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Introduction: Digital pathology improves the standardization and reproducibility of kidney biopsy spec-

imen assessment. We developed a pipeline allowing the analysis of many images without requiring hu-

man preprocessing and illustrate its use with a simple algorithm for quantification of interstitial fibrosis on

a large dataset of kidney allograft biopsy specimens.

Methods: Masson trichrome–stained images from kidney allograft biopsy specimens were used to train

and validate a glomeruli detection algorithm using a VGG19 convolutional neural network and an auto-

matic cortical region of interest (ROI) selection algorithm including cortical regions containing all predicted

glomeruli. A positive-pixel count algorithm was used to quantify interstitial fibrosis on the ROIs and the

association between automatic fibrosis and pathologist evaluation, estimated glomerular filtration rate

(GFR) and allograft survival was assessed.

Results: The glomeruli detection (F1 score of 0.87) and ROIs selection (F1 score 0.83 [SD 0.13]) algorithms

displayed high accuracy. The correlation between the automatic fibrosis quantification on manually and

automatically selected ROIs was high (r ¼ 1.00 [0.99–1.00]). Automatic fibrosis quantification was only

moderately correlated with pathologists’ assessment and was not significantly associated with eGFR or

allograft survival.

Conclusion: This pipeline can automatically and accurately detect glomeruli and select cortical ROIs that

can easily be used to develop, validate, and apply image analysis algorithms.

Kidney Int Rep (2021) 6, 1878–1887; https://doi.org/10.1016/j.ekir.2021.04.019

KEYWORDS: digital pathology; fibrosis; kidney transplantation

ª 2021 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
K
idney allograft biopsy procedures are currently
the cornerstone of the management of transplant

recipients, allowing posttransplant monitoring of the
graft, diagnosis of complications, such as rejection,
and the assessment of allograft prognosis. The
complexity of allograft biopsy interpretation is re-
flected in the regular updates of the Banff classifi-
cation.1 This complexity makes the analysis of these
biopsy specimens time-consuming for pathologists
and partially explains the low interrater agreement
among pathologists.2–4
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The development of digital pathology is an oppor-
tunity to improve the standardization and reproduc-
ibility of kidney allograft biopsy specimen assessment.
During the last Banff meeting, a digital pathology
working group was created to standardize practices
and improve the scoring of histologic parameters (e.g.,
interstitial fibrosis and tubular atrophy and inflamma-
tion) through algorithm development and classifica-
tion.5 In a survey after the meeting, we estimated that
>70% of renal pathology departments in the United
States have access to whole-slide imaging, supporting
the potential for widespread use of morphometric
methods on a large number of images either prospec-
tively or retrospectively. There are a growing number
of studies reporting the development of algorithms
aiming at analyzing whole slide images (WSI) of kidney
biopsy specimens and performing various tasks, such
as fibrosis quantification, inflammation quantification,
or segmentation of various structures.6–8 However, to
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date, most of these studies validated their algorithms
on a limited number of selected cases. There is a need to
validate these algorithms in large datasets that display
the variation in disease presentation and image quality
that is often seen in practice. Using such a dataset
would allow for a better understanding of the algo-
rithms’ true potential in clinical practice and clinical
research. Several barriers remain to be addressed to
fulfill that goal, such as handling variations in biopsy
staining, aging of the slides, biopsy scanning, and
removing the need for human annotation. Kidney
allograft biopsy evaluation is performed using the
Banff classification and focuses on the structures in the
cortical area. Therefore, previous studies required
manual selection of the cortical area before applying
quantitative algorithms, which is problematic when
working with hundreds of biopsy specimens. Our aim
was to create an analysis pipeline to automatically
select cortical ROIs on kidney transplant biopsy spec-
imens allowing the application of image analysis algo-
rithms without the need for manual annotation of
cortical regions in WSIs.

Interstitial fibrosis quantification is a common task
in the evaluation of kidney biopsy specimens.1,9 Pre-
vious studies demonstrated that morphometric assess-
ment of interstitial fibrosis using special staining, such
as collagen III staining or Sirius-red staining, improved
reproducibility and association with allograft func-
tion.4,10 Other teams tried to overcome the limitations
of color analysis methods by using other imaging
techniques, such as Fourier-transform infrared imag-
ing.11 However, these methods are not currently used
in most centers, probably because of the burden of
additional staining, slide scanning, and image pre-
processing. The development of a tool that is able to
perform automatic and reproducible quantification of
interstitial fibrosis on stains performed in clinical care
on kidney transplant biopsy specimens remains an
unmet need.

In this study, we report the development of a
pipeline allowing the automatic and fast selection of
cortical ROIs based on glomeruli detection. We then
incorporate a simple color analysis algorithm to show
the use of this pipeline for morphometric quantification
of interstitial fibrosis on a large dataset of trichrome-
stained kidney allograft biopsy specimens.
METHODS

Study Population

We included all adult patients who had a transplant
procedure at Emory University who underwent a
kidney transplant biopsy procedure between 2 weeks
posttransplantation and 1 year posttransplant between
Kidney International Reports (2021) 6, 1878–1887
January 1, 2012 and December 31, 2017. Clinical data
included recipients’, donors’, and transplants’ charac-
teristics as well as follow-up data, including biopsy
results (Banff classification and final diagnosis),
immunosuppressive treatments, and GFR assessment,
which were collected in the Emory Transplant Data-
Mart. For each patient, 3 slides stained with hematox-
ylin and eosin, 1 slide stained with periodic acid–Schiff
and 1 slide stained with Masson trichrome were scan-
ned. An Aperio Scanscope CS (Leica/Aperio Technolo-
gies, Inc., Vista, CA) scanner was used for digitizing
the whole slide using a 20� objective lens with a nu-
merical aperture of 0.75 coupled with a doubler
objective to achieve a whole slide scan at 40� magni-
fication. These images were stored on a secured server.
Images were visualized using the Digital Slide Archive
and reviewed to remove images containing tissue-
processing artifacts including bubbles, section folds,
pen markings, and poor staining. Basic image opera-
tions including color normalization were performed
using HistomicsTK, a Python package for histology
images developed by our team.12

Glomeruli Detection

We developed a glomerular detection algorithm using a
deep learning approach to specifically select cortical
ROIs. Our aim was to develop a model that would be
trained to recognize glomeruli in Masson trichrome–
stained images.

The dataset used to develop the model included 51
trichrome-stained WSIs (36 WSIs as training, 6 WSIs as
validation, and 9 WSIs as testing). All glomeruli in this
dataset were delineated/annotated using the Histo-
micsUI front-end of the Digital Slide Archive soft-
ware12 (Figure 1). The HistomicsTK Python package
was then used to tile the WSI, a process that breaks up
the large WSI into smaller images that can be used in
deep learning computational models. The WSI was
tiled at 10� magnification with tile size of 224 � 224.
This resolution was chosen because the average size of
glomeruli in our dataset would fit within an image of
this size at this magnification.

Every WSI tile containing sufficient glomeruli were
labeled as glomerular images. The nonglomerular class
was taken from tiles containing tissue but no glomeruli
in them. The nonglomerular class was oversampled so
the final training dataset would include twice the
number of nonglomerular images than the glomerular
class. This improves model performance because the
nonglomerular class contains considerably more varia-
tion than the glomerular images. The training dataset
was also color-augmented using color normalization
with the Reinhard approach.13 Four WSIs from the
training dataset were selected as the reference images
1879



Figure 1. Illustration of the HistomicsUI interface used for viewing whole slide images and to create and view annotations.
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for color normalization (Supplementary Figure S1). The
training dataset consisted of 3316 glomerular images
and 6632 nonglomerular images and the validation
dataset consisted of 62 glomerular images and 124
nonglomerular images.

We trained a VGG19 convolutional neural network
using keras starting from ImageNet weights using the
training and validation dataset, a technique known as
transfer learning.14 The model was trained to classify
images into 1 of 2 classes: glomerular or nonglomerular.
The validation dataset was used to access training
model performance to identify the best set of hyper-
parameters to use (for detailed information about model
training, see Supplementary Material). The testing
dataset was tiled slightly differently with all tiles
containing tissue being included (142 glomerular im-
ages and 2189 nonglomerular images). The performance
of the glomerular detection algorithm was assessed by
the F1 score, which is the harmonic mean of the pre-
cision (or positive predictive value) and recall (or
sensitivity).
Automatic ROI Selection

For each WSI, a low-resolution mask was created for
the tissue present in the image, and contours for these
tissues were extracted using Python’s OpenCV pack-
age. The automatic ROI was defined as the region
containing all glomeruli predicted in each WSI tissue.
The algorithm developed includes the following com-
puter vision steps: 1) find the skeleton of the tissue
masks; 2) find all glomeruli within the tissue and find
1880
the skeleton point closest to each glomerulus; 3)
convert the problem to a graph and apply Dijkstra’s
algorithm to find the 2 furthest glomerular points in the
skeleton15; and 4) thicken the skeleton line back to
cover the tissue. These steps are shown in Figure 2.

The performance of this algorithm was evaluated on
51 WSIs where ROIs had been manually delineated and
had not been used to train the glomerular detection
algorithm. The F1 score, calculated as 2 times the area
of overlap divided by the total number of pixels in
both ROIs (manual and automatic), was used to assess
the accuracy. F1 scores range from 0 to 1, with 1
indicating perfect agreement. We also assessed the
correlation between the positive pixel count (PPC)
assessment in manual vs. automatic ROIs using the
Spearman correlation coefficient.

Fibrosis Quantification Algorithm

Fibrosis quantification was performed using a PPC al-
gorithm developed within HistomicksTK. To validate
our PPC algorithm we compared it on a sample of 40
WSIs to a commercial PPC algorithm that we used in
previous studies (Leica/Aperio Biosystems, Wetzlar,
Germany) and assessed the correlation between the two
using the Pearson correlation coefficient.

Association Between Morphometric Fibrosis

Quantification and Visual Quantification

Each biopsy specimen was scored for interstitial fibrosis
in clinical practice and was assigned a percentage of
fibrosis and a ci score defined according to the Banff
Kidney International Reports (2021) 6, 1878–1887



Figure 2. Illustration of the automatic region of interest algorithm.

Table 1. Patients’ characteristics at the time of transplantation and
at the time of the first allograft biopsy procedure
Recipients’ characteristics Mean (SD) or n (%)

Age at transplantation, yr 49.6 (13.0)

Age at first biopsy, yr 50.0 (12.9)

Sex

Male 300 (66.8%)

Female 149 (33.2%)

Race

African American 260 (57.9%)

White 161 (35.9%)

Other 28 (6.2%)

End-stage kidney disease etiology

Diabetes 132 (29.3%)

Hypertension 119 (26.5%)

Glomerulonephritis 81 (18.0%)

Other 117 (26.1%)

Donors’ characteristics

Age at donation 39.9 (15.2)

Living donation 142 (31.6%)
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classification (ci0, 0%–5%; ci1, 6%–25%; ci2, 26%–
50%; and ci3 >50%). To assess intra- and interobserver
agreement, a subset of 100 biopsy specimens were
reviewed by a single pathologist (22 had previously
been analyzed by the same pathologist and 88 had been
previously analyzed by 1 of 4 other pathologists) and
both the correlation between the continuous fibrosis
score (Spearman correlation) and the linearly weighted
kappa scores (k) between the ci scores were estimated.
Similarly, we assessed the agreement between our PPC
algorithm result and visual assessment.

Association Between Morphometric Fibrosis

Quantification and Graft Function and Outcome

To assess the correlation between graft function and
morphometric quantification, we estimated the corre-
lation between the eGFR (estimated using the Chronic
Kidney Disease Epidemiology Collaboration formula16)
at the time of the biopsy procedure and the fibrosis
quantification using the Spearman correlation coeffi-
cient. The Kaplan–Meier method and log-rank test
were used to compare death-censored graft survival by
ci group defined based on morphometric assessment
and pathologist scoring. We also used proportional
hazard Cox models to assess the association between the
percent of fibrosis (continuous evaluation) by both the
Kidney International Reports (2021) 6, 1878–1887
pathologists and the morphometric quantifications
with death-censored graft survival.

The study was approved by our center’s institu-
tional review board (approval IRB00108008). We used
R software (v. 3.2.1; R Core Team, Vienna, Austria) for
1881



Figure 3. Correlation between automatic fibrosis quantification in
manual vs. automatic regions of interest (ROIs) on 51 validation
whole slide images. PPC, positive pixel count.

Figure 4. Illustration of the correlation between manual and auto-
matic regions of interest on a validation whole slide image.
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all statistical analyses and considered P < .05 to be
statistically significant; all tests were 2-tailed.
RESULTS

Study Population

A total of 665 trichrome-stained WSIs from 449 indi-
vidual patients were included in the analysis. Patients’
characteristics at the time of transplantation and at the
time of the first transplant biopsy procedure can be
found in Table 1. Overall, the mean age at kidney
transplantation was 49.6 years (SD 13.0 years), 300
were male (66.8%), 260 (57.9%) were African Amer-
ican, and 161 (35.9%) were white. The main causes of
end-stage kidney disease were diabetes (131 [29.8%])
and hypertension (119 [27.0%]). One hundred forty-
two transplants were from a living donor (31.6%)
and the mean donor age was 39.9 years (SD 15.2 years).
The mean time between transplantation and first
transplant biopsy procedure was 4.1 months (SD 3.1
months).
Glomeruli Detection and Automatic Selection of

ROIs

The glomerular detection algorithm was tested on 9
trichrome-stained WSIs including 142 glomerular im-
ages and 2189 nonglomerular images. The overall ac-
curacy of the model was good with a sensitivity of
93.0% and a positive predictive value of 81.0% (F1
score 0.87).
1882
The algorithm used to select ROIs was validated on
51 WSIs and showed a high accuracy with an F1 score
of 0.83 (SD 0.13). Figure 3 shows the high correlation
(r ¼ 1.00 [0.99–1.00]) between the PPCs in the manual
vs. the automatic ROIs. We also present an image
showing both the glomerular detection and ROIs se-
lection on a WSI (Figure 4).

Fibrosis Quantification Algorithm
Correlation Between Visual Fibrosis Quantification

by the Pathologists

One hundred two biopsy specimens were rescored
centrally by a single pathologist. Twenty-two had been
previously scored by the same pathologist, and intra-
observer agreement was high with a correlation 0.85
for the percent of fibrosis and a k for ci score of 0.73
(0.49–0.97). Interobserver agreement was lower, with a
correlation of 0.78 for the percent of fibrosis and a k for
ci score of 0.60 (0.38–0.83).

Correlation Between Automatic Fibrosis Quantifica-

tion by PPC Algorithms

The PPC algorithm embedded within HistomicsTK was
validated against the Aperio PPC algorithm on 42 WSIs.
The correlation between the 2 algorithms was high (r ¼
0.97 [0.94–0.98]).

Correlation Between Automatic Fibrosis Quantifica-

tion by PPC Algorithm and Visual Assessment by

Pathologists

The correlation between the fibrosis quantification by
the original pathology reading and by the PPC algo-
rithm was moderate, with a correlation coefficient of
0.46 (0.40–0.52). Figure 5 presents the distribution of
the fibrosis quantification by the PPC algorithm using
ci score, as defined by the pathologists. Overall, 76.5%
of the biopsy specimens scored ci1 by the pathologist
were given a fibrosis quantification between 6% and
25%, and 40% of those scored ci2 were given a fibrosis
quantification between 26% and 50%. The discrep-
ancies were major for the extreme ci score, with only
Kidney International Reports (2021) 6, 1878–1887



Figure 5. Distribution of the fibrosis quantification by the positive
pixel count (PPC) algorithm by ci score as defined by pathologists.
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10.3% of ci0 being quantified between 0% and 5% and
only 13.3% of ci3 being quantified between 51% and
100%.

No major differences in the correlation between
pathologist and automatic quantification were found
when restricting the analysis to adequate biopsy
specimens per Banff (r ¼ 0.46 [0.40–0.53]) or to biopsy
specimens without acute rejection (r ¼ 0.50 [0.41–
0.57]).
Association Between Fibrosis Quantification

and Graft Function and Outcome

We found a weak negative correlation between the
percent of fibrosis assessed by the pathologists and
eGFR at the time of transplant biopsy procedure
Figure 6. Correlation between visual fibrosis quantification or automatic
(eGFR) at the time of transplant biopsy procedure. PPC, positive pixel cou

Kidney International Reports (2021) 6, 1878–1887
(r ¼ �0.14 [�0.22 to �0.07]) when no significant
correlation was found between the automatic quanti-
fication of fibrosis and eGFR (r ¼ �0.07 [�0.15 to 0.01];
Figure 6).

The median follow-up after the first allograft biopsy
procedure was 47 months (interquartile range 29–66
months). We found a significant association between
percent of fibrosis assessed by the pathologists and
death-censored graft survival (hazard ratio 1.02, P <
.001), but the association was not statistically signifi-
cant between the automatic quantification and the
outcome (hazard ratio 1.02, P ¼ .28). Figure 7 shows
death-censored graft survival stratified by ci score
assessed by pathologists (Figure 7a) and by automatic
quantification (Figure 7b). Table 2 presents the 4-year
graft survivals by ci score assessed by both visual
and automatic fibrosis quantification. No significant
differences in graft survival were found between pa-
tients classified from ci0 to ci2 by either visual or
automatic quantification. Patients classified as ci3 by
pathologists experienced poorer outcomes, and the log-
rank test reached statistical significance (P ¼ .008).
Only 7 patients were classified as ci3 by the automatic
quantification—none experienced graft loss, and the
log-rank test did not show significant differences in
allograft survival by ci score assessed automatically
(P ¼ .68).
DISCUSSION

We report the development of a pipeline able to auto-
matically and accurately detect glomeruli and select
cortical ROIs on WSIs obtained from Masson
trichrome–stained biopsy specimens. We also show
that these selected ROIs can then easily be fed into
algorithms to perform various tasks, such as fibrosis
quantification or structure segmentation.
fibrosis quantification (HTK) and estimated glomerular filtration rate
nt.
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Figure 7. Death-censored graft survival stratified by fibrosis assessed by ci score according to visual pathologist grading (a) and automatic
fibrosis quantification (HTK) (b).

Table 2. Four-year death-censored graft survival stratified by ci
score estimated by both visual and automatic assessments
ci score Visual assessment Automatic assessment

0 (0%–5%) n ¼ 186, 95% (92%–98%) n ¼ 28, 96% (90%–100%)

1 (6%–25%) n ¼ 195, 90% (86%–96%) n ¼ 326, 92% (89%–96%)

2 (26%–50%) n ¼ 34, 88% (75%–100%) n ¼ 71, 89% (80%–99%)

3 (>50%) n ¼ 12, 71% (48%–100%) n ¼ 2, no events

CLINICAL RESEARCH AB Farris et al.: Image Analysis Pipeline for Renal Allograft and Fibrosis
The pipeline relies on the automatic detection of
glomeruli and the definition of the ROI as the region
between the most distant glomeruli. Glomerular
detection has consistently been reported as a task that
algorithms can be trained to perform with a high level
of accuracy. Previously published works have tackled
this problem in a multitude of manners, such as using
semantic segmentation to delineate the boundaries of
glomeruli in periodic acid–Schiff or hematoxylin and
eosin–stained mouse and human kidney WSIs.17

Another group used an image classification approach
with overlapping regions to create the glomerular
detection algorithm, again on periodic acid–Schiff-
stained images.18 Recently, Bukowy et al.19 developed a
highly accurate region-based convolutional neural
network able to detect glomeruli on trichrome-stained
WSIs from rats with precision and recall values of
96.9% and 96.8%, respectively. Using a similar
method, we were able to accurately detect glomeruli on
human kidney transplant biopsy specimens with pre-
cision and recall values of 81% and 93%, respectively.
The lower precision may be related to the analysis of
biopsy specimens instead of nephrectomy specimens.
However, this did not significantly impact the accuracy
of our ROI detection algorithm as shown by the high
concordance between manually defined and automati-
cally selected ROIs.
1884
Several studies have shown that interstitial fibrosis
quantification is predictive of renal allograft outcome
and may be considered a surrogate marker.20,21 Indeed,
Loupy et al.22 recently developed a predictive model
(iBOX) based on clinical, immunologic, and pathology
data that demonstrated high performance in predicting
allograft failure at 3, 5, and 7 years posttransplant.
Interstitial fibrosis and tubular atrophy were among
the pathologic predictors included in the model.22

However, the quantification of interstitial fibrosis
on biopsy specimens in both native and transplant
kidneys is challenging. In our study, we assessed
intra- and interobserver agreement for the scoring of
interstitial fibrosis and found a relatively good
intraobserver agreement with a correlation of 0.85
(R2 ¼ 0.72), consistent with what we previously
reported (R2 0.62–0.90).10 Interobserver agreement
was lower (r ¼ 0.78; R2 ¼ 0.60) but within the
Kidney International Reports (2021) 6, 1878–1887
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highest range compared with previous reports.
Indeed, in an international study, the agreement
between pathologists for ci score was very low (k ¼
0.295)3 compared with our study (k ¼ 0.60). These
results point toward the lack of reliable reference for
evaluating new methods to quantify interstitial
fibrosis. This probably contributes to the low cor-
relation between visual fibrosis quantification and
morphometric assessments. In our study, we found a
moderate correlation between pathologist and
morphometric quantification (r ¼ 0.46 [0.40–0.52]).
The correlation was slightly lower than what we
found in our previous study with a R2 ¼ 0.36
(compared with R2 ¼ 0.21 in the present study) and
may be explained by the inclusion of more diverse
diagnoses in the present study, including patients
with rejection or other potential complications.
Indeed, we found a higher correlation in cases
without rejection than in those with acute rejection.
It is also interesting to note that the distribution of
the percent of fibrosis is much narrower when
assessed automatically and that the correlation be-
tween visual assessment and morphometric assess-
ment is especially poor in extreme cases with very
little or a lot of fibrosis. Although the overall
agreement between ci scores from the visual assess-
ment vs. the morphometric assessment was statisti-
cally significant but low (k ¼ 0.08 [0.04–0.13]),
consistent with recent reports using more advanced
methods (e.g., Fourier-transform infrared, k ¼
0.1111), the discrepancies were major for the extreme
ci scores, with only 10.3% of ci0 being quantified
between 0% and 5% and only 13.3% of ci3 being
quantified between 51% and 100%. This probably
reflects the fact that pathologists do not really assess
the quantity of fibrosis per se but rather quantify
the percent of abnormal cortical tissue. This would
explain why, when analyzing a biopsy specimen
with abundant fibrosis and tubular atrophy, pathol-
ogists can assign 100% fibrosis when the algorithm
will only quantify interstitial fibrosis as abnormal
and all tubules as nonfibrotic. Conversely, patholo-
gists appear to have a hard time precisely quanti-
fying little amount of fibrosis. It is likely that a
threshold effect happens with pathologists quanti-
fying as 0% fibrosis many biopsy specimens with
only a little amount of fibrosis, when our algorithm
almost always finds some fibrosis. It is also possible
that our algorithm could not differentiate some
normal structures, such as the glomeruli or the
tubular basement membrane, from pathologic fibrosis,
systematically overestimating fibrosis especially in
cases with very little fibrosis. Our team and others
previously reported on the use of special stains, such
Kidney International Reports (2021) 6, 1878–1887
as collagen III10 or Sirius red10,23 to overcome this
limitation, but these stains are not used in routine
clinical practice.

Given the lack of a criterion standard for fibrosis
quantification, many studies have used the association
between fibrosis quantification and allograft function
(estimated by serum creatinine or eGFR) or allograft
outcome (change in eGFR or graft loss) as a primary
outcome to assess the quality of their fibrosis quantifi-
cation methods. In our study, we did not find a signif-
icant association between eGFR at the time of biopsy
procedure and fibrosis quantification. Previous studies
either found no association or only very weak associa-
tions between fibrosis quantification and eGFR.10,11 This
is probably explained by the fact that multiple mecha-
nisms besides fibrosis can impair eGFR. In our cohort
including only indication biopsy specimens relatively
early after transplantation, it is not surprising that
fibrosis, whatever method is used to assess it, only
marginally explains kidney function. Servais et al.7

applied an enhanced color analysis on surveillance bi-
opsy specimens and were able to demonstrate an asso-
ciation between fibrosis quantification and change in
fibrosis quantification between 2 surveillance biopsy
specimens with change in eGFR, supporting the idea
that the association in our study and others is decreased
because of the inclusion of allografts with acute com-
plications. Finally, we did find some correlation between
ci score assessed by visual assessment and graft survival
but not with morphometric assessment of ci score.
Grimm et al.23 reported some correlation between
morphometric fibrosis quantification on Sirius red–
stained 6-month surveillance biopsy specimens and
graft survival, supporting the idea that special staining
may provide valuable information to predict graft
outcome. In our study, the association between ci score
visual assessment and graft survival was driven by an
association between ci score 3 and graft loss. This
further supports the idea that pathologists tend to assess
the total amount of abnormal tissue rather than the
precise quantity of fibrosis, potentially explaining the
stronger association with graft outcome. In a recent
publication, Kolachalama et al.24 reported the develop-
ment of a deep neural network algorithm to predict renal
survival in patients undergoing both native or allograft
biopsy procedures. Their model combines clinical data
and trichrome-stained WSI analysis using the commer-
cially available Google Inception algorithm.24 Although
they did not report the performance of a model
excluding the image data, they showed that their con-
volutional neural network model outperformed a model
including the same clinical data and a visual scoring of
fibrosis. It is important to note that their convolutional
neural network model was not trained to quantify
1885
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fibrosis but to predict graft survival; therefore, many
other predictive features may have been extracted from
the WSIs, likely accounting for the better accuracy.

The strength of our study is the development of a
pipeline able to accurately select cortical ROIs from
WSIs from kidney allograft biopsy specimens, allowing
the direct application of image analysis algorithms on
large samples of WSIs. The application to fibrosis
quantification used to illustrate the use of this pipeline
presents several limitations, including the use of early
indication biopsy specimens that are less likely to pre-
sent with severe fibrosis and more likely to present with
acute injuries likely to impact the correlation with
allograft function. We also acknowledge that the use of
specific staining or imaging methods can improve
fibrosis quantification and association with allograft
function and outcome but are not readily available on
large samples of biopsies in most centers, including ours.

In conclusion, we developed a pipeline able to auto-
matically and accurately detect glomeruli and select
cortical ROIs on WSIs obtained from Masson trichrome–
stained biopsy specimens. We demonstrated that these
selected ROIs can easily be used to develop, validate,
and apply image analysis algorithms. This pipeline is
likely to decrease the need for manual preprocessing of
WSIs and to allow the validation of future algorithms on
large and unselected batches of WSIs. Our study also
supports the need for a more advanced artificial intelli-
gence algorithm to predict kidney allograft outcomes
over the development of specialized algorithms aimed at
mimicking the Banff classification.
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