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Gordonia phages Bowser and Schwabeltier are newly isolated phages infecting Gordonia terrae 3612. Bowser and Schwabeltier
have similar siphoviral morphologies and their genomes are related to each other, but not to other phages. Their lysis cassettes
are atypically situated among virion tail genes, and Bowser encodes two tyrosine integrases.
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Gordonia spp. are implicated in foaming of activated sludge in
wastewater treatment as well as in opportunistic infections of

catheters (1–4). Previously, 17 bacteriophages of Gordonia have
been isolated, sequenced, and annotated (5–9). Isolation and
genomic analysis of bacteriophages using Gordonia terrae 3612 as
a host within the Science Education Alliance-Phage Hunters Ad-
vancing Genomics and Evolutionary Science (SEA-PHAGES) will
expand our understanding of the genetic diversity of these viruses
(10).

Gordonia phages Bowser and Schwabeltier were isolated by di-
rect plating of filtered soil extracts from Pittsburgh, PA on G. ter-
rae 3612. Following plaque purification and amplification, DNA
was extracted and sequenced using an Illumina MiSeq with 140 bp
single-end reads. Reads were assembled using Newbler into single
major contigs of 46,570 bp and 46,895 bp for Bowser and Schwa-
beltier, respectively, with 1,945-fold and 1,555-fold coverage. The
genomes are 67% G�C and have discrete ends with 10 base 3=
single stranded extensions (5=-CGCCGCGGTA). Bowser and
Schwabeltier share segments of similarity spanning 60% of their
genome lengths with nucleotide identity ranging from 82% to
94%, and are grouped together in Cluster DB using previously
described parameters (11). Bowser and Schwabeltier are not
closely related to other phages or prophages, although a 1.3 kbp
segment is related (75% nucleotide identity) to minor tail protein
genes of a putative prophage in Gordonia sp. KTR9 (12).

Using GeneMark (13), Glimmer (14), Phamerator (15), and
DNA Master (http://cobamide2.bio.pitt.edu), we identified 71
and 72 protein encoding genes in Bowser and Schwabeltier, re-
spectively, approximately 40% of which we could assign putative
functions using BLAST (16) and HHpred (17, 18). Neither ge-
nome contains tRNA genes. Protein functional assignments in-
clude virion structure and assembly proteins, tyrosine integrases,
immunity repressors, FtsK-like proteins, an acetyltransferase
(Schwabeltier gp30), and several HNH endonucleases.

The lysis cassette in Bowser and Schwabeltier is unusually lo-
cated within the minor tail protein genes, and includes endolysin
and lysin B genes flanking four smaller open reading frames, three
of which (e.g., Schwabeliter gp22, gp23, and gp25) are strongly

predicted to be membrane proteins. The three putative membrane
proteins may all be associated with lysis although it is unclear
which plays the holin role. Both phages have leftwards-transcribed
tyrosine integrase and immunity repressor genes near the centers
of their genomes, and these have the characteristics of the previ-
ously described integration-dependent immunity systems (19) in
that both the integrases and repressors have C-terminal protein
degradation tags. Although the attP site is expected to be located
within the repressor-coding region in these systems, BLASTn
searches failed to identify a corresponding attB site in any se-
quenced Gordonia genome. Curiously, Bowser encodes a second
rightwards-transcribed tyrosine integrase, but we have also been
unable to identify its corresponding attP site. It thus remains un-
clear whether either Bowser or Schwabeltier form lysogens with
integrated prophages in G. terrae 3612 or any other bacterial host.

Accession number(s). The Bowser and Schwabeltier genomes
are available from GenBank under accession numbers KU998235
and KU963252.
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