
mcr-1 to the recipient rifampicin-resistant E. coli EC600. The
conjugation frequencies of the isolates lay between 2.68 × 10−6

and 3.73 × 10−3. The detected plasmid replicon types in the
transconjugants included IncI2 (n = 8), IncX4 (n = 5), IncHI2
(n = 3), IncN (n = 3), and IncP (n = 1).

The combinations of IncN/IncX4 (n = 2), IncP/IncHI2 (n = 2),
and IncI2/IncX4/IncHI2 (n = 1) were detected, indicating some
transconjugants harbored several replicon types.

Fitness Cost and Plasmid Stability
As shown in the growth curves of Figure 6A, compared with
the recipient (EC600), the growth rates at growth phase and
cell densities at stationary phase were decreased slightly in mcr-
1-positive E. coli transconjugants. The results of the in vitro
competition experiment (Figure 6B) showed that the relative
fitness values of all selected mcr-1-positive E. coli transconjugants
were below 1. These results revealed that the acquisition of
mcr-1-bearing plasmid could place an energy burden on the
bacterial host and incur fitness cost. A total of five mcr-1-positive
E. coli transconjugants were randomly selected and were passaged
daily for 10 days in the absence of antibiotic selection. The
results (Figure 6C) showed that mcr-1 could be detected in
transconjugants after a series of passages, suggesting that the
plasmid harboring mcr-1 remains stable in the hosts.

DISCUSSION

In the 1960s, several countries permitted the use of colistin
in food animal production (Rhouma et al., 2016). However,
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FIGURE 2 | Analysis of phylogroup, antimicrobial resistance genes, and relationships among 56 mcr-1-positive E. coli isolates from swine farms in northeastern
China. Relationships among 56 mcr-1-positive E. coli isolates are indicated using an unrooted tree based on the alignments of concatenated MLST allelic sequences
using the neighbor-joining method. For comparison of resistance genes among the 56 mcr-1-positive E. coli isolates, the red squares represent positivity for
antimicrobial resistance genes.
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TABLE 2 | Genotyping of mcr-1-positive E. coli.

Phylogroup
(number of

strains)

Clonal complex (number
of strains)

Sequence type (number of
strains)

A (26) CC10 (14) ST10 (9), ST48 (4), ST617 (1)

CC20 (1) ST20 (1)

CC23 (2) ST410 (2)

CC165 (1) ST165 (1)

CC168 (1) ST93 (1)

Other CC (7) ST3944 (2), ST10580 (1),
ST3856 (1), ST898 (1), ST772

(1), ST1589 (1)

B1 (20) CC10 (1) ST617 (1)

CC20 (2) ST20 (2)

CC101 (3) ST5229 (3)

CC168 (1) ST93 (1)

CC398 (1) ST398 (1)

Other CC (12) NS1 (1), ST898 (1), NS2 (1),
ST1421 (2), NS3 (1), ST3944
(1), ST1463 (1), ST4379 (1),
NS4 (1), ST2935 (1), NS5 (1)

B2 (3) CC156 (1) ST156 (1)

Other CC (2) ST772 (1), ST3014 (1)

D (3) CC10 (1) ST10 (1)

CC131 (1) ST131 (1)

Other CC (1) ST224 (1)

Unknown (4) CC10 (1) ST10 (1)

Other CC (3) ST6730 (1), ST9159 (1), ST772
(1)

the regular use of colistin in food animal is recognized as
one of the major contributors to the emergence of colistin-
resistant Enterobacteriaceae in humans (Maamar et al., 2018).
The discovery of a novel stable plasmid-mediated gene mcr-1
in E. coli contributed to our understanding of potential colistin
resistance transmission between animals and humans (Liu et al.,
2016). Moreover, livestock and poultry have been described as
the major reservoir for colistin resistance (Rhouma et al., 2016).
A survey has been performed to investigate the prevalence of
colistin resistance in E. coli isolated from farms in different
geographic areas of China during 2013–2014, which revealed
that colistin resistance rates in E. coli from pigs, chickens, and
cattle were 26.5, 14.0, and 0.9%, respectively (Zhang et al., 2019).
The results demonstrated that colistin resistance was extremely
serious in food animals, particularly in pigs.

In this study, E. coli strains isolated from swine farms
in northeastern China showed significantly higher frequency
of colistin resistance (52.5%). This result supports a previous
finding that colistin resistance in E. coli occurred widely in
pigs (54.25%) in intensive breeding farms of Jiangsu Province
from 2015 to 2016 (Zhang et al., 2019). The high frequency of
colistin resistance in the E. coli isolates recovered from food
production animals could be explained by the increasing amount
of colistin administrated in animal husbandry in the past few
years, especially in swine (Zhang et al., 2019). It has been reported
that colistin was used in massive quantities in the swine industry

for the treatment of gastrointestinal disease worldwide, including
France, Belgium, Spain, Austria, Germany, and China (Rhouma
et al., 2016). Moreover, the amount of colistin used in agriculture
was 11,942 tons per year by the end of 2015 in China, which was
predominant all over the world (Liu et al., 2016).

The rapid horizontal spread of mcr-1 by plasmids is one
of the major reasons for the increasing prevalence of colistin
resistance. Several studies have reported that many countries and
regions found the presence of GNB carrying mcr-1 in humans,
animals, and the environment (Fernandes et al., 2016; Hadjadj
et al., 2017). In this study, 56 (53.33%) E. coli strains were
positive for mcr-1 among 105 colistin-resistant E. coli isolated
from swine farms. Similar to our result, a surveillance of colistin
resistance performed in Jiangsu Province revealed that the mcr-1
prevalence was 68.86% in pigs (Zhang et al., 2019). A previous
study showed a high mcr-1-positive rate (79.2%) in swine-
origin E. coli isolated from nine provinces in China. Further
testing showed that most mcr-1-positive bacteria were identified
as E. coli, demonstrating that E. coli was the predominant
bacterial host of the mcr-1 gene (Zhang et al., 2018). With the
purpose of promoting growth, colistin had been widely used as
a feed additive in farms for many years in China before 2017.
The excessive use of colistin potentially increases the selection
pressure which can promote the spread of mcr-1, finally leading
to an exceedingly high prevalence of mcr-1 in food animals (Tong
et al., 2018). Fortunately, the Chinese government has banned the
use of colistin as food additive for growth promotion in farms
since April 1, 2017.

It has been reported that plasmids harboring mcr-1 usually
carry other resistance genes, encoded for aminoglycosides,
quinolones, etc. (Rozwandowicz et al., 2018). Furthermore, the
resistance genes can be horizontally transferred via plasmids,
which is recognized as one of the major reasons for the
extensive resistance profiles of the mcr-1-positive bacteria
(Fan et al., 2020). In the present study, mcr-1-positive E. coli
isolates displayed high resistance rates to antibiotics that are
commonly used in veterinary medicine, including florfenicol,
doxycycline, ciprofloxacin, chloramphenicol, streptomycin,
gentamicin, kanamycin, and ampicillin. They showed low rates
of resistance to some important antibiotics in human medicine,
such as tigecycline, nitrofurantoin, ertapenem, meropenem,
and imipenem. The usage of different antibiotics may lead to
various resistance profiles, and antibiotics commonly used in
food animals can form selection pressure on bacteria to become
resistant. The antimicrobial resistance profiles of mcr-1-positive
E. coli in this study were similar to the large-scale investigation
performed in China (Huang et al., 2017).

The emergence of a superbug resistant to all last-line
antibiotics (carbopenems, colistin, and tigecycline) was rare in
swine farms, and a similar result was also obtained in a previous
study about E. coli of food-animal origin in China (Tong et al.,
2018). However, co-carriage of mcr-1 and blaNDM-5 was detected
in this study which has been found in Enterobacteriaceae isolated
from animals and humans (Du et al., 2016; Paveenkittiporn et al.,
2020). Notably, the one isolate harboring mcr-1 and blaNDM-5
belongs to phylogroup D, indicating the possibility of two isolates
being pathogenic E. coli responsible for extraintestinal infection
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FIGURE 3 | Minimal spanning tree of mcr-1-positive E. coli. Each circle corresponds to one ST and the size of each circle indicated the number of isolates in this ST
type.

FIGURE 4 | Relative expression levels of efflux pumps, porins, and regulators. The different colors indicate the different expression levels.

(Khanawapee et al., 2020). The extensive resistance profiles of
mcr-1-positive E. coli could be explained by the high frequencies
of the presence of other resistance genes, including blaTEM ,
blaCTX−M , aac3-IV, tet(A), tet(M), floR, sul1, sul2, and oqxAB.
Multidrug efflux pump in bacteria is a ubiquitous mechanism
leading to cross-resistance with several antimicrobial agents and
can increase the resistance level by interacting synergistically
with other resistance mechanisms (Baron and Rolain, 2018).

It has been demonstrated that β-lactams, fluoroquinolones,
tetracycline, and chloramphenicol could be the substrates of
efflux pumps. In the present study, the relative expression levels
of some genes associated with multidrug efflux pumps were
increased in mcr-1-positive E. coli. When the same plasmid
carries mcr-1 and various resistance genes, the frequent use
of other antibiotics, such as aminoglycosides, tetracyclines, or
sulfonamides, also can promote the selection of colistin resistance
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FIGURE 5 | Biofilm formation ability of mcr-1-positive E. coli; the red indicates increased biofilm formation ability, and green indicates decreased biofilm formation
ability compared with E. coli ATCC 25922. ∗p < 0.05; $p < 0.01.

TABLE 3 | MLST, transferability, conjugation efficiencies, and plasmid replicon types of 30 mcr-1-positive E. coli.

Strains Phylogroup mcr-1 Sequence type Transferability Conjugation
efficiency

Plasmid replicon
types

MIC* (µg/ml)

HLJ8 Unknown + 10 + 1.85 × 10−4 IncHI2 8

HLJ63 A + 410 + 3.73 × 10−3 IncP/IncHI2 4

HLJ70 B1 + 898 + 1.62 × 10−4 IncN 4

HLJ173 B1 + 1,421 + 1.97 × 10−4 IncN/IncX4 2

HLJ194 B2 + 772 – − − −

HLJ187 Unknown + 6,730 + 2.85 × 10−3 IncX4 8

HLJ79 A + 48 + 3.15 × 10−4 IncI2 8

HLJ56 B1 + 4,379 + 5.36 × 10−4 IncHI2 4

HLJ174 A + 3,856 + 2.64 × 10−4 IncI2 4

HLJ464 A + 3,944 + 3.18 × 10−4 IncX4 4

JL124 B1 + 5,229 – − − −

HLJ226 B1 + NewST 1 + 5.14 × 10−6 IncN/IncX4 2

JL176 A + 165 + 3.24 × 10−4 IncN 4

JL252 Unknown + 9,159 + 2.76 × 10−4 IncI2 4

JL7 B2 + 3,014 + 1.96 × 10−3 IncHI2 4

JL43 D + 224 – − − −

HLJ438 B1 + NewST 2 + 3.62 × 10−4 IncX4 2

HLJ456 B1 + NewST 3 + 2.84 × 10−4 IncI2 2

JL226 B1 + NewST 4 + 2.26 × 10−5 IncP 4

HLJ84 B1 + NewST 5 + 4.81 × 10−4 IncI2 4

LN20 A + 617 + 3.67 × 10−4 IncP/IncHI2 4

LN186 B1 + 93 + 2.53 × 10−4 IncI2 8

LN203 B1 + 2,935 + 2.68 × 10−6 IncN 2

LN66 D + 131 – − − −

LN72 A + 10,580 + 5.64 × 10−5 IncI2 8

LN106 B2 + 156 + 2.37 × 10−4 IncX4 4

LN122 B1 + 1,463 + 2.98 × 10−4 IncI2 4

LN252 A + 20 + 2.75 × 10−4 IncI2/IncX4/IncHI2 4

LN220 B1 + 398 + 2.12 × 10−4 IncP 4

LN19 A + 1,589 + 9.05 × 10−5 IncX4 4

*The MIC of colistin against mcr-1-positive transconjugants.

(Sabine et al., 2017). Therefore, we cannot ignore the effect of the
high prevalence of mcr-1 in swine-origin E. coli, increasing the
number of multidrug-resistant bacteria.

Biofilm formation is commonly relied on regarding the
cooperation of different bacterial strains and species for a

common goal. Biofilm shows as bacteria form dense surface-
associated communities, which could allow them to prosper and
protect each other; bacteria within a biofilm showed enhanced
tolerance to harsh environmental conditions and increased
antibiotic resistance (Rabin et al., 2015). It has been suspected
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FIGURE 6 | (A) Growth kinetics of transconjugants harboring mcr-1; (B) relative fitness of transconjugants harboring mcr-1, a relative fitness of 1 indicates that the
transcoujugants undergo no fitness cost; (C) stability of plasmid harboring mcr-1 in transconjugants.

that biofilm could play a significant role in the persistence of
bacterial infections in both clinical and food industries (Bridier
et al., 2015). Unfortunately, most of the mcr-1-positive E. coli
isolated from swine in this study were biofilm producers. The
result suggested that biofilm formation is one of the strategies
used by these bacteria against antibiotics and environmental
stress. The prevalence of biofilm in swine-origin mcr-1-positive
E. coli maybe associated with the excessive use of antibiotics
in swine farms. A similar idea has been reported that the
improper use of antibiotics may select for and further accumulate
bacteria with a strong or moderate biofilm formation ability
(Ma et al., 2020).

Many studies have demonstrated that the mobile genetic
element of mcr-1 could promote colistin resistance dissemination
between animals and humans and result in the high prevalence
of mcr-1 worldwide (Liu et al., 2016; Wang et al., 2018). In
this study, the transferability and the dissemination risk of mcr-
1 were assessed among 30 representative strains. The results
were in line with previous findings which showed that majority
of the reported mcr encoded by plasmids were transferable
(Wang et al., 2018). Among the reported mcr-1, majority of
them were mediated by plasmids, but there were some studies
that reported the emergence of mcr-1 on chromosome, or the
plasmids harboring mcr-1 were inconjugative, which could lead
to failure of horizontal transfer (Lu et al., 2019).

The plasmid replicon types IncI2 (n = 9), IncX4 (n = 5),
IncHI2 (n = 3), IncN (n = 3), and IncP (n = 1) were detected
in the transconjugants. Among the already reported plasmids
harboring the mcr-1 gene, they belong to different replicon types,
including IncI2, IncHI1, IncHI2, IncFIB, IncFII, IncP, IncX4, and
IncY (Huang H. et al., 2020). With the use of colistin in clinical
settings, the type of plasmids carrying mcr-1 became more diverse
which was reported by a survey performed in China to investigate
the carriage of mcr-1 among hospital patients, suggesting that
colistin administration could promote the dissemination of
diverse resistance plasmids among E. coli isolates (Huang H.
et al., 2020). Moreover, the combinations of IncN/IncX4 (n = 2),
IncP/IncHI2 (n = 2), and IncI2/IncX4/IncHI2 (n = 1) were
detected, indicating that some transconjugants harbored several
replicon types. This could be explained by the co-transfer of
mcr-1 and other resistance genes. The results of growth assay
analysis and in vitro competition experiment showed that the
acquisition of mcr-1-harboring plasmids could reduce the fitness
of the bacterial host, but plasmid stability testing revealed that
mcr-1-harboring plasmids remained stable in the recipient strain,
which was consistent with a previous study (He et al., 2017).
These results indicated that bacterial fitness cost could not
cause plasmid loss.

The genetic relationship of the mcr-1-positive E. coli isolates
was analyzed by MLST, which revealed that the most common
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ST was ST10, followed by ST48, ST20, ST3944, ST772, ST5229,
ST617, ST410, ST93, ST898, and ST1421, and then by single
ST isolates. More importantly, three predominant STs (ST10,
ST48, and ST617) identified in the current study are different
by one or two alleles and they correspond to clonal complex
CC10. This result supported the previous finding that the most
prevalent ST was ST10 in an investigation of mcr-positive
E. coli isolated from diseased food animals in Europe (Garch
et al., 2016). As we all know, ST10 is described as one of the
predominant E. coli lineages, which is widespread among humans
and animals, especially in livestock animals (Manges et al., 2015).
By phylogenetic group classification, a total of 46 (82.14%) mcr-1-
positive E. coli belong to groups A and B1 in this study, indicating
that most of the swine-origin mcr-1-positive E. coli were non-
pathogenic or commensal strains, consistent with a previous
study (Khanawapee et al., 2020).

CONCLUSION

The findings of this study demonstrated the high prevalence
of mcr-1 in swine farms in northeastern China. mcr-1-positive
E. coli showed extensive antimicrobial resistance profiles with the
presence of additional resistance genes, increased expression of
efflux pump-associated genes, and increased biofilm formation
ability. The high diversity of clones and the results of
the conjugation experiment underlined the evidence for the
horizontal transfer of mcr-1. The mcr-1-harboring plasmids could
reduce the fitness of bacterial hosts but remained stable in
the recipient strain. Due to the last-line role of colistin in the
treatment option against infection caused by MDR GNB, and
livestock production has been described as one of the greatest

reservoirs of mcr-1, careful monitoring of the spread of mcr-1
gene in food animals is urgently needed, particularly in swine.
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