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Rate of brain aging and APOE ε4 are synergistic risk factors
for Alzheimer’s disease
Christin A Glorioso1,2,* , Andreas R Pfenning3,*, Sam S Lee1,2 , David A Bennett4, Etienne L Sibille5,6, Manolis Kellis7,8,†,
Leonard P Guarente1,2,9,†

Advanced age and the APOE ε4 allele are the two biggest risk
factors for Alzheimer’s disease (AD) and declining cognitive func-
tion.Wedescribe a universal gauge tomeasuremolecular brain age
using transcriptome analysis of four human postmortem cohorts (n
= 673, ages 25–97) free of neurological disease. In a fifth cohort of
older subjects with or without neurological disease (n = 438, ages
67–108), we show that subjects with brains deviating in the older
direction fromwhatwould be expected based on chronological age
show an increase in AD, Parkinson’s disease, and cognitive decline.
Strikingly, a younger molecular age (25 yr than chronological age)
protects against ADeven in thepresence ofAPOE ε4. An established
DNA methylation gauge for age correlates well with the tran-
scriptome gauge for determination of molecular age and assigning
deviations from the expected. Our results suggest that rapid brain
aging and APOE ε4 are synergistic risk factors, and interventions
that slow aging may substantially reduce risk of neurological
disease and decline even in the presence of APOE ε4.
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Introduction

Quality of life in old age is often compromised by dementia, mild
cognitive impairment, and declining mobility. Dementia is common
in the elderly with a prevalence that rises with age from about 5% in
people 71–79 yr old to nearly 40% in people older than 90 yr in the
United States (Plassman et al, 2007). Alzheimer’s disease (AD) is the
most common form of dementia (about 70% of cases), with vascular
dementia, Lewy body dementia, frontotemporal dementia, and
Parkinson’s disease (PD) making up the majority of other cases
(Plassman et al, 2007). Many people (20–30%) meet criteria for more

than one type of dementia (mixed dementia) (Jellinger, 2013). AD is
characterized clinically by progressive memory impairment, declining
judgment, and increasedmood symptoms, leading to eventual loss of
most cognitive function and death. Pathological features of AD in-
clude irreversible neuronal loss, particularly in the hippocampus and
temporal cortex, extracellular β amyloid plaques and neurofibrillary
tangles (Nussbaum & Ellis, 2003). The overwhelming majority of AD
cases are late onset (LOAD) (~93%) and nonfamilial (99%) (Nussbaum
& Ellis, 2003). The two biggest risk factors for LOAD are advanced age
and the presence of ε4 alleles of the APOE gene. How these risk
factors relate to each other is an open question.

Studies have characterized age-related differences in tran-
scription in the human brain (Lu et al, 2004; Erraji-Benchekroun et
al, 2005; Glorioso et al, 2011). These studies show decreases in
expression of neuronal synaptic-related genes, calcium sig-
naling, and DNA damage–related genes and increases in glial
inflammation–related genes with age (Yankner et al, 2008; Glorioso
& Sibille, 2011). These transcriptional changes have been used as a
gauge to assign a molecular age to any brain sample and can
identify brains that deviate from the expected based on chrono-
logical age; that is, brains showing unusually slow or fast aging
compared with the average. A few studies have further interrogated
the intersection of normal brain aging and AD and have generally
supported an overlap between normal age-related transcriptional
differences in the brain and differences between AD and control
subjects (Miller et al, 2008; Cao et al, 2010; Avramopoulos et al, 2011;
Saetre et al, 2011). Two studies showed aging acceleration in AD
subjects versus controls (Cao et al, 2010; Saetre et al, 2011). These
studies are based on small cohorts (n < 50 subjects) (Miller et al,
2008; Cao et al, 2010; Avramopoulos et al, 2011; Saetre et al, 2011) and
do not relate brain aging to known genetic risk factors for AD.

Another gauge that has proved robust to assign molecular age
is the DNA methylation clock. Quantitative assessment of many
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5'—C—phosphate—G—3' (CpG) methylation sites has defined a
subset of 300–500 sites whose level of methylation correlates very
strongly with chronological age (Horvath, 2013), and this epige-
netic age has been associated with AD (Levine et al, 2015). An
important difference between transcriptomic age and methyla-
tion age is that the latter uses the same methylation sites to
assign age to many different tissue types in humans (Horvath,
2013).

Besides advanced age, the biggest risk factor for LOAD is an
allelic variant of the APOE gene. More than 15 genome-wide as-
sociation studies have implicated APOE ε4 in AD, making it by far
the most consistent genetic risk factor (Bertram et al, 2010;
Lambert et al, 2013). APOE encodes apolipoprotein E, a constituent
of the low-density lipoprotein particle involved in clearance of
cholesterol and a component of amyloid plaques (Nussbaum et
al, 2015). There are three human variants of the gene: APOE ε2
(cys112, cys158), APOE ε3 (cys112, arg158), and APOE ε4 (arg112,
arg158) (Nussbaum et al, 2015). APOE ε3 is considered the wild-
type allele and is the most common genotype with an allele
frequency about 76% (Warren J. Strittmatter, 1996). APOE ε4, with
an allele frequency of about 14%, increases the lifetime risk of AD
by twofold to fourfold (Nussbaum et al, 2015; Nussbaum and Ellis,
2003). There also appears to be a dose effect, in that disease-free
survival was shown to be lower in homozygotes compared with
heterozygous. Consistent with these findings, APOE ε4 alleles shift
the age at onset earlier in the presence of one allele and earlier
still in the presence of two alleles (Nussbaum et al, 2015). APOE ε4
has also been shown to be a risk factor for rate of age-related
cognitive decline, even without AD-associated pathology
(Glorioso & Sibille, 2011). APOE ε4 may also be a risk factor for
other dementias, including dementia with Lewy bodies (Tsuang et
al, 2013; Bras et al, 2014) and perhaps PD, although the results of
these studies are mixed (Williams-Gray et al, 2009) with some
showing significant risk and others showing none.

Here, we develop a reliable transcriptome-based gauge of
molecular brain aging and use this tool to determine how rapidly
brains have aged compared with the average in a cohort. This
method correlates well with the DNA methylation-based clock
(Horvath, 2013). We use the inferred aging rate to assess whether
molecular brain aging is a risk factor for AD and a variety of other
late life maladies in a large naturalistic cohort of older subjects.
Moreover, we relate brain aging and APOE ε4 status as risk factors
for AD, focusingmost heavily on LOAD and cognitive aging, for which
we are most powered. Our findings suggest that brain aging is an
important risk factor for AD and acts synergistically with APOE ε4

and may have important therapeutic implications for treating this
and other late onset brain diseases.

Results

Overview

We used five human postmortem brain cohorts to develop and test
a transcriptome-based biological brain age gauge. Characteristics
of these cohorts are described in Table 1. Our strategy is outlined in
Fig 1. We began with a large cohort of 239 human subjects free of
neurological disease ages 25–97 yr, the CommonMind (CM) cohort,
to determine transcripts that increase or decrease with age.
Subject-level characteristics of the CM cohort can be found in Table
S1. Note that all cohorts in this study use brain tissue from the
prefrontal cortex (PFC) because PFC is highly affected by aging
(Glorioso & Sibille, 2011) and a variety of neurodegenerative dis-
eases but shows little to no significant neuronal death with age
(Haug et al, 1984; Morrison & Hof, 1997; Yankner et al, 2008; Glorioso
& Sibille, 2011), unlike many other regions of the brain. Therefore,
expression studies in PFC should be minimally confounded by
changing cell-type numbers. We found that ~7% of all transcripts
differ by age in a monotonic way across the entire cohort. Thus, we
identified 834 transcripts that decrease and 537 transcripts that
increase (Table S2). Importantly, our transcriptionally defined brain
aging signature begins in early adulthood and progresses linearly
thereafter. We then used a computational model (elastic net re-
gression controlling for potential sources of noise such as sex and
RNA quality) to calculate a molecular age for each brain.

The CM cohort showed a high correlation of molecular age and
chronological age at the time of death (Fig 2A). We next used three
other cohorts, PsychEncode (PE) (N = 216), GTEx (N = 87) (The GTEx
Consortium, 2015), and BrainCloud (BC) (N = 127), to validate the
predictive power of the method developed in the CM cohort. We
were able to correlate molecular age and chronological age well in
all cohorts (Fig 2A–H). It is notable that the older subjects in the
CM and PE cohorts appeared to have a reduction in the Pearson
correlation coefficient (R value) relating molecular and chrono-
logical age compared with younger subjects (Fig 2C and E). A large
cohort (N = 430) of subjects (67–108 yr) that comprises subjects
from the Religious Order Study and Rush Memory and Aging
Project (ROS-MAP) was also tested (Bennett et al, 2012a, 2012b)
(Table S3). This cohort is much older than the others, which may
explain the somewhat lower R value for chronological versus

Table 1. Cohort characteristic.

Cohort No.
subjects

No.
male

No.
Caucasians

No. African
American

No.
Hispanic

No.
Asian

Mean
age

Mean
PMI

Mean
RIN

Mean
pH

Mean
Education

CM 239 147 179 39 17 3 63 yr 15 h 7.7 6.7 N/A

BrainCloud 127 85 58 69 4 3 48 yr 35 h 8.1 N/A 10 yr

PE 216 145 211 0 2 2 70 yr 11 h N/A 6.5 N/A

GTEx 87 62 76 11 0 0 58 yr 14 h 7.4 N/A N/A

ROS-MAP 438 163 438 0 0 0 89 yr 7 h 7.2 N/A 17 yr
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molecular age (Fig 2H). Note this correlation is still highly significant
(P = 10 × 10−8). Older subjects may generally show a reduction in
correlation due to a time-dependent divergence in differences in
aging rates among individuals in the cohorts. It could also be due to
a “survivor effect,” that is, the oldest subjects are more successful
agers than their younger counterparts and have relatively younger
brains.

A proxy for the rates of brain aging was obtained as the dif-
ference between molecular age and chronological age for each
brain, termed Δ age (see Fig 1). We, thus, calculated Δ age for each
brain as the difference between each individual data point and the
regression line in all cohorts. Consistent with a survivor effect, the
oldest subjects in CM (age > 60 yr) show a significant inverse re-
lationship between Δ age and chronological age (Fig S1A), which is
not present in subjects younger than 60 yr (Fig S1B). This is con-
sistent with the reported prediction of all-cause mortality by
methylation-based transcriptional age in blood (Marioni et al, 2015).
Interestingly, as might be predicted based on differences in life-
span, men had significantly older Δ ages than women in the CM
cohort (Fig S2).

Comparison of transcription-based and methylation-based
assignments of ages

Methylation data were available for subjects in the BC and ROS-MAP
cohorts, and we used these as a second way to assign molecular
age (Horvath, 2013). As shown in Fig 3A and B, there was a strong
correlation betweenmolecular and chronological age in BC (R = 0.98),
and ROS-MAP (R = 0.67, P < 2.2 × 10−16), as had been previously shown
(Levine et al, 2015). We next wondered whether the transcriptional
and methylation methods would reveal similar deviations from

normal aging by comparing Δ age in these two cohorts as de-
termined by both methods. Indeed, there was also a highly sig-
nificant correlation (R = 0.69, P = 1.2 × 10−11) in BC and in ROS-MAP
(R = 0.43, P < 2.2 × 10−16) between the twomethods (Fig 3C and D). It is
unlikely that the two methods reveal the same molecular events
because methylation data apply to many different tissues showing
highly variable transcriptional changes with aging (and see below).
Indeed, we confirmed that the DNA methylation markers were not
proximal to age-regulated transcripts (data not shown), as has
been observed in other tissues (Horvath, 2013).

Analysis of aging-sensitive transcripts

Transcripts which have levels that correlate with age in the CM
cohort and PE cohort are illustrated in a heat map in Fig 4A and
listed in Table S2. Each column represents one subject and shows
the 537 transcripts that increase with age (top in red) or the 834
transcripts that decrease with age (bottom in blue). It may be
observed that most transcripts show continuous incremental dif-
ferences with the age of the subjects, suggesting that brain aging is
a continual process from early in adulthood. This finding along with
the published data on PFC (Haug et al, 1984; Morrison & Hof, 1997;
Yankner et al, 2008; Glorioso & Sibille, 2011) argues that the tran-
scriptional changes are not simply due to neuronal loss and a
correspondingly higher glial composition. It is also evident that
some brains appear exceptional, either slowed or advanced for
aging compared with the average. These exceptional cases show
the highest absolute values of Δ age in our analysis described
above.

We grouped the aging-sensitive transcripts functionally by In-
genuity software. Interestingly, for transcripts that are lower in

Figure 1. Schematic of our approach.
Age-sensitive transcripts are determined from a large
training cohort of disease-free brains. These are used to
create “molecular ages” and applied to four additional
cohorts, one of which includes subjects with
neurodegenerative diseases. The deviation of
molecular age from chronological age (Δ age) is used to
test associations of diseases and phenotypes with rates
of aging of the brain.
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older people, neurological disease genes were a top disease cat-
egory (Fig 4A). This included genes that relate to PD (P = 2 × 10−3),
Tauopathy (7 × 10−3), Huntington’s (P = 2 × 10−11), ALS (4 × 10−3), basal
ganglia disorders (1 × 10−10), and other neurodegenerative disorders
as well as to psychiatric disorders, including anxiety (P = 1 × 10−4),
depression (2 × 10−4), bipolar disorder (1 × 10−3), and schizophrenia
(2 × 10−7). More specific pathway categories for down-regulated
genes include “glutamate signaling,” “dopamine feedback in cAMP
signaling” (not shown, P = 1 × 10−5), and “rho GTPases” (Fig 4A). The
rho-GTPases are particularly interesting because they are known
regulators of synaptic spine formation and actin cytoskeletal dy-
namics (Morrison & Baxter, 2012; Lefort, 2015). Thus, these changes
are consistent with earlier findings showing deficits in synaptic
function and neuronal signaling.

Interestingly, the other three categories of down-regulated genes
are “mitochondrial dysfunction,” “oxidative phosphorylation” (not

shown, P = 2 × 10−5), and “sirtuin signaling.” One exciting possibility
is that defective sirtuin function contributes to mitochondrial and
oxidative phosphorylation defects, which then impair neuronal
function. However, we cannot discern whether mitochondrial
dysfunction causes defects in neuronal function, neuronal func-
tional defects cause mitochondrial defects, or the two are causally
unlinked.

For up-regulated genes, cell morphology, immune cell trafficking,
cancer, and cell-to-cell signaling were top categories. Also among
up-regulated categories are pathways involved in inflammation
and DNA damage/cancer, consistent with earlier findings (Yankner
et al, 2008; Glorioso & Sibille, 2011) and illuminating the deterio-
rating environment of the aging brain.

Next, we mapped our transcript data onto the various cell
types of the brain, in part to gain additional insight to whether
transcriptional changes might be partially confounded by small
changes in cellular composition. A recent study has identified
consensus brain cell type–specific transcriptional markers based
on the overlap of five murine and human single cell RNA-seq
studies (McKenzie et al, 2018). We first grouped these transcripts
as “neuronal” or “glial” (encompassing astrocytes, oligodendro-
cytes, and microglia) and queried the fraction that decreased (Fig
4B) or increased (Fig 4C) with aging. If there were significant loss of
neurons in the PFC with age or gain of glia in the CM dataset, it might
be expected that all neuronal-specific transcripts would decrease
with age and that all glial-specific transcripts would increase with
age (with some small margin of error for statistical chance). As

Figure 2. Molecular ages were significantly predictive of chronological ages in
all cohorts.
(A–H) P-values corresponding to the R-values depicted are (A) P = 8.3 × 10−49. (B) P =
2.1 × 10−6. (C) P = 3.2 × 10−20. (D) P = 1 × 10−10. (E) P = 1.2 × 10−9. (F) P = 1.3 × 10−18. (G) P =
9.8 × 10−10. (H) P = 1.7 × 10−19. R-values were determined by Pearson correlation. The
age-sensitive transcripts used to predict molecular ages are listed in Table S2.
Note that the PE cohorts were analyzed as two separate cohorts because of
confounding variables from different collections (see the Materials and Methods
section).

Figure 3. Methylation ages and Δages in BC and ROS-MAP
(A, B) Methylation ages are predictive of chronological ages in BrainCloud (A) and
ROS-MAP (B). (C, D) Methylation and molecular delta ages correlate in BrainCloud
(C) and ROS-MAP (D). R values were determined by Pearson correlation.

Brain aging and APOE ε4 synergize risk of Alzheimer Glorioso et al. https://doi.org/10.26508/lsa.201900303 vol 2 | no 3 | e201900303 4 of 12

https://doi.org/10.26508/lsa.201900303


evident in the Venn diagrams, this was not the case as only a small
fraction of the neuronal- or glial-specific transcripts changed with
age, providing further evidence for the surmise that changes in
cellular composition occur minimally in the aging PFC and do not
account for the aging-sensitive transcripts. Furthermore, the
methylation clock, which is likely independent of transcription and
thus not similarly susceptible to cellular composition changes, was
totally consistent with the transcriptional gauge. We, thus, conclude
that changes in cellular composition are unlikely to explain the
aging-regulated transcripts.

Transcriptional Δ age associates with AD, PD, and other
phenotypes

Importantly, ROS-MAP subjects had been followed longitudinally by
medical examination for a variety of diseases and phenotypes,
including AD, dementia, motor, and cognitive function, and their
brains were characterized for disease-related pathology after
death. APOE genotype data were also available for ROS-MAP
subjects. We first investigated the relationship of Δ age in ROS-
MAP as applied to 38 clinical and pathological phenotypes. The
average age of this cohort at the time of death was 89 yr and about
2/3 of subjects had at least one indication of some form of de-
mentia. We covaried for APOE ε4when assessing the relationship of Δ
age to variables and likewise covaried for Δ age when assessing
the relationship of APOE ε4 to variables to isolate their effects.
P-valueswere corrected formultiple testing. We found that a positive Δ
age (older molecular age compared with chronological age)
significantly associates with risk of clinical diagnosis of AD, with AD
subjects showing significantly older molecular aging than non-
disease controls (Fig 5A). Corroborating this finding, subjects with
older Δ age values also performed worse on the clinical Alzheimer’s
dementiamini mental examination (Fig 5B). Moreover, the ROS-MAP
brains were also quantified for levels of a pathological marker of
AD, tangles, which was significantly and positively associated with a
positive value of Δ age (Fig 5C). However, APOE ε4 had much more

significant relationship than Δ age to the pathological measures of
AD, amyloid, and tangles (Table 2), which may represent a mech-
anistic difference between the risk factors.

A positive Δ age was also associated with Parkinsonian score
assessed across all 430 ROS-MAP subjects, which is a composite
score of clinical signs of PD comprising rigidity (muscle stiffness),
tremor (involuntary oscillation of limbs), gait (shortened, shuffling
walking), and bradykinesia (Fig 5D) and with rigidity and gait in-
dependently (Fig 5E and Table 2). Likewise, positive Δ age was also
significantly associated with the presence of PD pathology (P =
0.006, Fig 5F). We did not see an association with PD diagnosis, but
this may be because we were less powered by number of
PD-diagnosed subjects in the cohort (n = 31).

The strongest association of positive Δ age was with global
cognition slope (P = 5 × 10−5, Fig 5G), which is the composite rate of
cognitive decline over time for five different cognitive domains
(episodic memory, visual-spatial ability, perceptual speed, se-
mantic memory, and working memory). These data include all 430
ROS-MAP subjects, although strong associations were found in-
dividually in AD and disease-free subjects (Table S4). Each of the
above cognitive domains was also individually significant for as-
sociation with positive Δ age (Fig 5H and Table 2).

Because our goal was to probe any association between aging
and risk alleles in AD, we tested for an association between APOE ε4
and Δ age by stratifying the entire ROS-MAP population into groups
with 0, 1, or 2 APOE ε4 alleles. There was a weak association found
between Δ age and one copy of APOE ε4 (Fig 5I). As expected, the
APOE ε4 allele showed a highly positive association with AD- and
cognition-related measures (Table 2).

All told, our findings suggest that positive Δ age has a large
impact on risk for a variety of common late-life diseases and
impairments, and to a similar extent as APOE ε4. Whereas most
brain-related diagnoses and phenotypes associated are signifi-
cantly with Δ age, peripheral phenotypes such as cardiovascular
phenotypes and pathology, thyroid disease, and cancer did not
(Table 2). This dichotomymay reflect the fact that our methods used

Figure 4. Characterization of age-sensitive
transcripts and molecular ages.
(A, B) The 537 increasing and 834 decreasing age-
sensitive transcripts are visualized in the heat map (A).
Top Ingenuity functional categories are shown for
increasing or decreasing transcripts (A). (B, C) Venn
diagrams show the intersection of age down-regulated
transcripts and neuronal-specific transcripts (B) and
age up-regulated transcripts and glial-specific
transcripts (C).
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to calculate Δ age are specific to brain, or might indicate that
different tissues age at different rates in the same person (see the
Discussion section).

Comparing transcriptional and methylation Δ ages in relation to
AD and related variables

We used the subset of ROS-MAP subjects that had bothmethylation
and transcriptional data available (n = 336) to directly compare the
impact of transcriptional Δ ages to methylation Δ ages (Table S5). As
with the 430 subjects shown above, we found that older tran-
scriptional Δ ages continued to be significantly associated with
Alzheimer’s diagnosis (1.3 × 10−5), faster global cognitive decline (P =
1.8 × 10−5), episodic memory decline (P = 1.2 × 10−4), visual-spatial
ability decline (P = 1.3 × 10−4), perceptual speed decline (P = 5 × 10−5),
working memory decline (P = 0.02), greater PD signs (P = 0.01), more
severe dementia grade (P = 7.6 × 10−0.05), tangles (P = 1.0 × 10−5), and
Lewy body pathology (P = 0.005) (Table S5). With the exception of
dementia grade (P = 0.006), these variables were not significantly
associated with methylation Δ ages (Table S5). However, depression
score (P = 0.03), amyloid (P = 0.05), Parkinsonian gait (P = 0.03),
bradykinesia (0.05), and PD pathology (0.001) were associated with
methylation Δ ages. These findings suggest that both methods are

useful predictors, and that the transcriptional gauge may have a
broader reach in associating with the risk of brain dysfunctional
endpoints in aging.

Transcriptional Δ age and APOE ε4 are synergistic risk factors for
AD

To further explore the relationship of Δ age and APOE ε4 to each
other and AD, we calculated the odds of having a clinical diagnosis
of AD with respect to each. We binned Δ age into younger (−1 SD
from the mean or ~ −5 molecular years), neutral (−5 y to +5 y), or
older (+1 SD from the mean or +5 molecular years), and combined
subjects that were homozygous for APOE ε4 with those that were
heterozygous because there were only four homozygous subjects.
We found that Δ age and APOE ε4 are synergistic risk factors for AD
(Fig 6A). For example, subjects who are +5 y and bear one or two
APOE ε4 alleles have more than 5× the average odds of having AD.
However, subjects who are −5 molecular years and with one or two
APOE ε4 alleles have no elevated chance of AD compared with
subjects of average molecular age with no APOE ε4 alleles. These
findings suggest that younger Δ age can protect against APOE ε4
alleles. In summary, our findings suggest that APOE ε4 and older Δ
age contribute synergistically to risk of AD and a variety of

Figure 5. Relationship of Δ age to clinical variables.
(A–I) Representative plots are shown using raw data
(A–I). P values were determined by linear regression
with relevant covariates. (A) Postmortem final clinical
diagnosis of AD, (B) mini mental examination score, (C)
tangles density, (D) Global PD score, a composite score
for 4 signs: tremor, rigidity, bradykinesia, and gait, (E)
rigidity score, (F) PD pathology is present if Lewy bodies
are present and there was moderate-to-severe
neuronal loss in the substantia nigra, (G) Global
cognition slope, a composite slope of the longitudinal
changes over time in five domains of cognition: working
memory, visual-spatial ability, perceptual speed,
episodic memory, and semantic memory, (H) change in
episodic memory over time, and (I) association of Δ age
& APOE ε4.
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age-related neurological diseases and dysfunction (Fig 6B), and
APOE ε4 is unlikely to increase risk by simply increasing the rate of
brain aging.

Discussion

In this study, we have carried out a detailed analysis of brain aging
to ascertain how it interacts with other risk factors for neurode-
generative diseases. We used transcriptomic analysis to assign a
molecular age to PFC samples from a series of cohorts from brain
banks and calculated the deviation of molecular age from chro-
nological age (Δ age) as a proxy for the rate of aging. Thesemethods
were developed by entraining the algorithm on one cohort of
disease-free brains and applying them to four additional cohorts.
Our method showed a highly significant correlation between
molecular and chronological age for all cohorts. We then examined
association of aging rates (Δ age) determined in nondisease brains
with AD brains in the ROS-MAP cohort, which is highly enriched in
AD, and made several important findings. First, a positive Δ age
(rapid aging compared with average across all brains) associates
with risk for AD with a high significance. Second, APOE ε4, the
strongest genetic risk factor for sporadic AD, also strongly asso-
ciates with AD risk in the same cohort, as expected. Third, a rapid
aging rate and APOE ε4 are synergistic risk factors. Brains with the
slowest aging are strongly protected against having the APOE ε4
allele and brains with the fastest aging have a greatly elevated AD
risk when combined with APOE ε4. Our findings thus suggest that AD
can be induced by the simultaneous occurrence of two risk factors
and that interventions against either one might protect against the
disease. It is intriguing that imaging studies report an effect of APOE
ε4 on brain structure as early as infancy (Dean et al, 2014), sug-
gesting that APOE ε4 alleles are pathological and not simply drivers
of premature aging. Our data show a weak association between
APOE ε4 and brain aging. The DNA methylation “clock” (Horvath,
2013) correlated well with the transcriptome gauge but was not as
broad in predicting risk of brain dysfunctional endpoints in aging.

Our analysis also provides several molecular insights into brain
aging in the neurologic disease-free cohorts. First, aging is asso-
ciated with changes in transcripts affecting rho-GTPases, which are
associated with synapse formation and actin cytoskeleton dy-
namics in axons (Lefort, 2015). Other top categories of transcripts
reduced in the aging brain encode GTPase inhibitors and other
synaptic function-related proteins. Deficits in all of these tran-
scripts are exacerbated in the much older ROS-MAP cohort. Thus,
our findings are consistent with earlier findings of synaptic deficits

Figure 6. APOE ε4 and Δage are synergistic risk factors for AD
(A) Odds ratio of Δ age and APOE ε4 for having AD diagnosis. (B) Model showing
synergistic effects of Δ age and APOE ε4 on AD.

Table 2. False discovery corrected P-values obtained from regression of
either Δ age (main method) or APOE ε4 with indicated disease or aging
variables of interest.

Variable
Δ Age APOE ε4

P-value P-value

ΔGlobal cognition/yr 5.1 × 10−5a 1.9 × 10−5a

ΔEpisodic memory/yr 2.9 × 10−4a 2.5 × 10−6a

ΔVisual-spatial ability/yr 0.003a 0.02a

ΔPerceptual speed/yr 8.7 × 10−5a 0.02a

ΔSemantic memory/yr 5.1 × 10−5a 1.6 × 10−5a

ΔWorking memory/yr 0.03a 0.006a

Global cognition level 3.2 × 10−5a 2.4 × 10−6a

Episodic memory level 9 × 10−5a 2.2 × 10−6a

Dementia grade 0.006a 7.6 × 10−5a

AD clinical diagnosis 3.2 × 10−5a 7.9 × 10−4a

Mini mental examination score 0.0017a 1.7 × 10−4a

Depression score 0.69 0.85

General pathology 0.035a 5.2 × 10−10a

Plaque level 0.06 8.1 × 10−8a

Tangles level 0.04a 5.4 × 10−7a

Amyloid level 0.15 5.4 × 10−7a

Amyloid angiopathy 0.07a 9.4 × 10−7a

PD diagnosis 0.88 0.28

PD sign score 0.038a 0.02a

Gait 0.031a 0.02a

Bradykinesia 0.41 0.02a

Rigidity 0.0059a 0.035a

Tremor 0.86 0.17

PD Pathology 0.006a 0.88

Lewy body pathology 0.02a 0.69

Stroke diagnosis 0.56 0.40

“Heart problem” history 0.17 0.90

Hypertension at baseline 0.003b 0.67

Arteriolar sclerosis 0.75 0.84

Cerebral infarction gross 0.47 0.40

Cerebral infarction micro 0.33 0.58

Cancer history 0.91 0.95

Thyroid disease history 0.08 0.60

Smoking (lifetime pack-years) 0.75 0.46

APO ε4 alleles 0.035a 0

Δ Age 0 0.035a

aIndicate significantly increased risk with older Δ age or greater APOE ε4
alleles.
bIndicates the inverse relationship.
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in the aging brain (Lefort, 2015) and suggest that the transcriptional
deficits we observe may trigger the defect in synapses. This is also
consistent with a study showing decreases in synaptic genes in AD
subjects versus control subjects that occur at the onset of neu-
ropathology and are exacerbated in subjects that are APOE ε4
positive (Bossers et al, 2010). Second, there is a decrease in
transcripts associated with neuronal signaling and mitochondrial/
sirtuin function. In particular, we find a reduction in glutamate
receptor signaling, which may partly explain the strong association
observed between the rate of normal brain aging and cognitive
decline. The mitochondrial/sirtuin category included many genes
involved in electron transport and ATP synthesis. This novel finding
suggests an interplay between the sirtuin/mitochondrial pathway,
neuronal signaling, and synaptic function in aging. It remains to be
seen if one of these categories is the causal event in driving the
transcriptional down-regulation and presumed deterioration in
neurons, but it is possible that intervention strategies, such as
sirtuin activation, may be protective against neurodegenerative
diseases. Third, there is an up-regulation in inflammatory pathways,
which is indicative of glial activation and consistent with earlier
studies. Fourth, there is a coordination in the age differences of all
of the aging-sensitive transcripts, suggesting that segmental aging
does not occur, at least in the PFC. Fifth, although the rate of brain
aging strongly correlates with AD and other brain maladies, there is
no association with cardiac disease or cancer. This interesting
finding raises the possibility that the aging of different tissues is not
coordinated with brain aging in an individual. Indeed, our data do
not directly address whether rates of aging are coordinated across
different regions of the brain (although see discussion of PD below).
Sixth, there is no association between brain aging and a history of
smoking, which might have been expected (Mayeux & Stern, 2012).

We do not believe that the changes we observe in PFC aging are
simply due to neuronal loss or glial gain. Indeed, the transcriptional
changes we used to define brain aging begin early in adulthood,
before any significant neuronal loss would occur. In addition, there
is little change in the CM or PE cohorts in transcripts defined as
neuronal-specific or glial-specific (McKenzie et al, 2018), suggesting
there is not a significant loss of neurons in PFC, consistent with
earlier data (Haug et al, 1984; Morrison & Hof, 1997; Yankner et al,
2008; Glorioso & Sibille, 2011). Finally, assigning molecular by the
transcriptome gauge correlated well with assignment by the DNA
methylation clock, the latter of which is predictive of age for many
tissue types (Horvath, 2013). We thus conclude that aging-promoted
expression changes within the brain are not explained by neuronal
loss or glial gain.

In the ROS-MAP cohort, we also observed a significant associ-
ation between the rate of brain aging and other neurological
disorders. This observed association with Parkinson’s symptoms is
perhaps more surprising than the AD association because the
dopaminergic neurons affected in PD are in a distinct brain region
and have a distinct function compared with cortical neurons used
to entrain the aging algorithm.

We also found in both control and disease ROS-MAP subjects, a
very strong association between rapid brain aging and cognitive
decline. This association indicates that brain aging predisposes to
loss of cognitive functions and serves as a strong validation that our
assignment of molecular ages is robust.

The question arises whether fast brain aging causes AD or AD
somehow triggers the rapid aging. The fact that Ingenuity Analysis
associated many of the aging-sensitive transcripts with neurode-
generative diseases underscores the complexity of determining
cause and effect. Several factors lead us to favor a model that rapid
brain aging is a cause of AD and not a result. First, brain aging was
defined in the CM and PE cohorts, comprising subjects with no
disease diagnoses and in which brains were judged to be free of
pathology. Second, aging-sensitive transcripts used to gauge mo-
lecular brain age changed from early ages and in a continuous way,
well before any disease processes could have set in. Third, the
association of older molecular brain age with a variety of diseases
suggests a causal link between brain aging and AD rather than
accelerated aging being a consequence of the pathological brain.
For example, if the aging were an effect, then we would have to
conclude that both AD pathology centered in the cortex and PD
pathology centered in the dopaminergic neurons could both
somehow speed up the aging of the PFC. Furthermore, although
APOE ε4 strongly associated with AD pathology, there was a much
weaker link between AD pathology and Δ age, suggesting that APOE
ε4 and Δ age may at least in part have separate mechanisms.
Fourth, Δ age strongly associated with the rate of cognitive decline
in subjects without diseases.

Our findings suggest that slowing brain aging might delay or
favorably slow progression of AD, PD, cognitive decline, and po-
tentially other neurological conditions of old age. Slowing mo-
lecular aging may be most effective as a preventative strategy
before irreversible neuronal loss has occurred. In this regard, the
detailed analysis of molecular brain aging may lead to specific
genes and pathways that regulate the rate of aging and offer
therapeutic targets for intervention to impact a broad spectrum of
neurological diseases and deficits.

Materials and Methods

Cohorts

We used five different cohorts of human PFC samples. These five
cohorts have been described in previous publications, CM (Fromer
et al, 2016), PE (Akbarian et al, 2015), BrainCloud (Colantuoni et al,
2011), GTEx (The GTEx Consortium, 2015), and ROS-MAP (Bennett
et al, 2012) and below. Summary statistics for cohort characteristics
can be found in Table 1.

CM
The CM cohort (Fromer et al, 2016) contains control subjects across
the dorsolateral PFC (DLPFC; Brodmann areas 9 and 46) from brain
banks at the Icahn School of Medicine at Mount Sinai, the University
of Pennsylvania, and the University of Pittsburgh. These subjects are
free of neurological disease from medical history, direct clinical
assessments, interviews of family members or care providers, and
pathological report. Brains were examined grossly for infarcts and
gross pathology. Frontal lobes, hippocampus, entorhinal cortex,
and cerebellum were stained with H&E. Frontal lobes, hippocampus,
and entorhinal cortex were additionally stained with Bielschowsky
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silver stain, and frontal lobes and hippocampus/entorhinal cortex
were stained with β-A4 and α-synuclein immunostain, respectively.
Cases were excluded if they had history or report of psychiatric or
neurological disease or neuropathology related to AD and/or PD,
acute neurological insults (anoxia, strokes, and/or traumatic brain
injury) immediately before death, or were on ventilators near the
time of death.

More details can be found in Fromer et al (2016), but in brief, total
RNA was isolated from ~50 mg homogenized tissue in Trizol using
the RNeasy kit and was processed in batches of 12. Samples with
RNA integrity number (RIN) < 5.5 were excluded from the study.
Samples were prepared for RNA sequencing using the Ribo-Zero
Magnetic Gold Kit (Cat # MRZG12324; Illumina/Epicenter) to enrich
for polyadenylated coding RNA and noncoding RNA and the TruSeq
RNA Sample Preparation Kit v2 (RS-122-2001-48 reactions) in
batches of 24 samples. A pool of 10 barcoded libraries were layered
on a random selection of two of the eight lanes of the Illumina flow
cell bridge amplified to ~250 million raw clusters. 100-bp paired-
end reads were obtained on a HiSeq 2500.

PE
We used control subjects of both sexes from the BrainGVEX cohort
of the PE database. These were analyzed separately because of
heterogeneity in RNA quality and age variables between the co-
horts that could potentially confound analyses. These subjects
were free of neurological diseases by pathological report and
medical history. BrainGVEX uses postmortem human brain material
from two institutes across multiple brain collections. Fresh-frozen
brain samples are from four collections of the Stanley Medical
Research Institute (SMRI) and Banner Sun Health Research In-
stitute (BSHRI). The SMRI collection contains human postmortem
brain samples from four brain collections: the Neuropathology
Consortium, Array Collection, New Collection, and Depression
Collection. These specimens were collected, with informed consent
from next-of-kin, by participating medical examiners. Diagnoses of
unaffected controls were based on structured interviews by a
senior psychiatrist with family member(s) to rule out Axis I di-
agnoses. Exclusion criteria included the following: 1. significant
structural brain pathology on postmortem examination by a
qualified neuropathologist or by premortem imaging; 2. history of
significant focal neurological signs premortem; 3. history of a CNS
disease that could be expected to alter gene expression in a
persistent way; 4. documented IQ < 70; 5. poor RNA quality; and 6.
substance abuse within 1 yr of death or significant alcohol-related
changes in the liver.

PE BrainGVEX also contains human postmortem brain samples
from the BSHRI Brain Donation Program (Beach et al, 2008). Eli-
gibility criteria for the program includes that subjects must consent
to annual clinical assessments at SHRI. In addition, at least 2 yr of
the applicant’s private medical records must be received and
reviewed by Brain Donation Program staff before acceptance. All
enrolled subjects or legal representatives sign an Institutional
Review Board–approved informed consent form allowing both
clinical assessments during life and several options for brain and/
or bodily organ donation after death. Between 1987 and 1995, brain
donors did not receive formal neuropsychological testing. Their
mental status was determined by requisitioning medical records

from their primary care physicians, neurologists, psychologists, and
psychiatrists, and through telephone interviews with family
members and caregivers, both at the time of enrollment and in the
immediate postmortem period. In 1996, a clinical psychologist was
hired and from then onwards, a standardized neuropsychological
screening assessment has been administered to most of the
subjects enrolled in the Brain Donation Program. Gross neuro-
pathologic examinations on brain external surfaces, coronal ce-
rebral slices, and parasagittal cerebellar slices were performed by
the neuropathologist.

Total RNA was isolated by organic extraction (SMRI) or miRNeasy
Mini Kit (BSHRI). To pass QC to library generation, RNA must have
concentration of ≥100 ng/uL assayed by Qubit 2.0 RNA BR Assay or
Xpose, and RIN score ≥ 5.5 assayed by Agilent Bioanalyzer RNA 6000
Nano assay kit. All total RNA from both SMRI and BSHRI collections
were processed into rRNA-depleted stranded libraries for se-
quencing on the Illumina HiSeq2000 using the TruSeq Stranded
Total RNA Sample Prep Kit with Ribo Zero Gold HMR (#RS-122-2301;
Illumina). Libraries are sequenced on Illumina’s HiSeq2000 on a
high output flow cell for 100-bp PE sequencing. Libraries are three-
plexed per lane to reach 40 M paired-end reads per library.

Fastq files go through adapter removal using cutadapt, and then
the resulting adapter-trimmed FASTQ files are checked for quality
using FastQC. A subset of 10,000 reads is used to estimate insert
mean size and SD for use with Tophat. Tophat is used to align
trimmed reads to the GENCODE19 reference (modified to include
artificial ERCC RNA ExFold spike-in sequences). Expression level are
then calculated using HTSeq and Cufflinks with custom scripts used
to summarize the proportion of reads assigned to each RNA type
(i.e., protein_coding, snoRNA, and rRNA). Parameters that account
for unstranded read orientation for polyA and stranded read ori-
entation for Ribo-Zero libraries were used for Tophat and Cufflinks.
FASTQ files are trimmed for adapter sequence and base quality
using cutadapt, then subject to FastQC quality checks. Alignment is
carried out with STAR in two-pass mode to the GENCODE19 refer-
ence genome. The resulting alignments are then sorted andmerged
(if there were multiple pairs for a given sample) using NovoSort.

BrainCloud
The BrainCloud cohort comprises brains that are free of neuro-
logical disease from medical history and pathological report.
Neuropathological examination was performed in all cases by a
board-certified neuropathologist. Brain sections through several
cortical regions and the cerebellar vermis were examined micro-
scopically, including the use of Bielschowsky’s silver stain. Cases
with cerebrovascular disease (infarcts or hemorrhages), subdural
hematoma, neuritic pathology, or other significant pathological
features were excluded from further study. Cases with acute
subarachnoid hemorrhages that were directly related to the im-
mediate cause of death were not excluded.

More details can be found here (Lipska et al, 2006; Colantuoni et
al, 2011), but in brief, RNA was extracted from fresh frozen PFC and
run on Illumina Human 49K Oligo array (HEEBO-7 set). To compare
with the other datasets, we summarized the expression values at
the gene level. BioMart (ENSEMBL version 73) was used to convert
the given National Center for Biotechnology Information gene IDs to
the ENSEMBL gene id. For every ENSEMBL gene id, we collapsed into
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the gene level by taking the mean across all oligos that mapped to
the gene. Data are available at http://BrainCloud.jhmi.edu/.

GTEx
The GTEx cohort comprises brains that are free of neurological
disease from medical history and pathological report. More details
can be found here (The GTEx Consortium, 2015), but in brief, RNAwas
extracted from fresh frozen PFC and run using RNAseq. Data were
summarized into reads per kilobase of transcript, per Million
mapped reads (RPKM) values for GENCODE gene model. Data are
available at the database of genotypes and phenotypes (dbGaP)
access id phs000424.v6.p1. The GENCODE RPKM values were
converted to ENSEMBL using BioMart (ENSEMBL version 73).

ROS-MAP
The ROS-MAP cohorts are community based cohort studies of
aging in which all participants are organ donors (Bennett et al,
2012). We used brains with transcriptomic data comprising
subjects with and without a variety of clinical diagnoses and
phenotypes. Cohort characteristics can be found in Tables 1 and S1.
RNA was extracted from fresh frozen PFC and run using RNAseq.
RNA integrity was 5.0–9.9 and postmortem intervals were 0–41 h.
The dataset had already been assembled into RPKM values based
on ENSEMBL gene ID. Data are available at https://www.synapse.org/
#!Synapse:syn3219045.

Experimental design and statistical analysis

Data normalization
Further normalization and quality control procedures were applied
to each of the datasets. First, outlier values for each gene were
removed from each dataset (SD > 4). In each cohort, there were
several samples for which a large number of genes were outliers.
After confirming that those samples did not correspond to the
oldest and youngest subjects, they were removed. Overall, these
samples had lower than average RIN scores. After removing those
samples, the remaining outlier values were imputed with a
K-nearest neighbor algorithm (Hastie et al, 2016). To put the
datasets on a comparable scale, we scaled the dataset by mean
(0-normalized) and SD (normalized so the SD for each gene is 1).

Calculation of molecular age
A combination of observed and unobserved factors can have large
effects on broad patterns of gene expression and are often con-
trolled for in gene expression studies (Stegle et al, 2012). In our
study, we wanted to preserve any broad signature associated with
age or molecular age, while still removing broad signatures as-
sociated with noise. To achieve this goal, we first cleaned the data
noise variables, including RNA quality (RIN), sex, postmortem in-
terval, reported race, and race calculated using principal compo-
nents on genotypes (Purcell et al, 2007). They also included several
variables specific to individual datasets: sample source (Brain-
Cloud), cohort (ROS-MAP), study center (GTEx), and RNA preparation
method (GTEx).

To estimate molecular age, we built a model linking gene ex-
pression to age using the cohort with the broadest distribution of
ages and the most control subjects, CM. We used elastic net

regression, which has emerged as the standard for predicting age
based on DNA methylation data (Horvath, 2013). The model is
regularized so that redundant features do contribute dispropor-
tionately, but flexible enough to be robust if several of the genes
differ in their robustness across cohorts.

There are two parameters in the elastic net regression, α and λ.
We chose parameters based on how well a model trained with the
CM cohort could predict age in the PE cohort. The genes used for the
model were those that were strongly significantly (Benjamini–
Hochberg corrected P < 0.001, linear model) associated with age in
the cohort. This lead to a total of 1,263 genes that were included in
building the model. In each direction, the highest correlation be-
tween predicted and actual age occurred at α = 0.01 (CM to PE R =
0.66). At α = 0.01, the λ that maximized this correlation between the
two cohorts was 99. In total, 834 genes contributed to the model.

The estimated ages could not be directly used across cohorts
because the dataset was mean-normalized and different cohorts
have very different age ranges. To overcome this bias, we calculate
a regression line between predicted and actual age and then es-
timated molecular age δ as the age difference between that re-
gression line and predicted age.

Calculation of methylation ages
The BrainCloud cohort includes 78 subjects who are aged 0–84 and
have both transcriptome data as well as Illumina 27k methylation
data from PFC samples. The ROS-MAP cohorts include 336 subjects
ages 67–108 with both transcriptomic data as well as Illumina 450k
methylation data from PFC samples. Horvath’s methylation age is
based on 353 probes common to both Illumina 27k and 450k
methylation arrays from a range of tissues and cell types. Meth-
ylation ages were calculated using the method and R function
described by Horvath (Horvath, 2013). Methylation Δ ages were
defined as the calculated methylation age minus the chronological
age.

Calculation of cell type–specific transcript levels
Cell type–specific genes were obtained from a meta-analysis of
three studies of sorted cell types in mice and two studies of sorted
cell types in humans (McKenzie et al, 2018). Cell type–specific genes
chosen were top 100 genes that showed highest enrichment for
each cell type in all five studies, where enrichment is defined as
expression of a gene in one cell type versus the expression of the
same gene in all the other cell types. For the Venn diagram in Fig 4C,
astrocytes, oligodendrocyte, and microglia were combined into the
glial category.

Calculation of correlation with clinical variables in ROS-MAP
For each continuous variable in ROS-MAP, Δ ages were run in a
linear regression model subtracting APOE ε4, age, sex, race, and
population principle components, study number, RNA integrity, and
batch. Logistic regression was used in the case of binary variables
such as AD diagnosis. To determine the relationship of APOE ε4 to
each variable, the same procedure was used except instead of
subtracting APOE ε4, we subtracted Δ age. P-values in all cases were
corrected for multiple testing using the Benjamini–Hochberg
method (Benjamini & Hochberg, 1995).
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