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Computational strategies aimed at unveiling the thermodynamic and kinetic properties of G Protein-
Coupled Receptor (GPCR) activation require extensive molecular dynamics simulations of the recep-
tor embedded in an explicit lipid-water environment. A possible method for efficiently sampling
the conformational space of such a complex system is metadynamics (MetaD) with path collective
variables (CVs). Here, we applied well-tempered MetaD with path CVs to one of the few GPCRs
for which both inactive and fully active experimental structures are available, the µ-opioid receptor
(MOR), and assessed the ability of this enhanced sampling method to estimate the thermodynamic
properties of receptor activation in line with those obtained by more computationally expensive adap-
tive sampling protocols. While n-body information theory analysis of these simulations confirmed
that MetaD can efficiently characterize ligand-induced allosteric communication across the receptor,
standard MetaD cannot be used directly to derive kinetic rates because transitions are accelerated
by a bias potential. Applying the principle of Maximum Caliber (MaxCal) to the free-energy land-
scape of morphine-bound MOR reconstructed from MetaD, we obtained Markov state models that
yield kinetic rates of MOR activation in agreement with those obtained by adaptive sampling. Taken
together, these results suggest that the MetaD-MaxCal combination creates an efficient strategy for
estimating the thermodynamic and kinetic properties of GPCR activation at an affordable computa-
tional cost. © 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5060960

I. INTRODUCTION

G protein-coupled receptors (GPCRs) are broadly
expressed cell surface receptors whose functional role is to
transmit signals from the exterior to the interior of the cell
through recognition of different ligands, such as bioactive pep-
tides, amines, nucleosides, and lipids.1,2 It is therefore not
surprising that about 30% of drugs available in the market
today target GPCRs for the purpose of alleviating the effects
of a wide range of diseases and conditions.3 Understanding
the mechanistic, thermodynamic, and kinetic details of ligand-
induced GPCR activation and consequent signaling through
intracellular G proteins or β-arrestins is very important as it
informs the rational design of improved therapeutics. How-
ever, this remains a fairly challenging undertaking both for
experimental and computational approaches.

Molecular dynamics (MD) simulations are a particularly
valuable tool to probe the level of atomistic detail that is
necessary to identify testable hypotheses of molecular deter-
minants that are responsible for GPCR allostery, energetics,
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and kinetics. However, simulating ligand-induced activation
of GPCRs in a realistic lipid-water environment is computa-
tionally expensive and one cannot rely on standard MD alone
to obtain converged free-energy landscapes, as the largest con-
formational changes accompanying receptor activation occur
at the time scale of hundreds of microseconds to milliseconds.4

Enhanced sampling algorithms can help speed up these
time scales as we demonstrated a few years ago by apply-
ing well-tempered metadynamics5 (MetaD) with path col-
lective variables (CVs)6 to study the ligand-induced mod-
ulation of the free-energy landscape of two prototypic
GPCRs, specifically rhodopsin7 and the β2-adrenergic8

receptor embedded in an explicit 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC)/10% cholesterol bilayer.
More recently, using a high-throughput molecular dynam-
ics (HTMD) adaptive sampling protocol9,10 run on large
distributed computational resources, we demonstrated11 that
without introducing bias potentials, a total simulation time of
∼240 µs was still necessary to achieve convergence of the
free-energy landscape of a morphine-bound µ-opioid receptor
(MOR) system embedded in an explicit POPC/10% choles-
terol bilayer and to build reliable Markov State Models
(MSMs) of the system’s activation dynamics. This approach
successfully revealed the presence of two distinct metastable
regions of the conformational space in addition to metastable
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regions comprising crystal-like inactive and active conforma-
tions of MOR. Furthermore, it unveiled ligand-specific kinetic
rates between these regions and, combined with informa-
tion theory,12 it elucidated molecular details of the allosteric
transmission of the signal across the receptor. However, the
conformational sampling portion of this approach is still
computationally very expensive and often requires exclusive
computational resources.

Here, we propose a computational strategy that combines
well-tempered MetaD using path CVs6 with Maximum Cal-
iber (MaxCal) and n-body information theory13 (nBIT) to
efficiently study ligand-induced activation of GPCRs at the
atomistic scale. Using MetaD-derived free energies as an input
for Maximum Caliber (MaxCal),14–16 we built MSMs and
estimated kinetic rates of morphine-induced MOR activation.
Moreover, the n-body information theory method nBIT was
used to elucidate molecular details of MOR allosteric modu-
lation leading to signal transmission. The efficiency and accu-
racy of the proposed approach were evaluated by comparing
these results with those obtained with a more expensive HTMD
adaptive sampling protocol run on distributed computational
resources.11

II. COMPUTATIONAL DETAILS
A. Setup of ligand-free active
and inactive MOR systems

Inactive and active three-dimensional models of the
MOR were built based on corresponding available experi-
mental structures at the start of this work (PDB 4DKL17 and
5C1M,18 respectively). For the active system, the nanobody
was removed, the N-terminal region was truncated at residue
S641.40, and the missing residues of helix 8 (H8) were mod-
eled using as a template the atomic coordinates of H8 in the
inactive crystal structure. The receptor termini were capped
with an N-terminal acetyl and a C-terminal N-methyl amide
using Maestro. An 80 × 80 Å2 POPC/10% cholesterol bilayer
with TIP3P water was generated using the CHARMM-GUI
webserver19 and equilibrated according to its standard proto-
col, comprising a 20 ns unrestrained MD simulation of the
membrane. The inflategro script,20 edited to use a deflation
ratio of 0.97 instead of the default 0.95, was used to embed
the final MOR structures in the membrane mimetic environ-
ment. After system neutralization with NaCl at a concentration
of ∼150 mM, the entire simulation system of approximately
54 000 atoms with dimensions of 75 × 75 × 100 Å3 was mini-
mized and equilibrated for 50 ns using the CHARMM36 force
field21,22 for protein, lipids, and ions. All simulations reported
in this work were carried out using the GROMACS 5.1.423

package.

B. Setup of the morphine-bound active MOR system

Force-field parameters for morphine were obtained from
the CHARMM General Force Field (CGenFF) ParamChem
webserver24 and subsequently optimized and verified follow-
ing established protocols.24 The initial binding pose of mor-
phine was obtained by aligning the ligand’s alkaloid scaffold
with the equivalent one in the morphinan agonist BU72, as seen
in the 5C1M crystal structure.25 The system was subjected to

minimization followed by a 1 ns run in the NVT ensemble
with restraints on lipids, receptor, and ligand. Restraints were
gradually relaxed over 20 ns, and a final 40 ns equilibration
run was carried out without restraints.

All production runs were carried out in the NPT ensemble
at 300 K and 1 bar with periodic boundary conditions. The
Parinello-Rahman26 and velocity rescaling27 algorithms were
used for pressure and temperature coupling, respectively. A
time step of 4.0 fs coupled with hydrogen mass repartitioning
was used alongside the standard leapfrog algorithm28 and the
LINCS algorithm.29 Electrostatic interactions were handled
via the particle-Mesh Ewald method30 and a Verlet scheme31

with a cutoff of 1.2 nm, while the van der Waals modifier force
switch32,33 was set to 1.0 nm.

C. Adiabatic biased MD simulations

To obtain an initial representation of the transition
between the inactive and active crystal structures of MOR,
we carried out adiabatic biased MD (ABMD) simulations34

on the ligand-free receptor using Plumed 2.1.35 Specifically,
10 simulations were carried out starting from the equilibrated
active MOR crystal structure guided towards the receptor inac-
tive conformation, and 10 simulations were run in the opposite
direction. In ABMD simulations, the system is biased with an
elastic potential towards a final value of a chosen CV. The bias,
however, acts on the system only when the distance of the cur-
rent value of the CV to its final value is larger than its previous
minimum distance, allowing the system to evolve undisturbed
otherwise. The difference between the contact map calculated
during the simulation (with a stride of 10 simulation steps)
and the contact map of the final structure (i.e., that of the inac-
tive or active MOR structures, depending on the direction of
the simulation), defined by a subset of contacts relevant to the
activation process, was used as a CV. Specifically, a switching
function in the form of

s(r) =
1 −

(
r
r0

)6

1 −
(

r
r0

)10
(1)

was used to describe contacts between polar atoms or the side
chains of residues within the MOR transmembrane region. In
this equation, r is the distance between two polar atoms or
between the center of mass of apolar side chains, and r0 was
set to 6.5 Å or 4.5 Å for side chain contacts or polar contacts,
respectively. Contacts for which |s(ract) − s(rinact)| > 0.65,
i.e., whose distance in the active and inactive structures is
significantly different, were included in the contact map def-
inition Rij = s(rij), and the matrix norm 


RRef − R


, where

RRef is either the contact map for the active or for the inac-
tive receptor structure, was used to drive the ABMD simula-
tions. The simulations were performed in a stepwise fashion
with the force constant switched from 0.1 to 15 over the
span of 35 ns to ensure a smooth transition between receptor
conformations.

D. Path definition for MetaD simulations

In order to define a path based on information from
contact maps, a pairwise distance matrix ‖Rk − Rk′ ‖ was
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built for the complete set of frames from the ABMD
trajectories by running an in-house python script on contact
maps calculated with the Plumed 2.135 plugin. In order to
select frames optimally describing the low free-energy de-
activation/activation pathway, we performed simulated anneal-
ing over paths {jm} of constant length N = 10 starting from a
random initial selection of 8 points between the two furthest
points in the set, j0 and jN , respectively, and minimizing the
function

W =
k
2

*
,

∑
i

�����
di −

1
N − 1

∑
i′

di′
�����

2
+
-

(∑
i′ di′∑
j ρj

)
, (2)

where i, i′ enumerate the edges along the path,
di = ‖R(ji − R(ji+1))‖ is the length of the ith edge, ρj repre-
sents the density of neighboring points around the beginning
point j, and k is the effective temperature for the annealing
procedure, which was slowly decreased over the span of the
annealing iterations. Minimization of this function, which was
performed using an in-house python script, allows us to (a) find
the most densely populated regions along the activation path,
(b) ensure that each edge is of similar length, and (c) verify
that the overall length of the path is the shortest possible while
fulfilling the two prior conditions. The value of W converged
to yield paths with edge length variances below 0.05, ensuring
that the chosen frames could be used to define smooth path
collective variables that describe the position S(R) of the sys-
tem along the pathway and the distance Z(R) from this path.
These were defined, respectively, as

S(R) =
∑

k k exp(−λ‖R − Rk ‖)∑
k exp(−λ‖R − Rk ‖)

, (3a)

Z(R) = −λ−1log
∑

k
exp(−λ‖R − Rk ‖), (3b)

where Rk refers to the values of the contact maps for each point
in the selected path and λ, a parameter to aid the creation of a
smooth description of the path, is set to ∼2.0.

E. MetaD simulations

We used well-tempered MetaD with the path collective
variables S and Z, as implemented in Plumed 2.1,35 to enhance
the exploration of the CV space by adding a history-dependent
bias potential at regular intervals to discourage the system from
visiting previously explored regions of the conformational
space. Specifically, the bias potential acting on a conformation
with contact map R is

V (R, t) =
∑

t′≤t
wt′

∏k

i=1
exp*

,
−
|si(Rt) − si(Rt′)|2

2σ2
i

+
-
, (4)

where t ′ is a multiple of the deposition time τ, si are the CVs
over which the bias is being deployed (S and Z of the path
CVs in our case), and the σi are the standard deviations of
the Gaussian bias. In well-tempered MetaD, the height of the
Gaussian bias, wt ′ , is adjusted according to

wt′ = w exp

(
−

V (R, t ′)
kB∆T

)
, (5)

where ∆T is a parameter in units of temperature, kB is
the Boltzmann constant, and w is the initial height of the

Gaussian bias potential. This adjustment allows the total bias
potential to smoothly converge in time so that the free energy
of the system can be calculated as the limit

F(R) = −
T + ∆T
∆T

lim
t→∞

V (R, t), (6)

where T is the temperature of the simulation. The tempera-
ture ratio ∆T /(T+∆T ) in Eq. (6) is referred to as the “bias
factor” and ensures that the relevant free-energy barriers can
be overcome within the time scale of metadynamics simula-
tions. Here, we run two sets of simulations of the morphine-
bound MOR system, where the bias factor was set to 12, the
deposition rate was set to τ = 5 ps, and either (σS = 0.3,
σZ = 0.15) or (σS = 0.1, σZ = 0.05) were used. Both simula-
tions were run for 1.5 µs. Convergence was checked by ensur-
ing that the standard deviation of the free-energy differences
converged to below 20 kJ/mol within the last 150 ns for both
simulations. We present the combined free energies and the
standard deviations of the free-energy differences in Figs. 1(a)
and 1(b) of the supplementary material, respectively, where the
two simulations, totaling 3 µs, were combined using weights
of 1:
√

3.

F. Free-energy calculations

To derive distributions of order parameters other than the
path collective variables, it is necessary to remove the effect
of the bias on the trajectories of sampled conformations. This
can be achieved using the reweighting method introduced by
Tiwary and Parrinello36 and implemented via in-house python
scripts, which allows us to reconstruct a time-independent
free-energy landscape for any function of the coordinates of
the system. Specifically, this method was used to recast the
free-energy landscape as a function of two parameters that
are relevant to the activation process, namely, the distance
between the Cα atoms of the residues R1653.50 and T2796.34

and the root mean square deviation (RMSD) of Cα atoms
of the NPxxYA motif (residues N3327.49 to A3377.54) to the
inactive crystal structure of MOR. We also used this method
to reweigh the distributions of the variables used in the n-
body information theory and MaxCal analyses presented in
Secs. II G and II H.

G. Information theory analysis

We applied the n-body information theory nBIT13 method
to reweighted metadynamics trajectories using in-house
python scripts to study the contribution of each receptor
residue to the transmission of information between the lig-
and binding pocket and the intracellular region of the recep-
tor. To this end, we limited our analysis to three classes of
variables: (a) the first two principal components of the posi-
tions of the heavy atoms of the side chains inside the ligand
binding pocket (PC1, PC2), (b) the two CVs used to repre-
sent the activation process, namely, the TM3-TM6 distance
between the Cα atoms of residues R1653.50 and T2796.34 and
the RMSD of the NPxxYA motif (NPxxYA RMSD) from
the MOR inactive crystal, and (c) the Cartesian coordinates
(x, y, z) of the Cα atoms of each receptor transmembrane
residue.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-026845


224101-4 Meral, Provasi, and Filizola J. Chem. Phys. 149, 224101 (2018)

To calculate the co-information value, we built 5-
dimensional free-energy landscapes for the aforementioned
parameters using the reweighting scheme36 described in
Sec. II F. Using these free energies, we calculated the
(Shannon) entropy of a set of degrees of freedom X as

H(X) = −
∑

i
p(xi)log p(xi), (7)

where p(xi) is the probability distribution of xi ∈ X. The co-
information can then be calculated for any set of variables
as

CI(X, Y , Z) = MI(X, Y ) −MI(X, Y |Z), (8)

where MI is the mutual information, defined as MI(X, Y )
= H(X) + H(Y ) − H(X, Y ), and the conditional mutual
information and conditional entropy are defined as MI(X ��Z)
= H(X ��Z) + H(Y ��Z)−H(X,Y ��Z) and H(X ��Z) = H(X,Z)−H(Z),
respectively. Using these definitions, it is easy to see that the
3-body co-information is fully symmetric under permutations
of its three variables and that Eq. (8) can be recast as

CI(X, Y , Z) = MI(X, Z) + MI(Y , Z) −MI(X ∪ Y , Z). (9)

A positive value of CI(X, Y, Z) suggests that the sum of the
information on Z gained from knowledge of either X or Y
[i.e., MI(X, Z) + MI(Y, Z)] is larger than the information on Z
gained from knowing both X and Y [i.e., MI(X ∪ Y , Z)]; hence,
there is redundant information pertaining to Z in X and Y. This
can be described as a common cause structure; the correlation
between X and Y is partially explained by the value of Z. By
the same logic, a negative co-information value suggests that
knowledge of both X and Y provides additional information
regarding Z. Co-information values calculated in this way are
very sensitive to the way the histograms are built, and it is
therefore crucial to use the same bin sizes and histograms while
building the multidimensional histograms for each residue,
ensuring that the ranking of the co-information values for the
residues is preserved.

H. Maximum caliber kinetic model

By design, the MaxCal approach,14 which is the maxi-
mum entropy principle applied to dynamic quantities, allows
for the construction of the most probable kinetic model
that is compatible with a given free-energy landscape and
with constraints that depend on the temporal evolution
of the system. For a given set of stationary probabilities
πi, we maximize, using in-house python scripts, the path
entropy, S, with respect to the Markov model transition
probabilities pij,

S = −
∑

ij
πipijlog pij, (10)

under constraints that fix the average value of dynamical quan-
tities

〈
R(q)

〉
=

∑
ij πipijR

(q)
ij to specified values R(q)

0 . To study
continuous stochastic processes, the mean jump rate 〈N〉 is
conveniently chosen as one of these dynamical constraints.
With this choice of constraints, it has been shown14 that the
transition probabilities pij that result in maximum caliber are
proportional to

Wij = e−a exp
(
−

∑
q

bqR(q)
ij

)
, (11)

where a and bq are the Lagrange multipliers associated with
〈N〉 and with all other dynamical constraints

〈
R(q)

〉
, respec-

tively. For short lag-times δt, we can rewrite W defining a
matrix ∆ and making explicit the dependence on the lag-time

Wij = I + µ δt ∆ij, (12)

where I is the identity matrix, and we defined µ δt = e−a. Fur-
ther imposing the condition of detailed balance, the transition
rates κij can be calculated as

κij = lim
δt→0

pij

δt
= µ

√
πj

πi
∆ij (13)

and the final transition matrix is

pij =
(
eδtκ

)
ij
. (14)

Practically, the Lagrange multipliers a and bq are derived so

that 〈N〉 and
〈
R(q)

〉
equal given values N0 and R(q)

0 estimated
from simulations or experiments.

In order to design a self-contained strategy, we intro-
duce here a way to estimate N0 and R(q)

0 directly from the
MetaD simulations. We apply concepts introduced recently
for the calculation of time-lagged independent compo-
nent analysis (tICA) correlation matrices37 and taking into
consideration that the stochastic dynamics under a meta-
dynamics bias can be rigorously described by an ordinary
differential equation with established asymptotic behavior.38

Thus, we calculate the unbiased value of the constraint
averages

R(q)
0 =

1
T

∑
t




r(q)
t − r(q)

t+δt



, (15)

where r(q)
t is the value of the collective variable at time t and T

is the total length of the trajectory, by reweighting the biased
MetaD trajectories as37

R(q)
0,MetaD =

∑
t e(V (t)−c(t))/kBT ���r

(q)
t − r(q)

t+δt′
���∑

t e(V (t)−c(t))/kBT
. (16)

Here, the correction function c(t), which can be calculated
from the bias, tends asymptotically to the irreversible work
performed on the system. Since the bias accelerates the dynam-
ics, the lag-time δt ′ must also be rescaled, as described in
Ref. 37, so that

δt = ∆t
∑t+δt′

s=t
e(V (s)−c(s))/kT , (17)

where ∆t is the trajectory time step. For validation pur-
pose, the constraints calculated from the MetaD simula-
tions were compared to those obtained from previously
published HTMD adaptive sampling simulations.11 Specif-
ically, using the MSMs built from the HTMD trajectories,
we calculated the path ensemble averages of the distances
traveled along each CV describing receptor activation (i.e.,
change in TM3-TM6 distance and NPxxYA RMSD from
the MOR inactive crystal) per unit time and compared these
values to those obtained from MetaD by application of
Eq. (16).

The kinetic model obtained from the transition matrix
pij defined in Eq. (14) was then studied using standard
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tools for MSM analysis available in PyEMMA 2.4,39 which
yielded the mean first passage times (MFPTs) reported
herein.

III. RECAPITULATING THERMODYNAMIC
PROPERTIES OF GPCR ACTIVATION

As mentioned in the Introduction, our recent study of the
dynamics and kinetics of the morphine-induced MOR acti-
vation process using an HTMD adaptive sampling protocol
revealed two metastable regions in the free-energy landscape,
referred to as intermediate I and II, in addition to metastable
regions comprising crystal-like inactive and active receptor
conformations. We showed in that work that these regions
contain highly populated conformational states of MOR with
intermediate region II exhibiting a much higher free energy
compared to the other metastable regions. We proceeded to
compare these results with those obtained from the MetaD-
based path sampling of the morphine-induced MOR activation
process (see Sec. II) and confirmed the finding of four main
metastable regions.

The reweighted free-energy landscape obtained from the
MetaD simulation of the morphine-induced activation of MOR
is shown in Fig. 1(a) as a function of CVs describing major

FIG. 1. Comparison between thermodynamic properties from MetaD and the
HTMD adaptive sampling protocol. (a) Free-energy landscape of the MetaD
simulations of the morphine-bound MOR as a function of CVs describing
major conformational changes upon receptor activation (i.e., TM3-TM6 dis-
tance and NPxxYA RMSD from the MOR inactive crystal). Overlaid gray
dots refer to the positions of the k-means centers of the free-energy land-
scape obtained from our previously published HTMD simulations of the
morphine-induced MOR activation. (b) Correlation between the populations
of each identified metastable region, i.e., the crystal-like active and inac-
tive, intermediate I, and intermediate II regions, of the free-energy landscape
of the morphine-induced MOR activation derived from MetaD or HTMD
simulations.

conformational changes occurring upon activation (i.e., TM3-
TM6 distance and NPxxYA RMSD from the MOR inactive
crystal). In this figure, overlaid gray dots correspond to the
positions of the k-means centers of the free-energy land-
scape obtained from our previously published analysis of
the HTMD adaptive sampling simulations of the morphine-
induced MOR activation.11 As evident from this figure, the
3 µs MetaD simulations we carried out explore a free-energy
landscape that is comparable to that obtained by ∼240 µs
HTMD adaptive sampling simulations, with the only excep-
tion of regions with very high free energies (i.e., interme-
diate region II). We further calculated the populations of
each metastable region, i.e., the crystal-like inactive and
active, intermediate I, and intermediate II regions of the free-
energy landscape of the morphine-induced MOR activation,
and found good agreement between the two approaches, as
shown in Fig. 1(b). Taken together, these results suggest that
well-tempered MetaD using path CVs is capable of recapit-
ulating the thermodynamic properties of complex processes,
such as GPCR activation, as seen in more computationally
intensive methods such as the HTMD adaptive sampling
protocol.

IV. REPLICATING INFORMATION TRANSFER
ACROSS THE RECEPTOR

In addition to replicating free-energy landscapes, it is also
important to verify that molecular dynamics details obtained
from the MetaD-based strategy proposed herein can be used to
capture how information is transferred from the ligand-binding
pocket to the intracellular G protein-binding region of the
receptor. To this end, we calculated (see Sec. II) the contribu-
tion of each receptor residue to the mutual information between
the ligand binding pocket and the intracellular region of the
receptor upon activation. This contribution is quantified by a
three-body co-information value calculated using (a) the first
two principal components of the positions of the heavy atoms
of the side chains inside the ligand binding pocket, (b) the two
CVs used to represent the activation process, namely, the TM3-
TM6 distance and the NPxxYA RMSD from the MOR inactive
crystal, and (c) the Cartesian coordinates of the Cα atoms of
each receptor transmembrane residue. Co-information values
larger than 1 (in absolute value) are listed in Table I of the
supplementary material.

The calculated co-information values from the MetaD and
HTMD simulation trajectories are compared in Fig. 2(a). As
mentioned in Sec. II, the more negative the co-information
value is for a given residue, the more significant is that
residue’s contribution to the information transfer between the
extra- and intra-cellular regions of the receptor. A visual-
ization of the location of the most contributing residues to
the information transfer in MOR as calculated from MetaD
or HTMD simulations is provided in Figs. 2(b) and 2(c),
respectively. As can be seen in these figures, the two sim-
ulation protocols yield similar co-information patterns, with
the majority of highly contributing residues to the informa-
tion transfer [Table I of the supplementary material and red
color in Figs. 2(b) and 2(c)] either located in the lower halves
of TM5, 6, and 7 and in H8 or in the extracellular regions of

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-026845
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-026845
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FIG. 2. Comparison between co-information values derived from MetaD and
HTMD simulations. (a) Normalized co-information values from MetaD and
HTMD simulations plotted for each MOR transmembrane residue. [(b) and
(c)] Normalized co-information values depicted on the inactive crystal struc-
ture of MOR using a color scheme ranging from white to yellow to red, where
red represents the highest contributing residues to the information transfer
between the ligand binding pocket and the intracellular region of MOR, as
derived from MetaD and HTMD simulations, respectively. Co-information
values for the loop regions were not calculated.

TM1, 6, and 7. These results suggest that the well-tempered
MetaD strategy reported herein replicates the dynamical infor-
mation obtained by HTMD simulations and can therefore
be employed as an effective tool for studying allostery in
GPCRs.

V. DERIVING KINETIC PROPERTIES
OF GPCR ACTIVATION FROM METAD
USING MAXCAL PRINCIPLE

Deriving kinetic rates directly from standard MetaD sim-
ulations is not possible because transitions are accelerated by
a bias potential in these simulations. The recently proposed
infrequent metadynamics40,41 strategy based on transition state
theory40 allows to extract unbiased kinetic information from
biased trajectories, but it requires a reduced bias deposi-
tion rate, as well as multiple validation simulations. Another
recently proposed strategy based on Girsanov reweighting
of the transition matrix42 is promising, but has yet to be

validated for large biological systems. Here, we test the effi-
ciency and accuracy of the MaxCal principle in extracting
kinetic rates from MetaD. Specifically, the MaxCal principle,
which is the maximum entropy principle applied to dynamic
quantities, allows one to construct the most probable, mini-
mally biased kinetic model that is compatible with a given
stationary distribution of the system and with a number of con-
straints imposed on the system’s kinetics that are derived here
from MetaD.14,16,43 A combination of MetaD with MaxCal
was proposed earlier in the literature to obtain optimal low-
dimensional reaction coordinates from a larger set of candidate
collective variables.44

Although the MaxCal approach has previously been
tested on various small peptides,14,43 GPCRs are far more
complex systems and an assessment that this method could
accurately capture the kinetics of GPCR activation was nec-
essary prior to its application to MetaD-derived free energies.
Thus, we first applied MaxCal to the free-energy landscape
of morphine-induced MOR activation derived from the more
computationally expensive HTMD adaptive sampling proto-
col.11 To capture the system’s dynamics as a function of two
commonly used variables that describe the activation process,
we constrained the path ensemble averages of (a) the dif-
ference in TM3-TM6 distance between pairs of microstates
and (b) the difference in NPxxYA RMSD from the MOR
inactive crystal structure between pairs of microstates. To
compare the kinetic model derived from MaxCal to that
obtained from the direct MSM analysis of the HTMD tra-
jectories, we calculated the path ensemble averages of the
TM3-TM6 distance between pairs of microstates and the
NPxxY RMSD from the MOR inactive crystal structure
between pairs of microstates to be used as constraints from
the MSM built from these trajectories (see Table II of the
supplementary material) and then applied them during path
entropy maximization. Despite using only these two con-
straints, the MFPTs between the four metastable regions of
the free-energy landscape of morphine-induced MOR activa-
tion derived from the HTMD- and the MaxCal-derived MSMs
[Figs. 2(a) and 2(b) of the supplementary material, respec-
tively] are in excellent agreement, as shown by their correlation
in Fig. 2(c) of the supplementary material. This observation
suggests that MaxCal is capable of replicating the kinetics of
GPCR activation estimated from MSM analysis of the HTMD
simulations.

To assess the effectiveness of MaxCal in obtaining from
MetaD MOR activation kinetics comparable to that obtained
from the HTMD adaptive sampling protocol,11 we recalcu-
lated the values of the aforementioned path ensemble averages
from the MetaD simulations. These values are in good agree-
ment with those obtained from the HTMD MSMs (see Table
II of the supplementary material). These MetaD-derived aver-
ages were then used, together with the MetaD-derived free
energies, to constrain the path entropy during its maximiza-
tion. The MFPTs between the most populated metastable states
obtained from the HTMD-derived MSMs and those obtained
by MaxCal from the MetaD runs are shown in Figs. 3(a)
and 3(b), respectively. As shown in this figure, the MFPTs
from MetaD simulations are, on average, within a factor of
2 of the corresponding HTMD adaptive sampling results. By

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-026845
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-026845
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-026845
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-026845
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FIG. 3. Comparison between the kinetic properties of MOR activation
derived from MetaD and HTMD simulations. The mean first passage times
(MFPTs) obtained for the most populated regions of the free-energy land-
scapes of morphine-induced MOR activation from (a) the MSMs built using
the HTMD adaptive sampling runs and (b) the MaxCal MSMs built using the
MetaD runs.

contrast, the MaxCal approach failed to replicate the kinetic
behavior of the system’s intermediate region II, which con-
tains very high free-energy areas for NPxxYA RMSDs larger
than 4 Å.

Given the difficulty associated with extracting kinetic
rates from standard MetaD simulations, it is gratifying that the
MaxCal approach provides a means for successfully estimat-
ing kinetic rates for metastable regions that are most relevant
to GPCR activation. We propose that additional constraints
derived experimentally may further increase the accuracy of
kinetic properties obtained by this integrated MetaD-MaxCal
strategy. However, a systematic assessment of the effect of dif-
ferent constraints on pathway determination and MFPT values
will be required to test this hypothesis while providing further
validation of the accuracy of kinetics properties derived from
the proposed methodology.

VI. SUMMARY AND CONCLUSIONS

Our results confirm that well-tempered MetaD with path
collective variables is a fast and reliable method for studying
the thermodynamic properties of GPCR activation. Further-
more, the propagation of information across the receptor cal-
culated from MetaD simulations is comparable to that derived

from adaptive sampling protocols, suggesting that this simu-
lation method also offers a more efficient strategy for studying
allostery in GPCRs. Finally, we show that the kinetic properties
of complex systems can be derived from MetaD simulations
using the MaxCal principle, and these results are compara-
ble to those obtained from more computationally expensive
adaptive sampling protocols.

In conclusion, MetaD can be employed as an efficient
method for studying ligand-induced activation mechanisms
in GPCRs by reducing the necessary computation time by
∼2 orders of magnitude, and its combination with Max-
Cal allows to derive kinetic properties that are in agree-
ment with those obtained by computationally more expensive
methods.

SUPPLEMENTARY MATERIAL

Tables reporting co-information details, as well as path
ensemble average values used as constraints for MaxCal esti-
mations, are available as supplementary material alongside
plots showing the convergence of the metadynamics simula-
tions and the validation of the MaxCal kinetic model based on
the HTMD free energy.
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