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Abstract 

Extraction of chemical formulas from images was not in the top priority of Computer Vision tasks for a while. The com-
plexity both on the input and prediction sides has made this task challenging for the conventional Artificial Intelli-
gence and Machine Learning problems. A binary input image which might seem trivial for convolutional analysis was 
not easy to classify, since the provided sample was not representative of the given molecule: to describe the same 
formula, a variety of graphical representations which do not resemble each other can be used. Considering the variety 
of molecules, the problem shifted from classification to that of formula generation, which makes Natural Language 
Processing (NLP) a good candidate for an effective solution. This paper describes the evolution of approaches from 
rule-based structure analyses to complex statistical models, and compares the efficiency of models and methodolo-
gies used in the recent years. Although the latest achievements deliver ideal results on particular datasets, the authors 
mention possible problems for various scenarios and provide suggestions for further development.
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Introduction
The analysis of printed or digitized chemical structures 
is an important task in education, research and develop-
ment of chemical products. Molecular structures con-
tained in conventional scientific publications, documents 
and textbooks usually come in the form of images and 
annotated text. Structural formulas are represented as 
chemical graphs, where vertices are molecules and edges 
represent bonds among them. This data, especially that 
from older papers, is not digitized (not only as images, 
but also in a descriptive language), so extracting useful 
information involves a lot of manual effort. Moreover, 
there is no standardized and centralized database for the 
storage and retrieval of chemical structure information. 

Automatic recognition of images containing such struc-
tures and their conversion to standard chemical identi-
fiers is required to increase the efficiency of scientific 
processes, reduce manual efforts and help capture the 
data in a standard way for subsequent data mining 
opportunities. Optical Chemical Structure Recognition 
(OCSR) addresses the problem of the translation of a 
chemical structure provided as a graphic representation 
into the corresponding chemical formula.

The problem of chemical structure recognition can be 
seen as a mixture of image processing, classification and 
sequence modeling. The source of the digital informa-
tion, which is inputted to the recognition system, plays 
an important role in designing the recognition model: 
the scanned documents usually contain more noise and 
information loss compared to the images generated by 
software tools or written by a digital stylus. The scanned 
images are also categorized as printed and handwrit-
ten. Due to freedom in writing styles of authors,the 
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handwritten structures bring complexities during the 
scanned or offline document analysis. For the real-time 
or online recognition systems, the stokes play an impor-
tant role, such that the vector graphics is additionally 
paired with the temporal information. Since the problem 
that OCSR deals with the existing printed material, the 
research is this area prevails the online chemical struc-
ture analysis.

Rule or heuristics-based systems apply an expert’s 
reading approach to construct a meta-descriptor that 
contains the strokes, shapes, letters and their connec-
tions retrieved from a graphic image. The final formula 
is generated based on the rule applied to the data of the 
meta-descriptor. From the Machine Learning (ML) per-
spective, the identification of an image with a unique text 
string can be considered as a classification problem, but 
the possibility of having an unlimited number of classes 
changes the course of solution to the image captioning 
problem.

The development of the first OCSR systems started 
in the early 1990s [1–5]. Due to limitations in computa-
tional resources and the early stage of Computer Vision 
oriented Machine Learning algorithms at that time, those 
solutions mainly used more rule-oriented heuristics, sup-
ported by the classic Artificial Intelligence and optical 
character recognition algorithms. The image analysis was 
mainly done with the classic image processing algorithms 
like morphological operations, skeletonization and tem-
plate matching. By this time, with the developments in 
hardware, cloud computing and Deep Neural Networks 
(DNN), all the OCSR stages started to move completely 
into Machine Learning models, and delivered exceptional 
results. Employment of attention-based and context-
aware image classification models [6–10] removed the 
necessity of having separate pre-processing phases like 
noise removal of image restoration. Modern NLP models 
[11–15] that are capable of being trained to understand 
and generate complex-structured sequences replaced 
the expert-driven rules on molecular structure, bonding 
and formatting details. Despite their approximation and 
learning power, as all statistical learning machines, ML-
based models depend on representative training samples, 
and are therefore sensitive to variations; different struc-
tural representations of the same formula visually dif-
ferent from the training sample may not be recognized 
successfully. Similar shortcomings of ML-based solu-
tions motivate researchers not to abandon the rule-based 
approach completely [16–19].

This review paper primarily focuses on the character-
istic problems of the OCSR and analyzes the previous 
approaches without outlining any of them in terms of 
performance or accuracy. Conclusions made after each 
review section show the opportunities related to and 

shortcomings of the particular approach. The following 
chapter introduces the main chemical structure iden-
tifiers and briefly explains their specifics. The various 
OCSR solutions, categorized as rule-based and Machine 
Learning-based are listed in chapter “Approaches, meth-
ods and models”. This chapter goes through the evolution 
of the OCSR development by each approach and pro-
vides an analysis of their strong points and shortcom-
ings. Additional attention has been paid to solutions that 
delivered progressive results throughout their evolution 
and datasets used by various models. The evaluation cri-
terion which is not yet standardized for scoring the per-
formance of OCSR is also brought to the discussion. The 
review work provided by the authors is summarized with 
the conclusions and recommendations for the OCSR 
developers. The summary mentions the successful strate-
gies for both rule and ML-based systems and shares ideas 
on possible improvements.

Chemical structure identifiers
The chemical formulas are currently encoded by stand-
ard chemical identifiers that contain unique textual and 
numeric sequences. There are a number of such identifi-
ers in the industry, including InChI (International Chem-
ical Identifier), UNII (Unique Ingredient Identifier), CAS 
RN (Chemical Abstract Service Registry Number) among 
others. These identifiers encode chemical structures in a 
standardized way, hence easing their search in databases 
and on the web.

SMILES (Simplified Molecular-Input Line-Entry Sys-
tem) is a way to represent molecular structures by using 
short American Standard Code for Information Inter-
change (ASCII) strings. This identifier builds a con-
nection graph, i.e. vertices and edges, of a molecular 
structure. This is usually considered an easier and more 
intuitive approach to compactly represent molecular 
structures compared to alternatives. For instance, below 
is the SMILES identifier for ethanol:

However, one of the major disadvantages of using 
SMILES is that one chemical structure can have more than 
one SMILES representation, depending on the algorithm 
in use. Various commercial and scientific software tools 
were historically developed in separate ways and hence 
differ in how the final SMILES string is produced [20].

Various alternatives have been suggested for the 
improvement of the SMILES representation or to address 
the main shortcomings of it. SMILES Arbitrary Target 
Specification (SMARTS) [21] is a language designed for 
the specification of substructures using rules that are 
extensions of SMILES. Such description helps matching 

CCO.
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the molecules with a particular substructure in a data-
base. [22] provides a detailed description of the specifi-
cations, implementation details and applications of the 
SMILES and SMARTS. DeepSMILES [23] is a machine 
learning oriented syntax model that is intended for the 
improvement of the predecessor’s syntactical prob-
lems. The use of close parentheses avoids the problem of 
unbalanced parentheses, where the number of parenthe-
ses define the branch length. Additionally DeepSMILES 
uses only a single symbol indicating the ring size at the 
ring closing location, which avoids the problem of pair-
ing ring closure symbols. DeepSMILES mainly solves the 
most syntactical issues encountered in generate graphs, 
but does not deal with semantic constraints that are 
introduced by the specific domain. SELF-referencIng 
Embedded Strings (SELFIES) [24] is a string-based repre-
sentation of molecules which is able to describe any mol-
ecule and guarantee its validity. SELFIES is targeted as 
an input for generative machine learning models, which 
does not require the adaptation of the learning model to 
the structure.

InChI is a categorically different approach that mainly 
focuses on the uniqueness of the definition rather than 
readability. The InChI identifier that delivers one unique 
string per chemical structure is generated by the follow-
ing process: 

1.	 Normalization, which is the process of remov-
ing useless information from the structure, such as 
unneeded atoms and/or bonds;

2.	 Canonicalization, which is the process of creating a 
unique number label for each atom;

3.	 Serialization, which is the process of generating a 
string of textual and numeric characters.

The final InChI string is a layered representation of a 
chemical structure, in a sense that the string is composed 
of parts (layers), each of which carries its own purpose 
(e.g., charge layer, isotopic layer, etc.). For example, below 
is the InChI label for methanol:

where CH40 is the elemental composition layer, c1-2 is 
the connection layer and h2H, 1H3 is the hydrogen count 
layer [25].

To note, InChI does not come without its own set of 
issues. In particular, here is a list of some of its ongoing 
challenges [26]: 

1.	 Not all chemical structures are yet accounted for, 
especially when it comes to more complex formulas.

2.	 InChI is not yet implemented properly for some ste-
reochemistry types.

InChI = 1S/CH40/c1-2/h2H,1H3,

3.	 InChI is not as human-readable as SMILES.

A well-defined chemical structure recognition system 
is of importance due to its applicability in such areas 
as medical research in commercial and non-commer-
cial (e.g., educational) settings. For example, there are 
currently such chemistry databases available, includ-
ing ChemSpider (http://​www.​chems​pider.​com/) and 
PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/) that 
facilitate search by chemical structures using InChI. 
Automatic recognition and labeling of molecular struc-
ture images, and in particular those contained in older 
publications, is hence a requirement for expanding the 
existing chemical knowledge base and creating innova-
tive solutions to increase the efficiency of scientific work.

Approaches, methods and models
The image captioning is a generation of the output and 
unconstrained in length, which depending on the tasks, 
synthesizes the given image’s description or characteris-
tics. The image captioning is achieved by various tech-
niques and models, like structure analysis, rule-based 
models, recurrent networks, attention models and Nat-
ural Language Processing. Overall, the approaches on 
OCSR problems can be categorized as Rule-based and 
Machine Learning-based systems. The following part of 
the chapter describes each of the approaches and previ-
ous works where they have been applied.

Rule‑based systems
Rule-based systems try to imitate the perception model 
of a human, which in OCSR is the detection of characters 
and shapes, understanding the connection of the lines 
and constructing a formula based on the given analysis. 
Most rule-based approaches follow the pattern of rec-
ognizing atoms and bond lines, image vectorization and 
reconstruction of connection tables or graphs [3, 27–29]. 
A number of studies focus on detecting hexagonal and 
pentagonal structures based on the predefined rules [30]. 
Circle detection was also performed as a separate step 
[31]. Optical recognition is largely based on a set of rules 
embedded into the backbone of the system.

Some early methods, like Optical Recognition of 
Chemical Graphics (OROCS) and Chemical Literature 
Data Extraction (CLiDE) focused on using polygon-like 
shaped boxes to separate the parts of image as a part of 
image preprocessing [4, 5, 32]. These methods employed 
Optical Character Recognition (OCR) to identify the 
characters in the image with the purpose of constructing 
labels for the molecule. Despite being able to solve the 
task of chemical image labeling, these tools were com-
mercial and were not used by the research community 
[33].

http://www.chemspider.com/
https://pubchem.ncbi.nlm.nih.gov/
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The first publicly available tool in this domain was 
Optical Structure Recognition Application (OSRA) 
[34], which was published in 2009. The techniques used 
in OSRA were highly similar to the previous tools, and 
involved predefined preprocessing steps as well as OCR 
tools to identify atom labels. Different from its prede-
cessors, OSRA used two OCR systems instead of one 
and analyzed images in three different resolutions to 
keep the best result according to the confidence esti-
mation function. Authors of [34] also raise important 
questions on the evaluation criteria, which still remain 
relevant. As in all early OSCR implementations, OSRA 
also operates with a limited dataset, which included 
only 66 images of various resolutions and color depths. 
The calculation of the successful recognition rate 
in OSRA is specific and make it hard to compare the 
model to the others. Using Tanimoto distance as a 
gauge, the authors consider 4 separate levels of the per-
formance evaluation. Imago [35], another open-source 
system published after OSRA had a similar approach 
with slightly different implementation details. Although 
the paper describes the implementation procedures in 
detail, the performance of the algorithm is described 
more qualitatively, rather than quantitatively.

An alternative approach was used by the authors of 
Markov Logic OCSR [36], which utilized probabilis-
tic inference over logical worlds. The advantage of this 
method is evident when working with low-quality data-
bases given their non-deterministic characteristics. 
However, the system exposes shortcomings with adja-
cent or broken characters, repeating units and cases 
when characters touch the shapes. Other tools are also 
present that implement different techniques, such as 
chemoCR [37], which combines pattern recognition 
techniques with supervised machine learning concepts.

Another rule-based approach that used Support 
Vector Machines (SVMs) was published by Stanford 

University [38], aiming to recognize hand-written 
chemical structures with the following steps:

•	 Text recognition using scale-invariant template 
matching. There were 6 templates in total, including 
”O”, ”H”, ”OR”, ”RO”, ”N”, and ”OH”. A Gaussian filter 
was used in combination with the spatial pyramid 
sliding. The output of this step was used in the next 
steps.

•	 The image is cleaned from the text using the results 
of the previous step.

•	 Bond and corner detection. A broad Harris corner 
detector was used as the basis of a corner detection 
algorithm. A Douglas-Peucker algorithm was used to 
identify D-points, while the Harris algorithm focused 
on C- and T-points.

•	 Bond detection. Hough transform was used to only 
detect bonds. The use of Hough transform was previ-
ously concentrated not only on detection but also on 
classification of bonds.

•	 Bond classification. A multi-class logistic regression 
classifier, a linear SVM, and a decision tree were used 
to classify the bonds detected previously.

•	 Association of corners to atoms and the groups.

The study used only 360 images to train and test the 
algorithm. Out of those 360 images, only 94 were clas-
sified correctly. The correct classification examples are 
shown in Fig.  1. Even though the performance on the 
selected dataset is low, the authors claim that it performs 
well on the challenging areas of the previous algorithms.

[18] published in 2019 describes an improved 2D 
chemical structure recognition system targeted for 
OCSR. The pipeline starts with image pre-processing 
steps, such as blurring and thresholding and applies 
length smearing and text-region filter. The molecule 
image extraction from the document if followed by the 

Fig. 1  Two correctly classified examples—Stanford study [38]



Page 5 of 18Musazade et al. Journal of Cheminformatics           (2022) 14:61 	

recognition process. The first step in the recognition 
process involves ring detection, thinning, finding labels 
using OCR, and removing those labels from the skel-
etonized image. Atoms and bonds are discovered using 
labels and line information retrieved using the line seg-
ment detector algorithm. Finally, Open Babel pre-pro-
cessing is done, which is followed by the assembly of 
the final structure. The process is illustrated in Fig.  2. 
Among 50 images used for the test, the success rate was 
86%, which is 12% more than that of OSRA.

In [19] authors propose a component-detection-based 
approach for interpreting the spatial structure of off-line 
handwritten chemical cyclic compound structure formu-
las. The work combines the technique with deep learn-
ing and proposes the Non-Maximum Area Suppression 
algorithm to improve the detection results. The experi-
ments on 2100 self-collected dataset achieved 89.6%.

Table 1 lists the performance of the mentioned rule-
based OCSR systems. Evaluation of the rule-based sys-
tems and their comparative analysis is a challenging 
task due to the following reasons: 

1.	 At early times of rule-based system development, 
there were no standardized or widely available data-
sets. Almost each system refers to a dataset either 
created by itself or selected from various available 
sets.

2.	 The sizes of samples in datasets are low compared to 
those used in modern ML-based OCSRs.

3.	 Unlike ML-based approaches that require training, 
validation and test datasets, rule-based models do 
not require such separation. This approach makes 
the overall performance questionable - have the rules 
been developed based on the dataset samples or just 
by the expert’s procedures? A model that was fine 
tuned to cover the majority of the samples, cannot be 
considered as high-performing, since the fair evalua-

Fig. 2  CSR recognition process [18]

Table 1  Performance of the rule-based approaches

OCSR system Year Dataset Evaluation Results (%)

OSRA 2009 66 images, 215 structures Tanimoto 95

chemoCR 2011 1000 structures Structure match 65.6

Markov Logic OCSR 2014 937 images—subset of produced by the 
USPOCW

InChI match 79.1

Tanimoto 92.9

869 images from ChemInfty InChI match 35.1

Tanimoto 77.6

OCSR in [38] 2016 360 structures Structure match 26.1

OCSR in [18] 2019 50 images Structure match 86

OCSR in [19] 2021 2100 images Structure match 89.5
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tion definitely needs to be done on a completely new 
dataset.

4.	 Evaluation criteria was mentioned briefly in the 
papers, without any implementation details. The 
same structure and string comparison could be 
implemented in various ways, which might affect the 
accuracy of the system positively.

In their experimental results some of the papers show 
different accuracy for the previously created models. For 
instance, the results of OSRA in later works is mentioned 
with a lower score than declared in the original paper. 
The authors of this paper do not intend to re-gauge the 
performance of the mentioned models, since such an 
experiment would be technically impossible to set.

Gaps of rule‑based systems
The following is a list of pain points encountered in many 
of the rule-based systems:

•	 There are too many rules in chemistry and it is quite 
common that sets of rules embedded into the sys-
tems are not comprehensive.

•	 Rule-based systems typically perform worse on 
images with complex features, ambiguities and pres-
ence of a noise.

•	 These systems are limited to the given rules—the 
representations that are not considered by chemical 
experts might not be recognized at all.

•	 These systems are noise sensitive—removal of a joint, 
spot or discontinuity in lines may mislead the system.

ML‑based systems
Different statistical learning methods have been tested 
for OCSR problems. Some implementations based on 
Kohonen networks and SVMs were used to segment 
images into their constituent objects, such as chemical 
graph elements and textual symbols [37, 39]. Convolu-
tional Neural Network (CNN)-related solutions have also 
been presented and achieved significant results [40, 41]. 
Due to the simplicity of their design and generalization 
power, ML-based systems have been gaining popularity 
in the last two decades. This chapter provides an over-
view of recent ML-based methods.

Recognition of  handwritten chemical organic ring struc-
ture symbols using CNNs  This approach is focused on 
the recognition of ring structures from handwritten 
images [40]. The method uses transfer learning based on 
16 and 19-layered deep convolutional neural networks, 
VGGNet-16 and VGGNet-19 respectively. The architec-
ture consists of convolutional kernels of size 3× 3 , and 

maximum pooling layers of 2× 2 . In this study, 5 standard 
ring structures are used to derive the total of 36 structures 
(Fig. 3). The dataset of images drawn by 200 people with 
augmentation contains 3600 images. 36-class recognition 
accuracy for VGGNet-19 was 80%, while 5-class alterna-
tive achieved more than 92% accuracy. The authors sug-
gest that increasing the dataset size might help improve 
the performance of the 36-class version of the model.

Molecular structure extraction from documents using deep 
learning (MSE‑DUDL)  This approach, developed by 
Staker et al. [42], consists of two parts:

•	 U-Net based segmentation model to detect the 
chemical structure, and

•	 Structure prediction using attention and Grid Long 
Short-Term Memory (Grid LSTM).

The label generation starts with the preprocessing, which 
includes image transformations like binarization and 
scaling. Segmentation is performed at the full resolu-
tion level whereby several masks at different resolutions 
get averaged to end up with better results (i.e., high con-
fidence pixels form masks at the same resolution as the 
original input images). The images are first downsampled 
and then upsampled along the network’s workflow to 
ensure that the image resolution remains the same. Next, 
the extracted images are passed on to another deep neu-
ral network that follows the encoder-decoder strategy to 
predict SMILES strings. First, the inputs are encoded into 
a space vector using a CNN and then they are decoded 
back into a character sequence (one character at a time) 

Fig. 3  Organic ring structures [40]



Page 7 of 18Musazade et al. Journal of Cheminformatics           (2022) 14:61 	

using an RNN (Recurrent Neural Network). In particular, 
Grid LSTM is used to predict characters based on pre-
vious cell states, current attention and previous outputs 
[33]. The training was performed using the PubChem, 
Indigo and United States Patent and Trademark Office 
(USPTO) datasets (achieving a validation accuracy in the 
range of 77–82%), and the model was tested on Valko 
(accuracy of 41%) and proprietary datasets (accuracy of 
83%). Disadvantages of this model include the following:

•	 Super-atoms were not well-represented in the data-
sets used and generally, there was an insufficient 
sampling of various atoms.

•	 The datasets used did not encompass all the possi-
ble chemical structures and hence, some of the more 
complex features were not tested for.

•	 The model was tested on low resolution images only.
•	 Chemical macrocycles with large rings were not well 

predicted (which could also be due to the imbalance 
in the dataset).

•	 Inverted images (i.e., white structures on a black 
background) were not well recognized.

•	 Specifically, the model performed worse on images 
with too much downscaling, many structures present 
at the same time and inverse structures.

Deep learning for  chemical image recognition (DECI-
MER)  The idea behind DECIMER [43] is to use show-
and-tell neural networks, initially developed as an image 
annotation system targeted to chemical structure recog-
nition: the system accepts an image as an input and pro-
duces a SMILES encoding. The dataset was created using 
the Chemistry Development Kit (CDK), which could 
potentially produce an unlimited amount of training 
data. The input to CDK was PubChem data, which was 
also used in other ML-based systems. The input images 
did not receive any manipulations, except for one random 
rotation per molecule. The model that was designed as an 
autoencoder-based network consists of two parts [43]: 

1.	 Encoder network: CNN with a single fully connected 
layer and Rectified Linear Unit (ReLU) activation 
function.

2.	 Decoder network: RNN, consisting of Gated Recur-
rent Unit (GRU) and two fully connected layers.

Different SMILES versions are used for prediction, with 
DeepSMILES being the most accurate one to predict. The 
overall workflow can be summarized as follows:

•	 Images are converted into feature vectors using 
Inception V3.

•	 In parallel, DeepSMILES are tokenized via a 
tokenizer and the unique tokens are stored.

•	 Image vectors are fed to the encoder, while tokens 
are fed to the decoder networks. The training process 
uses Adam optimizer and Sparse Categorical Cross 
Entropy as a loss function.

Training process took around 27 days on the NVIDIA 
Graphics Processing Unit (GPU). The output was being 
evaluated based on the Tanimoto similarity score. A 
score of 0.53 was reached with DeepSMILES. The authors 
claim that increasing the amount of data to 50–100 mil-
lion could improve the performance significantly, but 
that would require several months of training on a single 
GPU.

DECIMER segmentation  Another version of DECIMER, 
called DECIMER Segmentation was introduced in 2021 
[44]. The flow of the new model consists of two primary 
stages: 

1.	 Detection: a deep neural network generates masks to 
define positions of chemical elements in the docu-
ment. The annotation of images was done with the 
use of the Visual Geometry Group (VGG) annota-
tor. Masks are applied to indicate whether or not the 
pixel belongs to a chemical structure.

2.	 Expansion: mask is expanded to completely cover the 
image. The procedure involves image binarization 
and binary dilation. With the use of mask expansion, 
the proportion of completely segmented structures 
rose to 99.8%.

The approach is claimed to work with only bitmap images 
as opposed to vector images in PDF, which are more 
common in modern articles. Overall, 91.3% of chemical 
structures were detected by the model.

DECIMER 1.0  A newer version of DECIMER [45] 
evolves around the concept of transformers that have 
been successful for various tasks, such as NLP and Com-
puter Vision (CV) problems. The update helped increase 
the accuracy of SMILES predictions from 90% to 96%, 
which is a significant development. The authors utilized 
a publicly available PubChem dataset to generate 2D 
molecular bitmap images of size 299× 299 using CDK 
Structure Diagram Generator. The bitmap images were 
augmented using gaussian blur, salt and pepper noise, 
sharpening, brightness enhancement, and other meth-
ods. Apart from this, other two versions of the dataset 
were used as well, which included non-augmented images 
with and without stereochemical information. The model 
structure included the following steps: 



Page 8 of 18Musazade et al. Journal of Cheminformatics           (2022) 14:61 

1.	 Images were fed into pre-trained CNNs, such as 
InceptionV3 and EfficientNet-B3. The latter helped 
achieve better performance and was therefore used 
throughout the study. This step was performing a 
function of a feature extraction mechanism.

2.	 Unlike the previous version, the new DECIMER used 
SELFIES string instead of DeepSMILES. Tokeniza-
tion was performed, after which images and their 
respective tokenized labels were converted into 
TFRecords, which is a data format used in Tensor-
Flow that allows efficient training on Tensor Process-
ing Unit (TPU).

3.	 The data is then fed into an encoder–decoder net-
work with four encoder-decoder layers and eight 
attention heads. The authors have taken care of 
potential overfitting issues by adding a dropout of 0.1 
to the network.

4.	 The model was trained on TPU. The training of the 
largest model took around 14 days, which is a signifi-
cant improvement in the speed of training as com-
pared to solutions before.

The advantages of the new transformer-based approach 
included the faster speed of training and better test per-
formance. A maximum of 85.38% Tanimoto 1.0 similarity 
score has been achieved in the study. The system is com-
pletely open source, which provides open access to the 
results and serves as an important point of reference for 
future work.

Models provided as solutions to Bristol Myers Squibb 
(BMS) contest on Kaggle
More recently, the BMS pharmaceutical company 
launched a competition on Kaggle to translate low-qual-
ity chemical structure images.

BMS dataset
The BMS dataset is a set of approximately 4 million syn-
thetic molecular structure images generated and shared 
on Kaggle by the the aforementioned company. The 
images are arranged in a 3-level folder structure grouped 
by the image ID’s prefix. Training images are labeled with 
the corresponding InChI in a separate file.

The InChI labels have the following characteristics:

•	 Every label starts with ”InChI = 1S/”, which means 
that it is a standard InChI of version 1.

•	 Layers and sub-layers are separated with the “/” sign 
and prefix letters.

•	 There are six layers in total:

–	 the main layer, which also contains the chemical 
formula sub-layer that is prevalent across all InChI 
labels, the atom connections and hydrogen sub-lay-
ers;

–	 the charge layer;
–	 the stereo-chemical layer;
–	 the isotopic layer;
–	 the fixed-H layer;
–	 the reconnected layer.

•	 The maximum length of the label can be up to 200 
symbols.

The images in the test subset differ from the train sam-
ples by their low resolution and quality (Fig. 4):

•	 they are often blurry,
•	 have more discontinued and/or removed image 

regions,
•	 contain salt and pepper noise, and

Fig. 4  Samples from the BMS dataset: top row—training, bottom row—test samples
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•	 unlike train images, which are usually horizontally 
positioned, test images can be vertically flipped or 
rotated by 90/270 degrees, such that the letters on 
the images change their orientation.

About 1.4% of train images and 0.7% of test images have 
an aspect ratio of more than 3:1. For example, such unu-
sual image sizes as 1955× 72 and 3043× 109 are pre-
sent amongst them. The maximum size of images in the 
train dataset is 1723× 1537 , whilst the minimum size is 
117× 98 . In the test dataset, the maximum size observed 
is 1838x1578 and the minimum is 93× 123.

Considering the mentioned shortcomings and varia-
tions, building a universal model becomes a challeng-
ing task. Additionally, the possibility of representing 
the same molecule with the variety of options requires 
models that consider the positional independence of the 
image elements from the label. Figure 5 displays an exam-
ple of depicting the same molecule in different ways.

Evaluation metric
The measurement criterion for this problem is the Lev-
enshtein distance (LD), which quantifies the difference 
between two strings. The higher the distance, the more 

dissimilar the strings. Mathematically, it is equal to the 
minimum number of edits required to equate the strings:

•	 if the last characters of strings a and b are the same, 
then LD is equal to the number of edits required up 
until those last characters;

•	 if the last characters of strings a and b are different, 
then LD is equal to the number of insertions, dele-
tions and replacements needed to make string a 
equal to string b.

The formula for the Levenshtein distance calculation is 
provided in Fig. 6.

As an evaluation criteria Levenshtein distance is a good 
option since it only considers the difference in parts, not 
only positional difference. For instance, there is one dif-
ference between the following two InChI sub-formula (2 
versus 20), which would be evaluated as 58 by the Ham-
ming distance (a positional difference— all the symbols 
do not match by position, including the last one):
c1-11- 20-21-16-10-19-17(12-5-3-2-4-6-

12)14-9- 13(18)7-8-15(14)22
c1-11- 2-21-16-10-19-17(12-5-3-2-4-6-

12)14-9- 13(18)7-8-15(14)22

Fig. 5  Three representations of the same formula: InChI=1S/C13H14N2O3S2/c16-12-8-9(4-3-7-14-12)20(17,18)13-15-10-5-1-2-6-11(10)19-13/h1-2
,5-6,9H,3-4,7-8H2,(H,14,16)

Fig. 6  Levenshtein distance formula



Page 10 of 18Musazade et al. Journal of Cheminformatics           (2022) 14:61 

On sequence generation and InChI parsing methodology
Some of the BMS Kaggle solutions which have achieved 
a satisfactory result opted for an image-to-sequence 
modeling to approach the problem. This is an image 
captioning task that belongs to the CV and NLP 
domains, and is largely based on a CNN-based encoder 
and RNN-based decoder architecture. The encoder per-
forms feature extraction from the images, which then 
serves as an input to the decoder to generate captions. 
The decoder generates the caption one character at a 
time, using the image features and previously predicted 
characters as inputs to predict the next one.

To make the model “understand” the input sequence, 
InChI strings must be parsed and encoded. Usually, 
a tokenizer-type class parses the InChI string in such 
a way that maps each chemical character to a unique 
integer index. The parser works in the following 
manner:

•	 Each InChI string is pre-processed in such a way that 
firstly, its chemical formula part (e.g., ‘C13H20OS’) 
is split into a separate set of atoms and their indices. 
For example, ‘C13’ becomes ‘C 13’.

•	 Secondly, its carbon part (part of the string between 
‘/c’ and ‘/h’ characters, e.g. ‘/c1-9(2)8-15-13-6-5-
10(3)7-12(13)11(4)14’) is split into separate char-
acters by, firstly, parsing the zeroth symbol (the ‘/c’ 
sign) to preserve the slash sign in front of the carbon 
symbol. Then, the list of numbers following the car-
bon sign is parsed. Each individual number is dis-
sected such that any surrounding symbols (e.g., ‘-’, 
‘(’,‘)’ signs) are completely separated and the number 
kept “pure”. For instance, ‘/c1-9(2)8-15’ becomes ‘/c 
1-9(2)8-15’.

•	 The processed InChI string then gets split into char-
acters with the space delimiter. The unique parsed 
characters are added to a vocabulary.

•	 The vocabulary is sorted alphabetically in ascending 
order.

•	 Extra characters for “start”, “end” and “pad” of the 
string are also added as vocabulary members.

•	 Each vocabulary character is assigned a number, in 
ascending order. A string-to-integer dictionary is cre-
ated.

•	 The reverse dictionary, i.e. integer-to-string mapping, 
is also maintained for backtracking purposes.

•	 Any text is then converted to a sequence of charac-
ters by first appending the “start” character to the 
beginning of the sequence, and then splitting the text 
into characters based on the space delimiter. Each 
individual character’s corresponding integer index 
gets added to the sequence list. Finally, the “end” 
character gets added to the end of the sequence list.

•	 To maintain backward compatibility, a sequence-to-
text method is also maintained.

Some examples of relatively effective Kaggle solutions 
include:

•	 Long Short-Term Memory (LSTM) modeling with 
Attention network.

•	 Ensembles of Tree Network Trees, Vision Trans-
formers and Attention.

•	 Ensembles of Vision and Vanilla Transformers as 
encoder and decoder, respectively, coupled with Swin 
encoder and Vanilla Transformer Decoder.

•	 CNN-based Encoder (e.g., Efficient Nets, ResNets) 
and an RNN-based Decoder with optional Attention 
network.

•	 Applications of beam search to identify the best out-
put sequence.

•	 InChI sequence validation.

However, almost all of the cases have issues with accu-
rate image augmentations, complex graph patterns, noise 
removals and image resolutions. The high-level design of 
the mentioned models is described below.

LSTM‑based captioning
The task of an image captioning model is to generate 
a clear and correct description of a given image. Typi-
cally, an RNN based encoder-decoder structure is used 
for sequence-to-sequence translation tasks, whereby the 
encoder processes an input sequence, encodes it into a 
context vector, which then becomes the decoder’s initial 
hidden state. The decoder is responsible for generating the 
target sequence word at a time. The input to an image-cap-
tioning model is a multi-dimensional pixel array, and the 
output is its descriptive sequence. RNNs are typically used 
to map image vectors to sequences. There are two options 
of feeding images to RNNs: either flatten the image or gen-
erate its dense vector representation. The first approach 
works practically but results in a sparse matrix which is 
computationally inefficient to work with. Hence, CNNs are 
commonly used to extract image features.

CNNs implement transformations to the original 
input at different convolutional and pooling layers, thus 
creating useful feature maps which can serve as inputs 
to RNNs in place of flattened raw data. The extracted 
feature vector has a fixed length. Typically, CNNs are 
already pre-trained on a large dataset which significantly 
decreases the training effort. This is a transfer learning 
technique whereby a model trained on a classification 
task is reused for a different but related problem, saving 
compute time and resources.
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Regular RNNs are bad at capturing long-range depend-
encies due to the vanishing gradient problem: as the net-
work grows in size, gradients become smaller in lower 
layers. Hence, to circumvent this problem, LSTM net-
works are utilized in practice as decoders. They are better 
at capturing long-range dependencies due to the exist-
ence of memory cells and gates in their internal structure: 
the memory cells remember previous states, while the 
gates control the flow of data from one state to the next. 
These help the network to carry on only the relevant 
information and omit the unnecessary information. Fig. 7 
demonstrates the architecture of a basic LSTM-caption-
ing model.

Despite the advantages over simple RNNs, LSTMs can 
also be forgetful. The matter lies in the requirement to 
compress all the important information from the source 
sentence into a fixed length context vector, which leads 
to a loss of necessary data (especially when it comes to 
longer sentences). In 2015, Bahdanau et al. [46] proposed 
a new methodology to focus on the important data in the 
source sequence by placing a relative importance score to 
each word in the context vector. This is the core of the 
attention mechanism [47] which is described in more 
detail in the following subsection.

The decoding algorithm outputs the probability of each 
word in the vocabulary being the next one in the gener-
ated sequence. Prediction stops as soon as the “stop” 
token or maximum string length is reached. There are 
two approaches to the model deciding which token to 
output next:

•	 Greedy search. This method selects the word with the 
highest probability at each position as the next pre-
diction.

•	 Beam search. Instead of sampling once at each step, 
multiple word sequences are selected and kept as 

candidate sequences at every time step. The number 
of candidates is predefined by the k parameter which 
is the beam [48]. The final outputted sequence is the 
one with the highest total log probability over all 
generated characters. This is better than the greedy 
approach because it prevents the model from being 
stuck due to a bad decision at some stage of sequence 
prediction.

Attention model
In simple terms, the soft attention mechanism [6] works 
in the following way:

•	 The encoder outputs a matrix consisting of each hid-
den state, instead of a context vector.

•	 This matrix is fed into the attention model to com-
pute the attention scores for each input word. The 
scores are used as weights to apply to the matrix.

•	 The weighted matrix is fed into the decoder, which 
allows the latter to focus on just the important bits of 
the input.

There is one problem with continuing to use RNNs as 
before, though - they work in a loop, processing one word 
at a time which creates a bottleneck in training. Hence, 
a novel stack-based encoder-decoder structure (“Trans-
former”) is suggested:

•	 An encoder stack consists of several individual 
encoders, feeding into one another sequentially. The 
input to the first encoder is an embedding vector 
of the input sequence concatenated with positional 
encoding of words in the sentence. Encoders are 
in fact CNNs, which usually utilize transfer learn-
ing techniques, i.e. they are pretrained (for example, 

Fig. 7  LSTM captioning
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ResNets, pretrained on ImageNet data). However, 
since encoding is performed instead of classifica-
tion, the last pooling and linear layers are dropped. 
An adaptive average pooling layer is added instead 
to make sure that all encodings are of the same size, 
regardless of the original image size.

•	 A decoder stack consists of several individual decod-
ers that receive inputs from each other and from the 
final encoder state. The input to the first decoder is 
an embedding vector of the target sequence concat-
enated with positional encoding of words in the sen-
tence.

•	 Within each encoder, there is a self-attention model, 
whereby the input sequence pays attention to itself.

•	 Within each decoder, a self-attention layer is also 
present, whereby the target sequence pays attention 
to itself.

•	 An encoder-decoder attention layer in the decoder 
allows the target sequence to pay attention to the 
input sequence.

•	 The attention layer accepts three inputs— Query, 
Key and Value to compute the attention scores for 
each word according to this formula: 
score = softmax( (QKT+Mask)√

embeddingsize
) ∗ V ,

here Q is Query (word for which attention score is com-
puted), K is Key and V is Value (words to which atten-
tion is paid). The dot product between Q and K defines 
the similarity of the words. The calculated scores are 
indicative of the probability that a particular word in 
the vocabulary occurs at a certain position in the sen-
tence. For example, if the length of the target sequence 
is 3 words and the target vocabulary has a total of 1000 
words, then 1000 scores are generated per each of the 3 

words. Softmax activation is then applied to return the 
computed scores as likelihoods.

Figure 8 depicts the basic framework of the LSTM with 
the Soft Attention image captioning model described above.

Vision transformers
The use of Vision Transformers (ViT) for the problem of 
OCSR is potentially due to the possibility of using Trans-
former architecture for computer vision tasks [7]. The 
resulting architecture is a combination of Vision Trans-
former encoder and Transformer decoder. The details of 
implementation are the following:

•	 The input image is resized to a common shape.
•	 The image is divided into 2D patches of 16× 16 pix-

els. This configuration can be overridden and a differ-
ent patch size may be chosen. Example image divided 
into patches is shown in Fig. 9 (left).

•	 Patches are flattened and positional encoding is 
added.

•	 The data is passed through a ViT encoder. Instead of 
passing the item to a Multi-Layer Perceptron (MLP), 
as in the original paper, the data is passed to a Trans-
former decoder. The output of this step is shown in 
Fig. 9 (right).

•	 Transformer decoder receives output embedding and 
encoder output as its input and processes the infor-
mation.

•	 The output of the Transformer decoder is used to 
generate a sequence of InChI label.

This approach allows usage of Transformers for the 
task of OCSR, and can be used for solving the problem. 
However a huge amount of data is needed to train such 
a model. Additionally, the number of epochs should also 

Fig. 8  LSTM captioning with attention
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be high. This leads to the point that the task is resource 
intensive and requires extensive computational power.

Image captioning model based on deep 
transformer‑in‑transformer (ICMDT)
This paper is the most recent development focusing on 
the problem as an image captioning task, whereby an 
encoder-decoder structure with an optional attention 
model is often used [49]. The analysis is conducted on the 
Bristol-Myers Squibb Kaggle dataset of chemical struc-
tures and the authors managed to achieve a Levenshtein 
distance score in the range of 0.24–2.5 by improving the 
standard Transformer-in-Transformer (TNT) block. The 
suggested model outperforms its peers both in terms of 
accuracy results and speed of convergence.

On a granular level, the problem is to automatically 
generate InChI equivalents of images containing chemi-
cal structures. Hence, the problem is the fusion of com-
puter vision and natural language processing fields.

From the standpoint of image pre-processing, the 
researchers apply the following:

•	 image reshaping into a square form and subsequent 
filling of insufficient parts with mid-image pixels;

•	 adding noise, blur and random 90 degree rotations to 
the train dataset to better simulate test dataset qual-
ity;

•	 image denoising;

•	 smart cropping;
•	 padding the image to keep a consistent aspect ratio.

The authors achieve an outbreak due to improv-
ing the regular models used by previous researchers. 
Specifically,

•	 The TNT block is deepened into three separate parts:

1.	 an exterior transformer block, which processes large 
patch embeddings (these are sequences of small 
patch embeddings);

2.	 a middle transformer block, which processes small 
patch embeddings (these are sequences of pixel-level 
features);

3.	 an internal transformer block, which processes the 
pixel-level features contained in small patch embed-
dings.

•	 An image is divided into n non-overlapping 32x32 
patches (the large patches), which then unravel into 
16x16 smaller patch embeddings, and finally 4x4 
pixel-level tensors. The unraveling takes place by 
passing the embeddings through linear layers. The 
division process is illustrated in Fig. 10 (top).

Fig. 9  ViT encoder input and output
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•	 Position encoding is added to each small patch and 
pixel embedding (Fig. 10 (bottom)).

•	 Training is performed by first, using images at a res-
olution of 224 × 224 and then changing the resolu-
tion of those images that have label lengths exceeding 
150 to 384 × 384 for fine-tuning (the assumption is 
that longer labels correspond to more complex struc-
tures). Label smoothing technique is applied to regu-
larize the noise in target strings, and noisy labels are 
applied in general to continue predicting the string 
despite the incorrect prediction of the previous char-
acter in the sequence. Optimizers in use are Looka-
head and Rectified Adam (RAdam), and the loss 
function is anti-focal.

•	 Test dataset is also rotated by ninety degrees in any 
direction. The tested batch size ranges from 16 to 
64+ and the size is kept constant once the validation 
loss becomes stable.

•	 Beam search with k set to 16 is used in the inference 
stage.

The results of the novel approach outperform com-
parison models (including Kaggle model ensembles) 
at circa seventh epoch and convergence takes place at 
approximately tenth epoch. The authors find that denois-
ing both train and test images improves the outcome 
(or, vice versa, i.e. adding noise to train set so that it is 
more aligned with the test images), while padding has no 
impact and smart cropping diminishes the performance.

However, the model fails to determine some stereo-
chemical layers completely and is error-prone around 

“+/−” signs. Also, it is difficult to say how the method-
ology will work on images outside the Kaggle dataset, 
such as PubChem, which can contain more complex 
and noisier images.

A brief description of the mentioned ML-based 
approaches is depicted in Table  2. Compared to rule-
based approaches, these systems use much bigger set of 
the training datasets and deliver higher results. There 
is still disunity in the measurement of the results: some 
of the approaches measure the results by standard ML 
criteria—recognition rate, accuracy and precision—
others use distance measurements for the string. These 
and the other points are discussed in the Conclusions 
section.

Gaps of ML‑based systems

1.	 Super-atoms and complex elements are usually 
underrepresented and not well classified in most 
existing solutions.

2.	 Image resolutions are not well handled: some models 
work well with low-resolution images, while others 
with high-resolution. There is no unified solution.

3.	 Datasets used were not large enough to achieve the 
highest possible performance.

4.	 DECIMER Segmentation mainly works well with ras-
ter images. There is a need for a similar system for 
new vector images as well.

Fig. 10  Division into patches and positional encoding [49]
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Conclusion
The evolution of the OCSR systems starts with rule-
based expert systems with less computationally complex 
processes and ends with complex models that require 
almost no guidance towards the problem and consume 
huge computational resources. Despite the exceptional 
difference between the latter, the rule-based approach 
and heuristics shall not be neglected completely - authors 
believe that a good combination of the two may deliver 
better results. The further recommendations are corre-
spondingly categorized for both approaches:

Machine learning models
As mentioned at the beginning of the paper, the problem 
belongs to the image captioning problem and the best 
results are achieved with the latest models that involve 
attention-based image decoders and NLP-based text 
decoders. The realization and results follow the trend 
of the model evolution: Transfer learning+RNNs with 
Attention, Transfer Learning+Transformer, ViT Trans-
former, and involvement of more powerful NLP models. 
The authors recommend the consideration of the follow-
ing items during the ML-based model design: 

1.	 The efficiency of the utilized Transfer learning model 
and methodology shall be analyzed. The analysis shall 
cover the statistical evaluation of the feature distri-

bution for the same, similar, and different chemical 
structures.

2.	 Chemical formula images are usually provided as 
binary images, as shown in black drawings on a white 
background. This encodes the background and chem-
ical structure pixels as positive (1) and negative (0) 
signals, respectively. Feeding the network with such 
a setup may deliver relatively poor results since the 
model will be trained for the distinction of the back-
grounds. The inversion of the image as it is practiced 
in the majority of the latest systems may increase the 
quality of recognition.

3.	 Analysis of the image quality in the dataset is impor-
tant. If the data has too much noise and discontinui-
ties in shapes, it would be a good idea not to crop 
the images before the resizing. The empty pixels that 
stand for the removed strokes on the surroundings 
may deliver additional information to the model.

4.	 Variations of the image size and ratio shall be ana-
lyzed for the proper cropping and resizing strategy: 
some of the chemical structures may be depicted in 
an unusual image ratio (there are plenty of images in 
public databases that exceed the 1:5 ratio).

5.	 The bigger dataset helps the model better “under-
stand” the problem. In such a case, extra augmenta-
tion and increasing the model complexity may pro-
long the training time, which may take days or weeks 
of running on GPU.

Table 2  Performance of the ML-based approaches

OCSR system Year Dataset Classification Details Evaluation Results

CNN based approach 
from [40]

2019 3600 images created by 
200 people (90/10 for 
training and test)

Ring structures Transfer learning with 
VGG-19 for 36 classes

Recognition rate 80%

MSE-DUDL 2019 Training: more than 50 
million samples from 
PubChem, Indigo and 
USPTO datasets Test: 454 
(Valko dataset) and other 
proprietary datasets

SMILES U-Net based segmenta-
tion with GridLSTM

Not given Validation: 
77%-82% Test: 
41% (Valko), 
83%(others)

DECIMER 2020 PubChem DeepSMILES Encoder/Decoder model 
with CNN and GRU​

Tanimoto 0.53

DECIMER Segmentation 2021 Training: 994 articles 
from the Journal of 
Natural Products Test: 
777 pages from 75 jour-
nals (Journal of Natural 
Products, Phytochemis-
try and Molecules)

segmented structures Mask R-CNN for the 
object detection and 
VGG for classification

Recognition rate 91.3%

DECIMER 1.0 2021 39 million (PubChem) 
(90/10 for training and 
test)

SELFIES Transfer learning (Effi-
cientNet) for classifica-
tion and transformer for 
sequence generation

Tanimoto 0.99 96.47% 
of the results 
had Tanimoto 
= 1.0

ICMDT 2021 4 million images (BMS 
Dataset): 2.4 million 
training 1.6 million test

InChI Deep TNT block Levenshtein distance 2.5
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6.	 Levenshtein Distance seems a good evaluation cri-
terion but the average value of it may not deliver 
the right information on the model’s performance. 
Consideration of the other string sequence similar-
ity algorithms (customized for the chemical structure 
description) might be useful. Variations in one symbol 
may present with different severity for different cases: 
confusion of the chemical elements (“F” instead of “S”) 
might be much more serious than confusing numbers. 
Customization of Optimal Matching (OM) metrics for 
the particular sequence description type can be devel-
oped to address the specific problem. Alternatively, 
the Tanimoto coefficient can be applied, which meas-
ures the ratio of the intersection of the two sets over 
the union of the two sets. [50, 51] provide analysis of 
the distance and similarity metrics used in sequences 
comparison. [52] introduces a distance measure based 
on q-grams, and describe its implementation for the 
circular sequence comparison.

Rules and heuristics

1.	 Since the chemical structure drawings are at an 
invariant position invariant, the corresponding aug-
mentation methods might be used. The images either 
can be rotated and flipped by saving the text orienta-
tion or variations of the structures can be generated 
based on the given formula.

2.	 The sequence of the decoder shall be paired with a 
statistical method like Beam Search. The latest mod-
els use the Beam Search algorithm with a depth 
between 15 and 20.

3.	 The generated formula shall be validated and cor-
rected according to the rules: the order, sequence, the 
elements (if any element is detected in the general 
part but not mentioned or was misspelled in the con-
nection part), numbers, and the formula structure 
shall be checked for the correspondence with the 
standard and fixed with the best effort. The formula 
validation on average increases the accuracy of sys-
tems by around 5–6%.

4.	 For the efficiency of the ML part, the chemical struc-
tures can be classified before the training and infer-
ence. Various image analysis methods, rules (image 
analysis) or ML-based clustering can be used for 
the division of the structures into 3–5 kinds and can 
train them by different models, which may use a dif-
ferent approach that fits each.

5.	 Since CNNs are sensitive to image rotation, affine 
transformation, and are unable to capture the spatial 
relation among the parts, using Capsule Networks 

may deliver better results [8–10]. Capsule Networks 
replace scalar-output feature detectors with vector-
output capsules and max-pooling with routing-by-
agreement which adds position invariance. With 
such an approach, the capsule neurons represent the 
existence of the object in an image and its various 
features: orientation, position, size, velocity, texture 
and deformation.

Lack of a standardized dataset challenges OCSR 
development more than mentioned technical diffi-
culties. Unlike image classification, object detection 
and segmentation datasets [53–56], there is no stand-
ard chemical structure dataset that could be used for 
the comparison of the results of various approaches. 
Such a dataset needs to contain images of the agreed 
quality and size (some of the samples in contest data-
sets were not readable at all), provide labels at least in 
SMILES and InChI and define exact measurement cri-
teria. Differentiation of the image or formula complex-
ity (2D/3D, molecule type, string length or number of 
nested elements) would add fairness in the comparison 
of various models. Considering the complexity of the 
initiative, authors see the realization of this project by 
the open contribution of specialists, moderated by the 
researchers of the leading institutions.
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