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Background. Septic cardiomyopathy is widespread during sepsis and has adverse effects on mortality. Diagnosis of septic
cardiomyopathy now mainly depends on transthoracic echocardiogram. Although some laboratory tests such as troponin T
and atrial brain natriuretic peptide play a role in the diagnosis, specific blood biochemistry biomarkers are still lacking.
Objective and Methods. In our study, we sought to find potential biological markers from genes and pathways that are
covariant in the blood and myocardium of septic patients. Bioinformatics and machine learning methods were applied to
achieve our goal. Datasets of myocardium and peripheral blood of patients with sepsis were obtained from the Gene
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected and received functional enrichment
analysis. Unsupervised hierarchical clustering analysis was performed to identify the subtypes of sepsis. Random forest, lasso
regression, and logistic regression were used for variable screening and model construction. Internal and external validation
sets were applied to verify the efficiency of the model in classifying disease and predicting mortality. Results. By defining
significance for genes using Student’s t-test, we obtained 1,049 genes commonly changed in both myocardium and blood of
patients with sepsis. The upregulated genes (LogFC >0) were related to inflammation pathways, and downregulated (LogFC <
0) genes were related to mitochondrial and aerobic metabolism. We divided 468 sepsis patients into two groups with different
clinical result based on the mortality-related commonly changed genes (104 genes), using unsupervised hierarchical clustering
analysis. In our validation datasets, a six-gene model (SMU1, CLIC3, SP100, ARHGAP25, DECR1, and TNS3) was obtained and
proven to perform well in classifying groups and predicting mortality. Conclusion. We have identified genes that have the
potential to become biomarkers for septic cardiomyopathy. Additionally, the pathophysiological changes in the myocardium of
patients with sepsis were also reflected in peripheral blood to some extent. The co-occurring pathological processes can affect
the prognosis of sepsis.

1. Introduction

Septic shock is often characterized by refractory hypotension
and insensitivity to vasoactive agents, especially when the
hypovolemia is redressed. The pathogenesis of septic shock
has been extensively and profoundly discussed, with septic
myocardial injury or septic cardiomyopathy (SCM) being
considered an important cause of refractory hypotension
caused by septic shock. The presence of SCM in septic shock,

as determined by previous studies, infers a poorer prognosis
as it significantly increases the mortality rate of patients to
70–90% and its incidence varies from 18 to 40% of septic
shock patients [1, 2]. To date, the complex mechanism of
SCM pathogenesis remains unclear. Myocardium depressant
substances may be one of the most important factors. The
most primary myocardial depressant factors include sub-
stances such as cytokines, prostanoids, nitric oxide, the com-
plement system, and lipopolysaccharides (LPS), which are
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involved in actively suppressing the heart [3]. Exosome and
dysfunction of mitochondrial dysfunction also play impor-
tant roles in the pathogenesis of SCM [4–7].

Currently, the presence of SCM can be diagnosed in
patients using a bedside transthoracic echocardiogram,
which typically shows left ventricular ejection fraction <
45% and right ventricular dilatation [8]. Some laboratory
tests, including Troponin (cTnI) and brain natriuretic pep-
tide (BNP), play auxiliary roles in the diagnosis of this dis-
ease, but specificity is still lacking. The prognostic value of
these biomarkers seems more closely tied to disease severity
than to specific abnormalities in cardiac function [9–12].
Considering the problems we have faced in our clinical
work, we studied those genes and pathways that change syn-
chronously in the blood and myocardium in order to facili-
tate our access to potential biomarkers.

Gene expression profiling methods have been widely used
in many fields of clinical and scientific research [13–15], and
the research on sepsis genomics has been gradually carried
out [16–20]. Many sequencing data obtained from peripheral
blood indicate the changes in inflammation-related genes and
pathways in sepsis patients at different stages and outcomes.
In addition, a recent study sequenced the myocardial tissue
of patients with sepsis and found that mitochondrial-related
proteins and sarcomere proteins were extensively downregu-
lated in the myocardial tissue of patients with sepsis compared
to the control group [16]. Although myocardial depressant
factors and dysfunction of mitochondria are common in sep-
sis, we do not know the correlation of these pathologic pro-
cesses in myocardium and peripheral blood, nor the details
about their regulatory direction. Therefore, we believe that
comparing the genetic and cellular pathways that covary in
the blood and myocardium of patients with sepsis may help
us identify some meaningful biomarkers that are specific for
septic cardiomyopathy diagnosis, particularly regarding
inflammatory response and mitochondrial function.

Machine learning methods have been widely used in the
identification and establishment of sepsis subtypes, but most
findings are mainly aimed at mortality-related genes, and the
classification characteristics obtained are mainly different
immune and inflammatory response states [17, 18, 20]. In
our study, we looked at genes that changed in both the myo-
cardium and peripheral blood of patients with sepsis, which
included some mitochondrial and aerobic metabolism-
related genes, as the variables of clustering analysis, and tried
to identify the population in sepsis with potential myocardial
injury through the changes in the peripheral blood. We then
used machine learning methods and model construction to
screen variables, build a prediction model with those genes
that are representative, and verify their efficiency in group
classification and mortality prediction.

2. Materials and Methods

2.1. Gene Expression Profiles and Data Preparation. The
main procedure of our statistical analysis is displayed in
Figure 1. There are 51 myocardium samples in GSE79962,
including 20 septic cardiomyopathy (SCM), 11 ischemic
heart disease (IHD), 11 dilated cardiomyopathy (DCM),

and nine nonfailing heart (NFH) samples. GSE141864
included eight septic cardiomyopathy samples and two non-
failing heart samples.

We collected 802 whole blood samples for sepsis patients
(n=760) and healthy controls (n=142) in the blood dataset
GSE65682. In total, 468 sepsis samples with 28 days of sur-
vival data were studied as training datasets and internal test-
ing datasets for model construction with sepsis survivors
(78.0%, 365/468) and sepsis nonsurvivors (22%, 103/468).

Four external validation datasets were obtained in our
study. GSE54514 contained 163 daily PAX gene samples
for up to five days for sepsis survivors (n=26), sepsis non-
survivors (n=9), and healthy controls (n=18). GSE131761
contained 129 gene samples for nonseptic shock (n=33),
septic shock (n=81), and healthy controls (n=15).
GSE57065 contained 107 blood samples for 40 simplified
acute physiology score II- (SAPS II-) high septic patients,
42 SAPS II-low septic patients, and 25 controls.
GSE110487 contained 62 blood samples from 31 septic
patients who received early liquid resuscitation therapy, 17
of them were responders and 14 were not responders. For
each patient, two samples were collected. In particular, the
first sample (T1) collected within 16 hours from ICU admis-
sion whereas the second (T2) collected within 48 hours from
ICU admission.

All raw data were preprocessed using the affy package in
R [22]. We integrated the myocardial tissue data from
GSE79962 and GSE141864 and used the sva package in R
to remove the batch effect [22]. We then used the psych
package in R to perform principle component analysis
(PCA) of the dataset and used the first two principal compo-
nents to draw a scatter plot to observe the distribution of the
samples [23]. We found that the sepsis samples in the data-
set were well fused and isolated from the other diseases and
control samples. In the GSE79962 study, the authors col-
lected IHD and DCM groups to eliminate interference
caused by other kinds of heart failure. They compared
IHD, DCM, and the sepsis group to NDH separately and
visualized three groups of differentially expressed genes
(DEGs) by Venn diagram. The DEGs in sepsis were dis-
carded when they appeared in DEGs of IHD and DCM.
We used this principle in our research and finished the work
using the weighted correlation network analysis (WGCNA)
R package. If the modules generated by WGCNA showed
no statistically significant correlation with sepsis group, the
DEGs in this module were dropped.

Other blood sample databases were analyzed separately.
GSE65682 served as a deviation dataset, which was divided
into the training set and the internal validation set, and the
rest of the datasets served as the external validation set.

2.2. DEG Analysis and WGCNA. In the myocardium dataset
(combination of GSE79962 and GSE141864) and peripheral
blood dataset (GSE65682), DEGs analysis was performed
separately using the limma package in R [24]. Gene signifi-
cance was defined using a Student t-test statistic for testing
differential expression between sepsis and controls. Every p
-value was first adjusted by the Benjamini & Hochberg
method. In GSE65682, we compared the sepsis group and
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healthy controls, and set the adjusted p-value <0.05 as the
cut-off for DEGs selection.

In the myocardium dataset, we first compared the sepsis
group and nondilated heart. In order to obtainmore potentially
significant genes, we tolerated more possible errors at the
beginning and set p-value <0.05 as criterion for DEGs selection.
More specific selection was done following WGCNA.

The log fold change (LFC) value was calculated by sub-
tracting the average control value from the average sepsis
value for each gene. Using LFC >0 or <0, the DEGs were
classified as upregulated or downregulated.

In the GSE79962 study, the authors compared the septic
cardiomyopathy, dilated cardiomyopathy, and ischemic heart
disease separately to the nonfailing heart and obtained three
different groups of DEGs. Co-expressed DEGs among the
three groups were abnegated, in order to eliminate the effects
caused by other types of heart failure [16]. We applied this
principle and finished the course with WGCNA. We first
obtained the DEGs between septic group and nonfailing heart
with p-value <0.05, which were applied for WGCNA [25].
Finally, modules were identified in the resulting dendrogram
using the Dynamic Tree Cut algorithm. Modules with similar
expression profiles were merged at the threshold of 0.25.While
themodules were confirmed, we tested the correlation between
modules and gene significance using Student’s t-test. Genes in
the module that were confirmed to be correlated with gene sig-
nificance were kept for further analysis. While separated by
different modules, the DEGs in the myocardium dataset were
still marked as upregulated or downregulated.

We compared the DEGs from the myocardial dataset,
which were grouped by different modules, to the DEGs from
blood dataset. We retained genes that were both upregulated
and downregulated in the blood dataset, and genes that
changed in different directions were discarded. We then
obtained the genes that changed in the same way in both
blood and myocardium. In addition, we used the WGCNA
classification of myocardial DEGs to classify these co-
expressed genes into different modules.

2.3. Functional Enrichment of DEGs. The pathway informa-
tion in GO was used to annotate the retained DEGs in each
module and obtain the pathways of biological process,
molecular function, and cellular component that would be
dysregulated in both the blood and myocardium of septic
shock patients. A p-value <0.05 and q-value <0.05 indicated
a significantly enriched term. Then, GSEA was applied for
further analysis of the pathway regulation, with an adjusted
p-value <0.05 indicating a significantly enriched term. The
R package clusterProfiler was used in these analyses [26].

2.4. Predictor Variable Selection. In the deviation dataset
GSE65682, all the 1,049 remaining DEGs received univariate
filtering on mortality. We used Student’s t-test to compare
the 1,049 DEGs between patients who survived and deceased
patients by setting p-value <0.05. In total, 105 genes were
verified to be related to mortality in the sepsis patient group.
Compare to the external validation databases, 104 genes
were used for variable selection, while one was unavailable

Myocardium data
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Blood data
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DEG identification
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Figure 1: Pipeline of our proposed work and statistical analysis methods.
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in the external datasets. A recursive-partitioning machine
learning algorithm, random forest, was used to identify the
most important classifier variables in the derivation dataset.
For variable selection, this technique is known to penalize
categorical variables, particularly those with the fewest cate-
gories. Therefore, LASSO was also used to identify impor-
tant classifier variables [27]. The random forest and glmnet
packages in R were used for the courses [28, 29].

2.5. K-Means Clustering Analysis. The 104 genes were used
for k-means clustering analysis in 468 septic patients from
GSE65682. The number of clusters was determined by the
elbow method and average silhouette method. Survival anal-
ysis was performed between the two groups. The NbClust
package in R was used for the clustering [30].

2.6. Logistic Regression in Deviation Dataset. The GSE65682
dataset was divided into a training set and verification set in
a ratio of 4: 1. The top genes obtained from the machine
learning methods were used for backward stepwise regres-
sion to the clustering groups, and nested logistic regression
models were generated by sequential deletion of the vari-
ables until all the variables in the model were statistically
meaningful with a p-value <0.01. Chi-square test was used
to compare the predictive efficiency of different models.
Finally, six genes were kept in the regression model. The
glmnet package in R was used for the analysis [28].

2.7. Model Performance in the Internal and External
Verification Dataset. The gene model was first validated to
predict the classification and mortality prediction efficiency
of the test dataset generated in GSE65682 and compare it
to age, using the AUC of the ROC curve. In GSE54514, we
also used the same method to compare the efficiency of the
six-gene model in predicting mortality with the age and
appach II score. We also integrated the six genes with age
and appach II score, and evaluated the weight of different
factors in predicting mortality with a nomograph and cali-
bration curve. The pROC, survival, and rms packages in R
were used for analysis [31]. In GSE57065, GSE131761, and
GSE110487, we verified the ability of the classification model
to classify severe patients, identify septic shock and nonsep-
tic shock, and judge the response to fluid therapy using a
chi-square test.

3. Results

3.1. DEG Identification and WGCNA. We merged the
GSE79962 and GSE141864 together as a myocardium data-
set. The new dataset included 61 myocardium samples for
sepsis (n=28), IHD (n=11), DCM (n=11), and NFH (n=
11). According to the result of PCA analysis, the sepsis data
from GSE79962 and GSE141864 merged well and were sep-
arated from other groups (Figure 2(a)). Thus, we set the
NFH group as the control. By using p-value <0.05 as the cri-
terion, a total of 4,016 DEGs in the myocardium dataset
were used for WGCNA. IHD and DCM groups were kept
in WGCNA to filter the interference caused by other kinds
of heart failure. Six modules were ultimately identified
(Figures 2(b)–2(d)). By testing the correlation between mod-

ules and gene significance by using Student’s t-test statistic
(p < 0:001), blue, brown, grey, and turquoise modules were
found to be correlated linearly with gene significance
(Figure S1). There were 841 genes in the blue module, 422
genes in the brown module, 1,102 genes in the turquoise
module, and 1,554 genes in the grey module.

In GSE65682, 760 sepsis patients and 142 healthy con-
trols were obtained, with the sepsis group compared to
healthy controls and every p-value adjusted by the Benja-
mini & Hochberg method. With the p-value <0.05 set as
the cut-off point, we observed 7,523 DEGs in the blood data-
set. By comparing 4,016 DEGs from the myocardium dataset
with 7,523 DEGs from the blood dataset and correlating the
LFC direction, 1,049 DEGs changed in the same way in both
myocardium and blood datasets, including 549 genes upreg-
ulated and 500 genes downregulated. Moreover, the 1,049
DEGs were also marked with different modules, with 325
genes in the blue module, 116 genes in the brown module,
305 genes in the grey module, 261 genes in the turquoise
module, 40 genes in the yellow module, and two genes in
the green module (Table S1).

3.2. GO Annotation and GSEA. Using GO annotation, we
observed that several cellular pathways and inflammatory cyto-
kines were upregulated in the turquoise modules (Figure 3(a)).
In the blue module, pathways for mitochondrial and protein
complex disassembly were downregulated (Figure 3(b)). No
meaningful pathways were identified in other modules.
Detailed GO analysis results are shown in Table S2, with
several pathways of mitochondrial and aerobic respiratory
function being significantly enriched in the blue module
(adjusted p-value <0.01). Pathways of the immune system,
mitochondrial translation initiation, the citric acid (TCA)
cycle, and respiratory electron transport were significantly
enriched (adjusted p-value <0.05). No meaningful pathways
were identified by GSEA in the turquoise module, with the
results displayed in Figure 3(c) and Table S2.

3.3. K-Means Clustering Analysis. A total of 105 genes were
verified to be related to mortality in the sepsis patient group
from 1,049 DEGs (Table-S3). Clustering analysis was per-
formed in GSE65682 using the 105 DEGs obtained. The
optimal number of clusters was determined to be two by
measuring the total within sum of square and average sil-
houette width (Figure S2A). PCA was then performed,
with patients well separated in the first two major
dimensions (Figure 4(a), Figure S2A). There were 145
patients in Class 1 (31.0%) and 323 patients in Class 2
(69.0%). Patients in Class 1 exhibited significantly higher
mortality rates than in Class 2 (35.9% [52/145] vs. 15.8%
[51/323]; p<0.01 for chi-square test). The survival analysis
was also statistically different (Figure 4(b)).

3.4. Development of Class Model. Compared with the external
validation databases, 104 genes were used for variable selec-
tion, one of which was unavailable in external datasets. We
used mean decrease accuracy and mean decrease Gini scores
to select the most significant variables in random forest model,
with the top 30 genes of both mean decrease accuracy and
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mean decrease Gini shown in Figure 5(a). Union of the two
groups contained 47 genes, which were used for model con-
struction (Figure 5(a), Table S4). For the lasso modeling, best
tuning parameter (λ) was suggested as 0.0127231. We set λ=
0.01 for variable selection, with 39 variables obtained from
LASSO regression model (Figures 5(b) and 5(c), Table S5).
The top 22 most significant classifier variables from both
machine learning algorithms were kept and used to generate
logistic regression models (Figure 5(d)). In total, six genes
were kept in the regression model (SMU1, CLIC3, SP100,
ARHGAP25, DECR1, and TNS3).

3.5. Classification and Mortality Validation in Derivation
Dataset. As the derivation dataset, GSE65682 was grouped
into the training set and testing set at 4 : 1. Classification effi-
ciency of the 22-gene model was well validated in the test data-
set generated from the validation data, with an AUC of 0.955
(95% CI: 0.892–0.897) (Figure 6(a)). Classification efficiency
of the six-gene model presented as strongly as the 22-gene
model, while an AUC of 0.958 (95% CI: 0.892–0.872), and p
-value in the chi-square test of the two models was 0.1479.

We then evaluated the mortality prediction value with
the six-gene model. The six-gene model from classification
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training was satisfactory in predicting mortality (AUC 0.681
[95% CI: 0.603–0.768]). We also trained the six-gene model
for mortality (AUC 0.699 [95% CI: 0.684–0.679]), with the
prediction efficiency of the two models demonstrating no
statistical difference (p=3.6724). Thus, we kept the model
from classification training for further analysis, in order to
balance the accuracy of classification and death prediction.

In the generated dataset, we assessed the predictive
power of age on mortality, where the AUC for age was
0.585 (95% CI: 0.247–0.911) and the AUC for the six-
gene-age model was 0.695 (95% CI: 649–0.750)
(Figure 6(b)). The six-gene model performed better than
the six-gene-age model (p=0.0004); when age was inte-
grated, the six-gene-age model performed slightly better (p
=0.0001) than the six-gene model.

The same method was applied in the GSE54514 external
validation set. The six-gene model generated from
GSE65682 did not fit well in GSE54514 (AUC 0.478 [95%
CI: 0.969, 0.129]). Considering the different data back-
ground, we retrained the six genes for mortality in
GSE54514, with a much stronger result. We compared the
six-gene model to age and appach II scoring system in mor-
tality prediction efficiency in GSE54514. The AUC of the
six-gene model was 0.818 (95% CI: 0.906–0.645), the AUC
of age was 0.676 (95% CI: 0.427–0.968), and the AUC of
the six-gene-age model was 0.838 (95% CI: 0.594–0.935)
(Figure 6(c)). We observed that in the external validation
set, the model predicted mortality more accurately than
age (p=0.0004), and that its predictive power was greatly
enhanced after integrating age (p=0.0208).

When compared to the appach II scoring system in
GSE54514, the AUC of appach II was 0.792 (95% CI:

0.760–0.710), and the AUC of the six-gene-appach II model
was 0.906 (95% CI: 0.865–0.839) (Figure 6(d)). Similarly, the
ability of our model to predict mortality is slightly higher
than that of the appach II scoring system (p=0.0241), with
the six-gene model improved when the appach II score was
integrated when predicting mortality (p<0.001). Nomo-
graph and calibration curve are presented in Figure S3A,3B.

In GSE57065, we compared our classification with sim-
plified acute physiology score II (SAP II). In patients with
mild sepsis, the ratio of Class 2 members was 14.3% (6/42)
and 40.0% (13/42) in the severe sepsis group, with a statisti-
cally significant difference in ratio of Class 2 members (p<
0.01).

In GSE131761, we observed the performance of the clas-
sification model in shock patients with or without sepsis and
found a significantly higher proportion of Class 2 members
in the population without shock (17.6%, 6/34) than in the
population of patients with shock (22.2%, 18/81), with a sta-
tistical difference (p<0.01). This may reflect the insufficiency
of our model in recognition of infection and inflammatory
course.

4. Discussion

Sepsis cardiomyopathy is a common complication of sepsis
and has a negative impact on the mortality of patients. The
conventional diagnostic methods include echocardiograph
and some laboratory tests, such as BNP, cTnI, and myocar-
dial enzymes [3]. BNP and cTnI are helpful for the prognosis
and diagnosis of sepsis cardiomyopathy, but the further
research revealed they are more closely tied to the severity
of sepsis than the specific cardiac function [9, 12]. Because
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of the lack of specificity of the above biochemical tests, more
efficient and specific biological markers are still in high
demand in clinical work. Although some gene expression
profiling studies on sepsis have been carried out, studies on
myocardial and peripheral blood specimens have been con-
ducted independently, and few omics studies describing
their association exist [16–20].

Our study analyzed co-expressed genes in myocardium
and peripheral blood samples from patients with sepsis
and used these genes for clustering analysis. Our aim was
to identify the population with myocardial injury by analyz-
ing the peripheral blood genes of sepsis patients. As men-
tioned in the introduction, the mechanism of SCM is
complicated and inflammatory reactions play a great role
in this mechanism. LPS, IL-1, TNF, prostanoids, and nitric

oxide could work as depressant factors for myocardium in
severe septic patients [8, 32–34]. Exosome and mitochon-
drial function are also involved in the process. Exosome con-
taining nicotinamide adenine dinucleotide phosphate
(NADPH) could cause reactive oxygen species production,
vascular apoptosis, and myocardium dysfunction by mecha-
nism that is associated with inflammatory. Inhibition of
platelet exosome would be beneficial for sepsis patients [4].
At the meantime, mitochondrial dysfunction has already
been proven to be a systemic problem in sepsis, especially
for the myocardium [5–7]. It has been reported that in the
myocardial tissue of sepsis patients, energy metabolism pro-
teins such as mitochondria-related protein and myocardial
contractility-related proteins are significantly downregulated
[16]. Mitochondrial dysfunction has been shown in other
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separated by the two most important dimensions after PCA. (b) Survival analysis of two classes of sepsis shows that the survival rate of
Class2 is lower than that of Class1, and it is statistically significant (p < 0:001).
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organs and tissues taken from septic patients including skel-
etal muscle [35–37], platelets [38–40], and peripheral blood
mononuclear cells (PBMCs) [41, 42]. Plasma mitochondrial

DNA levels have also been associated with the incidence of
acute respiratory distress syndrome (ARDS) in trauma and
sepsis patients [43].
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Figure 5: (a) Score of MeanDecreaseAccuracy and MeanDecreaseGini indicated the weight of factor calculated by the random forest
method, in the course of model construction. x-axis shows the gene names; y-axis shows the score of MeanDecreaseAccuracy and
MeanDecreaseGini. Top 30 genes generated from random forest method were presented in the figures, measured by
MeanDecreaseAccuracy and MeanDecreaseGini. (b) Regression course of the LASSO. (c) The figure showed the recommended area of
log λ and number of factors that should be obtained (between two vertical dashed lines). The best tuning parameter (λ) was suggested as
0.0127231 by precise calculation. (d) A Venn diagram shows the intersection of variables from the random forest and LASSO’s selection.
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Figure 6: Validation of six-gene model of classification and mortality prediction (a) The AUC of the six-gene class model in the group
prediction was 0.958 (95% CI: 0.892–0.872), and the AUC of the 22-gene class model in the group prediction was 0.955 (95% CI: 0.892–
0.897). (b) Validation of the mortality prediction of the six-gene model and age in GSE65682. The AUC for the six-gene model was
0.681 (95% CI: 0.603–0.768), the AUC for age was 0.585 (95% CI: 0.247–0.911), and the AUC for the six-gene-age model was 0.695
(95% CI: 649–0.750). (c) Validation of the mortality prediction of the six-gene model and age in GSE95233. The AUC of the six-gene
model was 0.818 (95% CI: 0.906–0.645), the AUC of age was 0.676 (95% CI: 0.427–0.968), and the AUC of the six-gene-age model was
0.838 (95% CI: 0.594–0.935). (d) Validation of the mortality prediction of the six-gene model and appach II score in GSE54514. The
AUC of the six-gene model was 0.818 (95% CI: 0.906–0.645), the AUC of appach II was 0.792 (95% CI: 0.760–0.710), and the AUC of
the six-gene-appach II model was 0.906 (95% CI: 0.865–0.839).
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Our study verified the conclusions outlined above from
the perspective of bioinformatics. By annotating DEGs with
GO database and GSEA, we found some pathways of inflam-
matory factors, autophagy, macroautophagy, and proteolysis
were upregulated. Conversely, pathways about mitochon-
drial, aerobic respiratory, and NADPH were downregulated.
All of the pathological processes of myocardial depressant
factors, exosomes, and mitochondria were systemic, in
another word, they happened in both in the myocardium
and peripheral blood.

Using the co-expressed DEGs, patients with sepsis were
divided into two groups by k-means clustering analysis.
Class2 accounted for approximately 25% of the total data-
base and had a mortality rate twice that of Class1. Previous
attempts to classify sepsis subsets have been reported
[44–46], but most of them were based on patterns of the
strength of the inflammatory response. In our classification
model, mitochondrial and aerobic metabolism-related func-
tional abnormalities were added on the basis of inflamma-
tory response, so as to better accord with the
characteristics of sepsis cardiomyopathy. Although mito-
chondrial and aerobic metabolic processes were considered,
in the classification and modeling process, infection-related
inflammatory response remained a major factor affecting
sepsis severity and mortality. Our six-gene model contained
SMU1, CLIC3, SP100, ARHGAP25, DECR1, and TNS3
(Table S2, Figure 2(c)). Few of them have been previously
related to septic cardiomyopathy, but some indirect
information has been identified by previous studies. The
chloride intracellular channel 3 (CLIC3) is a voltage-
sensitive channel found across the cellular membrane, and
no research has directly validated its function to septic
cardiomyopathy. Interestingly, the disturbance of serum
chloride level (hypochloremia) and different kinds of
chloride channels have been observed to have adverse
effect on acute and chronic heart failure, by causing
dysregulation of renin secretion and fluid retention [47].
The 2,4-dienoyl-CoA reductase 1(DECR1) gene has been
reported as one of the most significantly upregulated hub
genes in diabetic cardiomyopathy, but further validation
has not been performed [48]. SP100 is a type of nuclear
antigen which encodes a subnuclear organelle and is major
component of the PML- (promyelocytic leukemia-) SP100
nuclear bodies. Despite epidemiological research linking
sepsis and cancer, including acute and chronic leukemia
[49], more studies are needed to verify the function of
SP100 in sepsis and septic cardiomyopathy.

According to the mortality prediction analysis of our
model, the six-gene model performed better than age and
appach II score did, and its prediction ability can be further
improved after integrating age and appach II score.

Our study found that upregulation of inflammation-
related pathways and downregulation of mitochondrial and
aerobic respiration-related functions co-exist in the blood
and myocardium of sepsis patients. Study of key targets of
these pathways can help us further understand the patho-
genesis of septic cardiomyopathy. We identified 1,049 co-
expressed genes, 104 of which were associated with mortal-
ity, and ultimately six genes were used to construct models

for identifying sepsis subgroups and predicting mortality
with satisfied validation. This work has allowed us to build
a genetic dataset that can help us to screen and validate bio-
logical markers more purposefully in the future.

Our study has several limitations. First, many publicly
available sepsis datasets primarily focus on the differential
diagnosis of sepsis versus noninfectious systematic inflam-
matory response syndrome and did not report mortality
outcome. Additionally, it was difficult to find a database that
contained enough results from cardiac ultrasound and other
laboratory tests, which made it challenging to compare our
model with these routine tests in terms of diagnostic effi-
ciency and mortality prediction.

Shock induced by septic cardiomyopathy has poor
response to fluid resuscitation. GSE110487 is a gene
sequencing study based on fluid response grouping. We tried
to use hub genes in our model to predict patients’ responses
to fluid resuscitation, but the result was negative [15]. In fact,
in the original study of GSE110487, patients who responded
to fluid therapy and those who did not could not be well sep-
arated by principal component analysis of peripheral blood
omics data. Therefore, the results predicted by our model
are not indicative of the diagnostic efficiency of sepsis car-
diac dysfunction.

Second, our study was designed to detect cardiac dys-
function in patients with sepsis. We validated our classifica-
tion model using data from GSE131761 and found a higher
proportion of group two patients in nonseptic shock [50].
This may suggest that our model of classification focuses
more on cardiac dysfunction and less on infection. There-
fore, it remains to be seen whether the prediction results
have advantages over traditional inspection methods.

As mentioned above, there is still a great deal of work to
be done on the omics of septic cardiomyopathy. We need a
better prospective study design that includes a clear defini-
tion of septic cardiomyopathy and more laboratory and clin-
ical data on myocardial injury. Similarly, although very
difficult, we would expect to have blood and cardiac tissue
samples from the same patient to complete the design of a
paired trial.

5. Conclusion

We identified 1,049 differently expressed genes regulated the
same way in both myocardium and blood, including 549
genes that were upregulated and 500 genes that were down-
regulated, 105 genes of which were found to be related to
mortality in sepsis patients. By GO annotation and GSEA,
we determined that upregulated genes were related to
inflammatory pathways, and downregulated genes were reg-
ulated to mitochondrial and aerobic metabolism. These find-
ings revealed that the downregulation of mitochondrial and
aerobic metabolism was synchronously changed in both
peripheral blood and myocardium in septic patients.

After applying clustering analysis by using the 104 genes
mentioned above, sepsis patients were divided into two
groups with significantly different mortality. As such, we
proved that those genes in the blood that change in parallel
with the myocardium can work as characteristic genes for
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the subtypes identification of sepsis and influence the mor-
bidity and mortality between the different subtypes. A six-
gene model was obtained by machine learning method
(LASSO and random forest) and logical regression. This
model can be well validated in derivation dataset and exter-
nal dataset in both classification and mortality prediction.
Therefore, we believe that the changes in peripheral blood
of the genes screened in our work could potentially reflect
some of the same changes in myocardial tissue, and have
the potential to be valid biomarkers.
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Supplementary Materials

Supplement Figure S1. Correlations between different mod-
ule memberships generated by weighted correlation network
analysis (WGCNA). The gene significances were calculated
and are presented in a scatter plot. Correlation coefficients
and p-values are shown on the top of the figure. The blue,
brown, grey, and turquoise modules were found to be line-
arly correlated with gene significance. Figure S2. The x-axis
of the bar plot indicates the possible clustering method sug-
gested by k-means clustering analysis, and the y-axis pre-
sents the evaluation scores of the different clustering
methods. The k-means clustering analysis suggests that the
best classification is dichotomous. B. The eigenvalue
decreases rapidly as the component number increases at
the beginning, especially when the first two components
are added. The decrease in the eigenvalue was less obvious
when more than three components were added. A scree plot
shows that two components can well describe the character-
istics of the groups clustered by the clustering analysis. Fig-
ure S3. Nomograph displaying the risk score of each risk
factor when six genes were integrated with the age and
appach II score, including SMU1, SP100, and ARHGAP25,

which contribute great weight to mortality. Calibration
curve in GSE54514, which shows the good fit of our model.
The mean absolute error is acceptable (mean absolute
error =0.033). Table S1. A total of 1,049 DEGs changed in
the same way in both the myocardium and blood datasets,
including 549 genes upregulated and 500 genes downregu-
lated. There were 325 genes in the blue module, 116 genes
in the brown module, 305 genes in the turquoise module,
and 261 genes in the gray module. Table S2. Detailed results
of Gene Ontology (GO) analysis and GeneSet Enrichment
Analysis (GSEA) of the turquoise and blue modules, as sup-
plementary material for Figure 2. This table displays all the
GO analysis pathways, including biological process (BP), cell
component (CC), and molecular function (MF), as well as
the GSEA pathway details. Table S3. Detailed data of a total
of 105 genes out of the 1,049 differentially expressed genes
(DEGs) shown in Table S1 verified to be related to mortality
in the group of sepsis patients. Table S4. Mean decrease
accuracy and mean decrease Gini scores of all 105 genes
received random forest method, as complementary material
for Figure S3. Table S5. Regression coefficients of 39 genes
selected by LASSO. (Supplementary Materials)
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