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Abstract: Fatty acid esters of hydroxy fatty acids (FAHFAs) are newly discovered long-chain fatty
acids. However, the major endogenous FAHFAs in healthy human circulation, their correlation
with cardiovascular (CV) biomarkers, and their anti-inflammatory effects have not been investigated
and remain unclear. In the present study, a total of 57 healthy subjects were recruited. Liquid
chromatography–mass spectrometry (LC-MS) was developed for the simultaneous determination
of seven FAHFAs, four long-chain fatty acids, and four non-traditional circulating CV-related
biomarkers. We found two major types of FAHFAs in healthy human circulation, palmitoleic acid
ester of 9-hydroxystearic acid (9-POHSA), and oleic acid ester of 9-hydroxystearic acid (9-OAHSA).
Both 9-POHSA and 9-OAHSA had a strong positive correlation with each other and were negatively
correlated with fasting blood glucose, S-adenosyl-l-homocysteine (SAH), and trimethylamine N-oxide
(TMAO), but not with l-homocysteine. 9-POHSA was also positively correlated with l-carnitine.
Moreover, we confirmed that both 9-POHSA and 9-OAHSA exhibited an anti-inflammatory effect
by suppressing LPS stimulated cytokines, including IL-1β and IL-6 in RAW 264.7 cells. In addition,
palmitoleic acid also had a positive correlation with 9-POHSA and 9-OAHSA. As far as we know,
this is the first report showing the major endogenous FAHFAs in healthy subjects and their CV
protection potential which might be correlated with SAH and TMAO reduction, l-Carnitine elevation,
and their anti-inflammatory effects.

Keywords: FAHFAs; 9-POHSA; 9-OAHSA; cardiovascular disease; anti-inflammatory; SAH; TMAO;
l-carnitine

1. Introduction

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous
bioactive lipids that have been found to be enriched in adipose tissue and circulation [1]. In chemical
synthesis, the esterification of FAHFAs could be derived from several fatty acids (FA), including
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palmitic acid (C16:0, PA), palmitoleic acid (C16:1n-7, POA), stearic acid (C18:0, SA), or oleic acid
(C18:1n-9, OA) with their corresponding hydroxylated fatty acid (HFA) to form a palmitic acid ester of
5-hydroxystearic acid (5-PAHSA), palmitic acid ester of 9-hydroxystearic acid (9-PAHSA), palmitic acid
ester of 12-hydroxystearic acid (12-PAHSA), palmitic acid ester of 9-hydroxypalmitic acid (9-PAHPA),
stearic acid ester of 9-hydroxystearic acid (9-SAHSA), palmitoleic acid ester of 9-hydroxystearic acid
(9-POHSA), and oleic acid ester of 9-hydroxystearicacid (9-OAHSA), etc. [2], and the different bonding
position of single carbon branch defines different structural regioisomers (e.g., 5-PAHSA, 9-PAHSA or
12-PAHSA). FAHFA-specific hydrolases, androgen-induced gene 1 protein (AIG1), androgen-dependent
TFPI-regulating protein (ADTRP), and carboxyl ester lipase (CEL) have been identified in vivo [3,4];
however, the endogenous biosynthesis pathway of FAHFAs has not been well investigated [1,2].
The synthesis occurs de novo in tissues catalyzed by a fatty acyltransferase to transfer a fatty acid to an
HFA [1]. Kuda et al. [5] reported that the levels of DHAHLA, LAHDHA, DHAHDHA, and some other
FAHFAs derived from omega-3 fatty acids supplementation, i.e., linoleic acid (LA) and docosahexaenoic
acid (DHA) increased after omega-3 fatty acids administration in diabetic patients and obese mice.
To date, including all the regioisomers, hundreds of known FAHFAs have been identified [6], but only
a few of these have been investigated for their biological activity [1,5,7–10]. Therefore, there is a need
to explore the importance of the biological activities of various FAHFAs in the human body.

Endogenous FAHFAs have also exhibited type 2 diabetes treatment potential and anti-inflammatory
effects in several previous studies [1,5,8]. PAHSAs, which are among the most studied, have been
reported to reduce the blood glucose levels and improve insulin sensitivity in an animal model [1].
In addition, 9-PAHSA also inhibited LPS-induced pro-inflammatory cytokine production in a
macrophage-like cell line (RAW 264.7 cells) [5]. Moreover, administration of 9-PAHSA lowered
the levels of inflammatory macrophages in the adipose tissue of mice on a high-fat diet [1], and reduced
clinical and pathological disease severity in a mouse model of colitis [7].

FAHFAs are newly discovered branched fatty acids; however, the major endogenous FAHFAs
in healthy human circulation and their correlation with cardiovascular (CV) biomarkers have not
been investigated. CVDs present the highest risk of mortality globally [11,12]. Traditional risk factors,
including diabetes mellitus (DM), obesity, hypertension, arteriosclerosis, higher triglyceride (TG),
total cholesterol (TCH), low-density lipoprotein cholesterol (LDL-C), and reduction in high-density
lipoprotein cholesterol (HDL-C), may lead to the development of CVD [13–15]. The fundamental role
of inflammation has been proved in basic and clinical investigations in CVD [16,17]. Inflammatory
cytokines and vascular imaging support the systemic and diffuse nature of inflammation associated
with CVD [18,19]. Several studies have also shown that low-grade systemic inflammation leads to an
increased risk of CVD [19–21]. The common inflammatory cytokines include interleukin-1β (IL-1β)
and interleukin-6 (IL-6) which indicate greater susceptibility to the development of CVD [22–24].
Therefore, to investigate the CVDs protection effect of FAHFAs, we explored the correlation of major
endogenous FAHFAS with several cardiovascular biomarkers and their anti-inflammatory effects on
RAW 264.7 macrophage cells.

In the present study, liquid chromatography–mass spectrometry (LC-MS) was developed for the
determination of seven representative types of FAHFAs (9-POHSA, 9-OAHSA, 5-PAHSA, 9-PAHSA,
12-PAHSA, 9-PAHPA, and 9-SAHSA), four long-chain fatty acids (PA, SA, POA, and OA), which
are endogenous precursors of FAHFAs, and four non-traditional circulating CV-related biomarkers
[l-homocysteine (l-Hcy), S-adenosyl-l-homocysteine (SAH), l-carnitine (l-Car), and trimethylamine
N-oxide (TMAO)] in plasma of a total 57 healthy subjects. The main purpose of this study was
to investigate the major FAHFA in healthy subjects, their association with CV-related biomarkers,
and further explore their anti-inflammatory effects in RAW 264.7 murine macrophage cell line.
Our results showed that the major types of FAHFAs in healthy human circulation were 9-POHSA
and 9-OAHSA. Both 9-POHSA and 9-OAHSA had a significant correlation with CV protection and
possessed anti-inflammatory effects. In addition, increasing the level of endogenous POA might be
correlated with increase the levels of both FAHFAs.



Biomolecules 2020, 10, 1689 3 of 17

2. Materials and Methods

2.1. Participants

In the beginning, the prospective enrollment number was 80 healthy participants. After
baseline characteristics and health criteria selection, a total of 57 healthy subjects were enrolled
from the Department of Dermatology, Buddhist Tzu-Chi General Hospital from May 2016 to April
2018. The baseline characteristics, including age, height, body weight, and body mass index (BMI),
were measured or calculated. To ensure a healthy status, the subjects were interviewed to know their
medical history. We excluded subjects who were smokers, alcoholics, pregnant, or drug-addicted.
Additionally, the selection criteria were added including participants without chronic kidney or hepatic
diseases, hypertension, autoimmune diseases, metabolic diseases, and cancers. The age of subjects has
been restricted from 30 to 70 years old (Figure 1). This study was approved by the ethics committee of
Buddhist Tzu-Chi General Hospital Taiwan (IRB105-137-B) and carried out in accordance with the
Declaration of Helsinki. All of the subjects have signed the consent forms and agreed to this study and
fasting whole blood was then collected from each subject.
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Figure 1. Flow diagram of healthy subject enrollment.

2.2. Biochemical Analysis

The blood samples (5 mL) were collected by using Vacutainer K2E-EDTA tubes and transferred
into 15 mL centrifuge tube contained Ficoll-paque PLUS medium [hall blood/Ficoll-paque PLUS
medium = 4/3 (v/v)] (GE Healthcare Life Sciences, Pittsburgh, PA, USA), then centrifuged (3000 rpm,
30 min). After centrifugation, the supernatant was collected in sterile tubes and 1 N of acetic acid
was added to prevent degradation. All the samples were stored at −80 ◦C and the storage time was
less than one year. The plasma levels of fasting blood glucose (Glu-AC) and lipid profiles (TG, TCH,
HDL-C, and LDL-C) were determined using the COBAS Integra 800 autoanalyzer (Roche Diagnostics,
Basel, Switzerland) [25,26].
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2.3. Standards Preparation and Calibration Curves

The standard stock solutions of 5-PAHSA, 9-PAHSA, 12-PAHSA, 9-PAHPA, 9-SAHSA, 9-POHSA,
9-OAHSA, PA, SA, POA, and OA were purchased from Cayman Chemical (Ann Arbor, MI, USA).
The standards of l-Hcy, SAH, l-Car, and TMAO (Sigma Aldrich, St. Louis, MO, USA) were dissolved in
double-distilled water (ddH2O) or HPLC grade methanol (MeOH) with final concentration 0.1 mg/mL
for stock solution. The stable isotopes 13C16-palmitic acid (13C16-PA) and d3, l-methionine (d3-l-Met)
were obtained from Sigma Aldrich (St. Louis, MO, USA), and the d9-TMAO was purchased from
Cambridge Isotope Laboratories (Andover, MA, USA). All of the stock solutions and stable isotopes
solution were stored at −20 ◦C and the storage time was less than one year. The calibration curves
were prepared by using stock dilution and formulated by using the peak area ratio of the analytical
standards and the internal standards.

2.4. Extraction and Determination of the FAHFAs and Fatty Acids

After thawing at room temperature (RT) for 10–20 min, 100 µL plasma was transferred into the
new 1.5 mL centrifuge tube. Deproteinization was done by the addition of 3 parts of methanol and
incubated in RT for 20 min. The supernatant was collected in a glass vial after being centrifuged at
3000× g for 10 min at 4 ◦C. The supernatant was dried by using the nitrogen gas and the sample was
further recombined in 100 µL chloroform. The solid-phase extraction (SPE) columns (Strata-X-C 33 µm
polymeric strong cation 60 mg/3 mL, Phenomenex, Torrance, CA, USA) were installed and followed by
adjunction of 1.0–1.5 mL hexane to the columns for activation (vacuum for 20–30 s). The recombinant
samples were loaded into each column and 1.0–1.5 mL ethyl acetate was added for extraction into the
new sample vials (vacuum for 30–45 s). Nitrogen gas was used to dry down all of the samples again
and reconstituted in 100 µL methanol. The internal standards were added before deproteinization.
Finally, the sample was transferred into an LC-MS sample vial for 30 µL injection.

2.5. Extraction and Determination of the l-Hcy, SAH, l-Car, and TMAO

The traditional deproteinized extraction method and the Novum® simplified liquid extraction
(SLE) column (Phenomenex, Torrance, CA, USA) extraction method were used for l-Hcy, SAH, l-Car,
and TMAO extraction. Briefly, the plasma sample was thawed at room temperature for 10–20 min and
100 µL plasma were transferred into another new 1.5 mL centrifuge tube. The plasma samples were
deproteinized by the addition of 3 parts of methanol and incubated at room temperature for 20 min or
adjunction of 100 µL of 50 mM Sodium phosphate dibasic heptahydrate (Sigma Aldrich, MO, USA)
solution for half dilution and mixed briefly (approximately 5 s). After 20 min, the deproteinization
sample was centrifuged at 3000× g for 10 min at 4 ◦C, and the half dilution sample was loaded into the
Novum® SLE column with a gentle pulse of vacuum (15–20 s) until the sample moved into the filter
valve. After 5 min, 1.2–1.5 mL ethyl acetate was added for extraction (vacuum for 30–45 s), and the
supernatant of centrifugation was collected, and the nitrogen gas was used to dry down in parallel.
The samples were reconstituted in 100–300 µL methanol and filtered. After being mixed thoroughly
(5–10 s) the samples were transferred into LC-MS sample vials for 30 µL injection.

2.6. LC-MS Conditions

The Waters e2695 high-performance liquid chromatography (HPLC) system connects with a single
quadrupole mass spectrometer (ACQUITY QDa®, Waters Corp., Milford, MA, USA) was used for
analysis. The Phenomenex Luna® C18(2) column (5 µ, 250 × 4.60 mm, 100 Å) and combination with a
guard cartridge system (KJ0-4282, Phenomenex) was used for the separation of analytes. For FAHFAs
and fatty acids analysis, the temperature of the column was set at 35 ◦C and the flow rate of the mobile
phase was set at 0.6 mL/min. Mobile phase A was composed of (60: 40 acetonitrile: ddH2O) and mobile
phase B was composed of (90: 10 isopropanol: acetonitrile). Both mobile phases A and B contained
9.2 mM ammonium acetate (Sigma Aldrich, St. Louis, MO, USA). The gradient of the mobile phase
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was started at 15% B and changed into 30% B in 8 min, then up to 48% B in another 2 min and to 82%
B until 44 min. The 99% B was achieved in 2 min and hold for another 2 min. Subsequently, 15% B
started at 48.4 min and was held until 60 min. After analysis, the column was washed by isopropanol
and stored to avoid drying. The MS-QDa detector settings were as follows, vaporization temperature
400 ◦C, capillary voltage 0.8 kV, and sample cone 20.0 V. The LC-MS condition for l-Hcy, SAH, l-Car,
and TMAO followed the analysis condition according to our previous study [25]. The single ion
recording (SIR) mode was used for FAHFAs, fatty acids, l-Hcy, SAH, l-Car, and TMAO. The FAHFAs
and fatty acids, including 5-PAHSA 537.5 m/z, 9-PAHSA 537.5 m/z, 12-PAHSA 537.5 m/z, 9-PAHPA
509.4 m/z, 9-SAHSA 565.5 m/z, 9-POHSA 535.4 m/z, 9-OAHSA 563.5 m/z, PA 255.1 m/z, POA 253.2 m/z,
OA 281.2 m/z, SA 283.2 m/z, and 13C16-PA 271.4 m/z were detected in negative ion mode detection.
The l-Hcy 136.1 m/z, SAH 385.0 m/z, l-Car 162.1 m/z, TMAO 76.0 m/z, d9-TMAO 85.1 m/z, and d3- l-Met
154.1 m/z were detected in positive ion mode detection. The LC-MS data were analyzed using LC-MS
Empower 3 software (Waters Corp., Milford, MA, USA). The detection results were quantified by peak
areas and compared with calibration curves obtained from the standards solution.

2.7. Cell Culture

RAW 264.7, mouse macrophage cells, were originally obtained from the American Type Culture
Collection (ATTC, Manassas, VA, USA). Cells were cultured in Dulbecco’s modified Eagle medium
(DMEM, Gibco, New York, NY, USA) supplemented with 10% fetal bovine serum (FBS, Gibco,
USA) and 1% penicillin-streptomycin (Mediatech, Manassas, VA, USA) at 37 ◦C in a humidified
5% CO2 atmosphere.

2.8. RNA Isolation and Quantitative Reverse Transcription–Polymerase Chain Reaction (RT-qPCR) Analysis

The mRNA expression was determined by quantitative reverse transcription–polymerase chain
reaction (RT-qPCR). RAW 264.7 cells were seeded at a density of 3 × 106 cells into a 10 cm petri dish.
The cells were then treated with the indicated concentration of lipopolysaccharide (LPS, 100 ng/mL),
9-PAHSA, 9-POHSA, and 9-OAHSA (2 and 10 µM) or other treatments, where 0.2% dimethyl sulfoxide
(DMSO, Sigma Aldrich, St. Louis, MO, USA) was used as a vehicle control group. After 24 h of
treatment, total RNA was extracted using the Total RNA Isolation Kit (GeneDirex, Taoyuan, Taiwan)
according to the manufacturer’s protocol. The purity and quantity of RNA in each sample was
determined using a NanoDrop 2000C Spectrophotometer (Thermo Fisher, Waltham, MA, USA).
The GScript First-Strand Synthesis Kit (GeneDirex, Taoyuan, Taiwan) was used to perform reverse
transcription from RNA to cDNA according to the manufacturer’s protocol. The primers and
annealing temperature of genes analyzed by RT-qPCR are glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (F: AGGTCGGTGTGAACGGATTTG, R: TGTAGACCATGTAGTTGAGGTCA, 60 ◦C), IL-1β
(F: ACCTGGGCTGTCCTGATGAGAG, R: CCACGGGAAAGACACAGGTAGC, 60 ◦C), and IL-6
(F: AACCACCGCCTTCCCTACTT, R: GCCATTGCACAACTCTTTTCTC, 60 ◦C). GAPDH was used as
an internal control. The final concentration of cDNA and primers was 100 ng and 900 nM, respectively.
Power SYBR Green PCR Master Mix (Thermo Fisher, USA) was used for performing real-time PCR
assay. The PCR reaction with 40 cycles (10 min hold at 95 ◦C, 15 s denature at 95 ◦C, annealing,
and extension 1 m at 60 ◦C) of amplification was performed using instrument QuantStudio® 5 System
(Thermo Fisher, USA) and analyzed using comparative CT (44CT). Each RT-qPCR was repeated with
at least four to five different RNA and cDNA preparations for both control and treated cells [27].

2.9. Statistical Analysis

GraphPad Prism 6.0 (GraphPad Software, San Diego, CA, USA) was used to present the data,
perform statistical methods of correlation analysis, and two-tailed Student’s independent t-test,
as shown in Figures 2–6. SPSS for Windows (version 20.0; SPSS Inc., Chicago, IL, USA) was used to
check data distribution by using the Shapiro-Wilk normality test. The Pearson correlation coefficient
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(rp) and Spearman correlation coefficient (rs) were used for the normal distribution and non-normal
distribution data, respectively. The statistical significance was set at * p < 0.05.Biomolecules 2020, 10, x 7 of 17 
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Figure 2. Determination of fatty acid esters of hydroxy fatty acids (FAHFAs), long-chain fatty acids,
and cardiovascular (CV)-related biomarkers by using liquid chromatography-mass spectrometry
(LC-MS). Seven types of circulating FAHFAs (5-PAHSA, 9-PAHSA, 12-PAHSA, 9-PAHPA, 9-SAHSA,
9-POHSA, and 9-OAHSA) (A), four long-chain fatty acids (PA, SA, POA, and OA) (B), and four
non-traditional circulating CV-related biomarkers (l-Hcy, SAH, l-Car, and TMAO) (C) were analyzed
by LC-MS.
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Figure 3. 9-POHSA and 9-OAHSA were major endogenous FAHFAs in healthy subjects. Both 9-POHSA
and 9-OAHSA were clearly measured in healthy subjects, where 10 µM 13C-palmitic acid (PA) was
used as an internal standard (A). 9-POHSA and 9-OAHSA were major endogenous FAHFAs and had a
strong positive correlation with each other (r = 0.9254, p < 0.001) while the other five types of FAHFAs
(5-PAHSA, 9-PAHSA, 12-PAHSA, 9-PAHPA, and 9-SAHSA) were below the limit of detection or
undetected (B). rp: Pearson correlation coefficient. Data are presented as mean ± SD, U.D. = undetected
(*** p < 0.001).
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OAHSA (2 and 10 µM), or co-treatments, where dimethyl sulfoxide (DMSO, Sigma, USA) was used 
as a vehicle control group. After 24 h, the cells were harvested and further processed for RT-qPCR. 9-
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Figure 5. 9-POHSA and 9-OAHSA possessed anti-inflammatory effects. RAW 264.7 cells were
treated with the indicated concentration of lipopolysaccharide (LPS, 100 ng/mL), 9-PAHSA, 9-POHSA,
9-OAHSA (2 and 10 µM), or co-treatments, where dimethyl sulfoxide (DMSO, Sigma, USA) was used
as a vehicle control group. After 24 h, the cells were harvested and further processed for RT-qPCR.
9-POHSA and 9-OAHSA suppressed LPS stimulated cytokines IL-1β (A) and IL-6 (B) gene expression.
The dashed line across all bars to axis X indicated control(s) which assigned as one. Data are presented
as mean ± SD, n = 4~5, (*** p < 0.001, n.s. = not significant).
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3. Results

3.1. Enrollment and Characteristics of Healthy Subjects

Subjects whose health status had been ensured were considered to be eligible for the study.
The baseline characteristics were measured or calculated to confirm the health status of the subjects,
as shown in Table 1. A total of 57 subjects were healthy.

Table 1. Baseline characteristics of 57 healthy subjects.

Variable Subjects (Male n = 24, Female n = 33)
Mean ± SD Normal Range

Age (years old) 49.9 ± 12.4 n/a
Height (cm) 162.2 ± 8.5 n/a

Body weight (kg) 63.2 ± 13.2 n/a
Body mass index (BMI, kg/m2) 23.6 ± 3.3 n/a
Fasting blood glucose (mg/dL) 95.0 ± 25.7 <125



Biomolecules 2020, 10, 1689 11 of 17

Table 1. Cont.

Variable Subjects (Male n = 24, Female n = 33)
Mean ± SD Normal Range

Triglyceride (TG, mg/dL) 122.4 ± 66.4 <200
Total cholesterol (TCH, mg/dL) 174.2 ± 31.9 <200

High-density lipoprotein cholesterol (HDL-C, mg/dL) 54.5 ± 13.7 >40
Low-density lipoprotein cholesterol (LDL-C, mg/dL) 101.0 ± 25.7 <130

n/a—not applicable.

3.2. Linearity and Plasma Analysis

The gradient system of LC-MS methods was modified from the previous studies [28,29] and
renewed according to our ideas. The calibration curves were calculated by using the peak area
ratio of the analytical standards and the internal standards (13C16-PA, d3- l-Met, or d9-TMAO).
All of the coefficients of determinations (R2) of linearity were greater than 0.995. Seven types of
circulating FAHFAs (5-PAHSA, 9-PAHSA, 12-PAHSA, 9-PAHPA, 9-SAHSA, 9-POHSA, and 9-OAHSA),
four long-chain fatty acids (PA, SA, POA, and OA) that are endogenous precursors of FAHFAs, and four
non-traditional circulating CV-related biomarkers (l-Hcy, SAH, l-Car, and TMAO) were analyzed by
LC-MS. The chromatograms are shown in Figure 2, and their levels in healthy subjects are shown
in Table 2.

Table 2. FAHFAs, CV-related biomarkers, and fatty acid levels determined in healthy subjects by
using LC-MS.

FAHFAs, CV-Related Biomarkers, and Fatty Acids
Subjects

(Male n = 24, Female n = 33)
Mean ± SD

9-POHSA (nM) 1184.4 ± 526.1
9-OAHSA (nM) 374.0 ± 194.6

l-homocysteine (l-Hcy, µg/L) 1081.5 ± 479.8
S-adenosyl-L- homocysteine (SAH, µg/L) 8.7 ± 4.6

l-carnitine (l-Car, µg/L) 4576.0 ± 1724.5
Trimethylamine N-oxide (TMAO, µg/L) 273.5 ± 55.2

Palmitic acid (PA, µM) 322.1 ± 123.9
Stearic acid (SA, µM) 400.4 ± 190.6

Palmitoleic acid (POA, µM) 17.5 ± 11.0
Oleic acid (OA, µM) 226.1 ± 83.0

3.3. 9-POHSA and 9-OAHSA Were Major Endogenous FAHFAs in Healthy Subjects

We found that both 9-POHSA and 9-OAHSA were major endogenous FAHFAs in healthy subjects,
and they were clearly quantified in human circulation (Figure 3A,B). In addition, 9-POHSA (1184.4 ±
526.1 nM) had a higher concentration in plasma than 9-OAHSA (374.0 ± 194.6 nM) (Table 2). The other
five types of FAHFAs (5-PAHSA, 9-PAHSA, 12-PAHSA, 9-PAHPA, and 9-SAHSA) were below the
limit of detection or were undetected. Moreover, we found that 9-POHSA and 9-OAHSA had a strong
positive correlation (r = 0.9254, p < 0.001) with each other (Figure 3B insert).

3.4. The Correlation of FAHFAs with Fasting Blood Glucose and Lipid Profiles

As shown in Figure 4A, both 9-POHSA and 9-OAHSA had a significant negative correlation with
Glu-AC (r = −0.300, p = 0.027 and r = −0.308, p = 0.024, respectively), but did not have any significant
correlation with lipid profiles (TG, TCH, HDL-C, or LDL-C) (data not shown).

3.5. The Correlation of FAHFAs with Non-Traditional CV-Related Biomarkers

To investigate the CVD protection of FAHFAs in healthy subjects, we analyzed the correlation
of circulating 9-POHSA and 9-OAHSA with four non-traditional circulating CV-related biomarkers.
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As shown in Figure 4B,C, 9-POHSA (r = −0.303, p = 0.026) and 9-OAHSA (r = −0.281, p = 0.040) had a
significant negative correlation with SAH, but not with l-Hcy (r = −0.089, p = 0.508 and r = −0.112,
p = 0.409, respectively). l-Car was also positively correlated with 9-POHSA (r = 0.265, p = 0.046),
but not with 9-OAHSA (r = 0.164, p = 0.223) (Figure 4D). In addition, TMAO had a significant negative
correlation with both 9-POHSA (r = −0.274, p = 0.041) and 9-OAHSA (r = −0.346, p = 0.009) (Figure 4E).
Together, 9-POHSA and 9-OAHSA had CVD protection in healthy subjects.

3.6. 9-POHSA and 9-OAHSA Possessed Anti-Inflammatory Effects on RAW 264.7 Cells

We investigated the anti-inflammatory effects of 9-POHSA and 9-OAHSA on suppression of LPS
stimulated cytokines, including IL-1β and IL-6 gene expression in RAW 264.7 cells. To evaluate the
anti-inflammatory effects of FAHFAs, we used dexamethasone as a positive control for cytokines
inhibition. We also treated the cells with 9-PAHSA since its anti-inflammatory activity has been
reported in vitro and in vivo [1,5,7]. As shown in Figure 5, LPS stimulation increased the gene
expression of cytokines IL-1β and IL-6, and our data further clearly showed that 2 to 10 µM of
9-PAHSA, 9-POHSA, and 9-OAHSA functioned as 10 µM dexamethasone to suppress LPS stimulated
IL-1β and IL-6 gene expression. Compared to dexamethasone, both 9-PAHSA and 9-OAHSA had the
same anti-inflammatory potency on IL-1β and IL-6 inhibition.

3.7. The Correlation of FAHFAs with Their Fatty Acid Precursors

The correlation between PA, SA, POA, and OA with 9-POHSA and 9-OAHSA were shown in
Figure S1 and Figure 6. Higher POA level (Figure S1C), or when more POA was formed (represented
from POA to PA ratio, Figure 6A), had a positive correlation with 9-POHSA (r = 0.3511, p = 0.0086)
and 9-OAHSA (r = 0.4034, p = 0.0023). However, higher-level OA (Figure S1D), or when more OA
was formed (represented from OA to SA and OA to POA ratio, Figure 6B,C), did not contribute to the
formation of 9-POHSA (r = −0.3071, p = 0.0213) and 9-OAHSA (r = −0.3285, p = 0.0134).

4. Discussion

In this study, we found that 9-POHSA and 9-OAHSA were two major types of FAHFAs in healthy
human circulation. To investigate the CVD protection of FAHFAs, we analyzed their correlations with
CV-related biomarkers. We found that both 9-POHSA and 9-OAHSA had a negative correlation with
Glu-AC, SAH, and TMAO, but had no correlation with l-Hcy and lipid profiles (TG, TCH, HDL-C,
and LDL-C). 9-POHSA had a positive correlation with l-Car, but 9-OAHSA did not. Increasing the
level of endogenous POA in the body might be related to the increases of both FAHFAs. Moreover,
9-POHSA and 9-OAHSA possessed an anti-inflammatory effect on suppression of LPS stimulated
cytokines. These results suggested that 9-POHSA and 9-OAHSA may play a role in CV protection.
As far as we know, this is the first report showing the major endogenous FAHFAs in healthy humans
and their cardiovascular protection effects.

l-Hcy is a well-known risk factor of CVD and has been investigated in previous studies [30–32].
However, several studies also indicated that SAH may have a higher potential effect than l-Hcy in
atherosclerosis and in early clinical detection of CVD [33–36]. Therefore, we determined the levels
of both l-Hcy and SAH and further investigated their correlations with 9-POHSA and 9-OAHSA.
We found that the SAH but not l-Hcy had a significant negative correlation with 9-POHSA and
9-OAHSA. The 9-POHSA and 9-OAHSA might be directly affecting SAH production to further prevent
the CVD occurs in healthy humans. It also implies that SAH could be a more sensitive biomarker than
l-Hcy in early CVD monitoring.

l-Car is a conditional nutrient involves in energy production, carbohydrates, and long-chain fatty
acid transport [37]. Several previous studies exposed the potential of l-Car as antioxidants [38] and
promoted HDL-C upregulation on coronary artery disease patients [39,40]. Previous studies indicated
that the anti-inflammatory effects of l-Car were achieved through suppression of reactive oxygen
species and further inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells
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(NF-κB) signaling pathway [41,42]. We found that l-Car had a positive correlation with 9-POHSA but
not with 9-OAHSA levels. l-Car might be contributed to upregulate the circulation level of 9-POHSA
which could be acquired lipids metabolism and long-chain fatty acids transportation [37,43].

Recently, several studies have found that TMAO is a potential CVD risk factor, and a higher level
of l-Car may have caused an increased TMAO concentration into circulation through gut microbiota
transformation [44–47]. Hence, we determined the correlation of TMAO levels with 9-POHSA and
9-OAHSA levels. Our results indicated that TMAO had a negative correlation with both 9-POHSA
(r = −0.274, p = 0.041) and 9-OAHSA (r = −0.346, p = 0.009). These results suggested that 9-POHSA and
9-OAHSA might be involved in reducing TMAO production and further decreased the accumulation
of TMAO in human circulation.

We confirmed that both 9-POHSA and 9-OAHSA exhibited an anti-inflammatory effect by
suppressing LPS stimulated cytokines, including IL-1β and IL-6 in RAW 264.7 cells. Similar to
our results, several studies have also reported the anti-inflammatory of other FAHFAs in vivo
and in vitro [1,5,7,9], especially 9-PAHSA, which is the most investigated among FAHFAs for its
anti-inflammatory activity [1,7]. The 9-PAHSA inhibited LPS-induced pro-inflammatory cytokines
production in the macrophage-like cell line, lowered the levels of inflammatory macrophages in the
adipose tissue of mice on a high-fat diet [1], and reduced clinical and pathological disease severity in a
mouse model of colitis [7]. Kuda et al. [5] also demonstrated that docosahexaenoic acid of 13-hydroxy
linoleic acid (13-DHAHLA) suppressed LPS-induced cytokine secretion in the mouse macrophage
cell line. In addition, Kolar et al. [9] showed that 13-LAHLA exhibited an anti-inflammatory effect by
suppressing LPS stimulated cytokines, including IL-1β, IL-6, iNOS, and COX-2 in RAW 264.7 cells.
In this study, we provided new findings that 9-POHSA and 9-OAHSA functioned as dexamethasone to
suppressed LPS stimulated cytokines. To our knowledge, we are the first to report that 9-OAHSA and
9-POHSA also possessed an anti-inflammatory effect by suppressing LPS stimulated cytokines.

We found that the levels of 9-POHSA were higher than 9-OAHSA, and both demonstrated a
significant positive correlation with POA levels and POA to PA ratio. We also found that SA levels
indicated a positive correlation with 9-POHSA but not with 9-OAHSA levels. Although OA is an
endogenous precursor of 9-OAHSA, OA level and OA to POA or SA ratios did not contribute to
the biosynthesis of 9-OAHSA and 9-POHSA. Hence, these results indicated that the biosynthesis
efficiency of 9-POHSA might be better than 9-OAHSA in healthy subjects. In addition, we observed
that the circulating level of POA was the lowest among other fatty acids precursors. POA is an
omega-7 monounsaturated fatty acid (MUFA) found in plants and marine sources, has been shown to
favorably modulate lipid and glucose metabolism [48,49]. In animal models, dietary supplemented
POA decreased the expression of pro-inflammatory cytokines TNF-α and IL-6 [50] and reduced
atherosclerosis development [49]. More importantly, these results showed that POA level contributed
to FAHFAs biosynthesis. These findings also imply the potential role of dietary POA in the prevention
of CVD and diet-induced metabolic disorders.

Taken together, 9-POHSA and 9-OAHSA possessed both CVD protection and anti-inflammatory
effect (Figure 7). However, several limitations still need to be mentioned. First, the number of
healthy subjects was small, the sample sizes could be increased and may affect the significance of
this study. Second, since the correlation of 9-POHSA and 9-OAHSA with CV-related biomarkers
have been uncovered in this study, there is a need to investigate their potency in CVD patient. Third,
it remains to investigate other FAHFA types and their correlation with SAH, l-Car, TMAO, and other
CV-related biomarkers.
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264.7 macrophages.

5. Conclusions

In conclusion, we found that the levels of POA were lower than OA, on the contrary, the levels
of 9-POHSA were higher than 9-OAHSA. These results indicated that the biosynthesis efficacy and
the bioavailability of 9-POHSA might be better than 9-OAHSA in healthy subjects. In addition,
the elevation of l-Car may promote the upregulation levels of 9-POHSA and further decrease the
inflammation. Thereafter, the upregulation of the plasma 9-POHSA and 9-OAHSA levels may cause
SAH and TMAO reduction to achieve the CVDs protection. 9-POHSA and 9-OAHSA also exhibited
an anti-inflammatory effect by suppressing LPS stimulated cytokines, including IL-1β and IL-6 gene
expression in RAW 264.7. Therefore, we clearly presented evidence that FAHFAs may have potent
protective effects against CVDs.
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