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Abstract

Background: Plants respond to diverse environmental cues including microbial perturbations by coordinated
regulation of thousands of genes. These intricate transcriptional regulatory interactions depend on the recognition
of specific promoter sequences by regulatory transcription factors. The combinatorial and cooperative action of
multiple transcription factors defines a regulatory network that enables plant cells to respond to distinct biological
signals. The identification of immune-related modules in large-scale transcriptional regulatory networks can reveal
the mechanisms by which exposure to a pathogen elicits a precise phenotypic immune response.

Results: We have generated a large-scale immune co-expression network using a comprehensive set of Arabidopsis
thaliana (hereafter Arabidopsis) transcriptomic data, which consists of a wide spectrum of immune responses to
pathogens or pathogen-mimicking stimuli treatments. We employed both linear and non-linear models to generate
Arabidopsis immune co-expression regulatory (AICR) network. We computed network topological properties and
ascertained that this newly constructed immune network is densely connected, possesses hubs, exhibits high modularity,
and displays hallmarks of a “real” biological network. We partitioned the network and identified 156 novel modules
related to immune functions. Gene Ontology (GO) enrichment analyses provided insight into the key biological
processes involved in determining finely tuned immune responses. We also developed novel software called
OCCEAN (One Click Cis-regulatory Elements ANalysis) to discover statistically enriched promoter elements in the
upstream regulatory regions of Arabidopsis at a whole genome level. We demonstrated that OCCEAN exhibits
higher precision than the existing promoter element discovery tools. In light of known and newly discovered
cis-regulatory elements, we evaluated biological significance of two key immune-related functional modules and
proposed mechanism(s) to explain how large sets of diverse GO genes coherently function to mount effective
immune responses.

Conclusions: We used a network-based, top-down approach to discover immune-related modules from transcriptomic
data in Arabidopsis. Detailed analyses of these functional modules reveal new insight into the topological properties of
immune co-expression networks and a comprehensive understanding of multifaceted plant defense responses. We
present evidence that our newly developed software, OCCEAN, could become a popular tool for the Arabidopsis
research community as well as potentially expand to analyze other eukaryotic genomes.
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Background
Agriculture, in struggling to meet global food demands
of a rapidly growing population, has been plagued with
plant diseases that thwart crop production and account
for a global annual average yield loss of 16 percent [1-3].
In light of the importance of agriculture to humans, it is
essential to elucidate and understand the mechanisms of
plant immunity at the molecular level. As with any host-
pathogen conflict, plants and their disease agents are in
an evolutionary arms race. When the host mounts a
defense reaction, the pathogen develops new strategies
to evade the defensive mechanisms, which causes the
continuation of this cycle, ad infinitum [4,5]. Our present
understanding of plant immune systems reveals two pri-
mary means by which plants recognize their invaders. The
recognition of Microbial-Associated Molecular Patterns
(MAMPs) is the first line of defense and its associated
MAMPs-Triggered Immunity (MTI) is highly efficient at
repelling most pathogens. If pathogens are able to breach
this first line of defense through the production of effector
proteins, plants deploy Effector-Triggered Immunity (ETI)
[4,6]. Both modes of defense cause massive transcriptional
reprogramming which involves complex signal transduc-
tion networks and cross-talk that is mediated by plant
hormones, including: Salicylic Acid (SA), Jasmonic Acid
(JA) and Ethylene (ET) [7,8]. The Arabidopsis genome
encodes approximately 1,922 transcription factors (TFs)
that are implicated in diverse biological processes in-
cluding the regulation of immune signaling pathways
[9-11]. However, the global organization of TF-DNA
interactions remains elusive. Moreover, what remains
mostly unknown are the precise mechanisms by which
the plant cell integrates innumerable synergistic and an-
tagonistic immune transcriptomic signals to orchestrate
fine-tuned and pathogen-specific defense responses.
In recent years, systems biology approaches, specific-

ally network analyses that integrate experimentally de-
rived information with computational modeling, have
emerged as powerful tools for studying complex traits in
diverse species [5,12-15]. Network biology provides com-
prehensive analyses of the system’s components (nodes)
and the relationships among them (edges). In addition,
the analyses of the topological properties of the network
can provide further understanding of the hierarchical
organization of a complex biological system and contrib-
ute to the overall interpretation of biological complexity.
In any eukaryotic cell, thousands of genes and their
products orchestrate their transcriptional and translational
activities to ensure the proper execution of cellular func-
tions [13,15,16]. It has become evident that biological
functions can be accomplished by functional modules that
are embedded within the interaction networks including
transcriptional gene regulatory networks [17,18]. Compre-
hensive high-throughput analyses of gene expression can

allow for the identification of gene clusters that are
highly correlated in expression levels across multiple
samples in any given cellular state [13,16]. Generally, it
is thought that genes in the same co-expression sub-
network are often enriched with similar functional
annotations. Additionally, the metric to measure the
co-expression falls into one of two major categories:
correlation coefficients or mutual information measures
[19]. Finally, finding common cis-regulatory elements
(transcription factor binding sites) can aid in the identifi-
cation of co-regulated gene clusters and characterization
of transcriptional regulatory networks [13,14,17].
In the current study we employed a systems biology

approach and report the construction of a large-scale
Arabidopsis immune co-expression regulatory (AICR) net-
work. We tested five diverse algorithms, i.e. PCC (Pearson
Correlation Coefficient), ARACNE multiplicative (Algorithm
for the Reconstruction of Accurate Cellular Networks),
ARACNE additive, CLR (Context Likelihood of Related-
ness), and MRNET (Minimum Redundancy NETwork)
with different thresholds, which yielded 15 pairs of experi-
mental networks along with their respective random net-
works [19-25]. We employed network biology analyses
and determined that ARACNE multiplicative network
(5,147 nodes and 38,610 edges), with threshold of 0.8
exhibits properties of a “true” network as it possesses
the scale-freeness attribute (degree distribution follows
a power law). Next, we partitioned the AICR network
and predicted 156 functional modules containing at
least six members with the largest module encompass-
ing 178 nodes. Subsequently, we analyzed functional
annotations of genes within each module and calculated
enrichment of specific Gene Ontology terms to evaluate
the biological significance of functional modules. To es-
tablish a causal relationship between co-expression and
co-regulation, we sought to identify common cis-regula-
tory elements. First we developed a new, comprehensive
software interface for cis-regulatory elements discovery in
Arabidopsis (named OCCEAN - One Click Cis-regulatory
Elements ANalysis). We demonstrated that OCCEAN
boasts higher capacity (can process the entire genome
scale; over 30 million characters in a single run) and
features higher precision than MEME (Multiple EM
for Motif Elicitation). We identified several statistically
enriched novel cis-regulatory elements in our dataset.
Finally, we evaluated and discussed key immune-related
functional modules.

Results and discussion
Construction of the Arabidopsis immune co-expression
regulatory (AICR) network
To generate a large-scale immune co-expression net-
work, we selected Arabidopsis transcriptomic data that
encompassed the broadest possible spectrum of immune
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responses to pathogens or pathogen-mimicking stimuli
treatments [26-34]. Previously, we have employed the
same set of experiments to define transcriptional re-
sponses of genes that encode the proteins identified in
plant-pathogen immune network, version 1′ (PPIN-1) [5]
(Additional file 1: Table S1 and Additional file 2: Support-
ing methods). We compiled the lists of probes showing
significant up- or down-regulation and discovered 8,377
differentially expressed genes, which subsequently were
used to build a comprehensive immune co-expression
network (Additional file 3: Table S2). In a co-expression
network, the nodes represent the genes and the edges
(lines connecting nodes) represent the similarity/related-
ness between the genes, which is generally measured by
the Pearson correlation coefficient (PCC) [18]. PCC and
other measures of association determine the degree of lin-
ear dependencies between the variables [19]. While these
association models have obvious statistical advantages,
they lack the ability to capture non-linear relationships
[35]. In contrast, mutual information (MI) is a non-linear
statistic that provides an attractive alternative to measure
biologically significant non-linear relationships [36]. We
used both linear and non-linear models to generate Arabi-
dopsis immune co-expression regulatory (AICR) network.
To measure linear associations between two genes, we cal-
culated the PCC values for all of the genes in a matrix of
8,377 × 8,377 (over 70 million combinations). Then, we
employed both a similarity threshold algorithm (a prede-
fined single cut-off value) as well as a newly developed
and parameter-free algorithm termed mutual k-nearest
neighbor (mKNN) to process the calculated PCC values
[18]. mKNN was recently shown to possess several advan-
tages over the commonly used similarity threshold algo-
rithm [18]. Using the linear model, we generated seven
pairs of experimental networks along with their respective
random networks, i.e., PCC (0.9), K3, K10, K20, K50,
K100 and K250 (Table 1). To infer non-linear association
between immune-related genes, we employed four recently
used MI methods: ARACNE multiplicative (Algorithm for
the Reconstruction of Accurate Cellular Networks), ARA-
CNE additive, CLR (Context Likelihood of Relatedness),
and MRNET (Minimum Redundancy NETwork) with
0.8 and 0.9 thresholds. Specifically, we employed the
‘parmigene’ package (PARallel Mutual Information esti-
mation for GEne NEtwork reconstruction, an R package) to
construct eight Additional experimental networks [21-25].
It has been recently shown that the MI estimator im-
plemented in parmigene provides more precision and
unbiased results compared with previous MI estimators
(Figure 1). Our approach to initially build multiple ex-
perimental and random networks using both linear and
non-linear models is aimed to determine an optimal ex-
perimental network that displays topological properties
of a “real” biological network [15].

Global topological properties of the AICR network
Network topology refers to the arrangement or pattern
of interactions within a network. The majority of natur-
ally occurring networks, including biological networks,
maintain certain topological characteristics in terms of
their structure and organization that are significantly dif-
ferent from random networks [15,37,38]. Therefore, in
an initial experiment, we computed degree of distribu-
tion for all 15 pairs of experimental networks along with
their respective random networks. We found that two
networks, ARACNE multiplicative (5,147 nodes and
38,610 edges) and ARACNE additive (5,147 nodes and
32,972 edges), with threshold of 0.8 exhibit the scale-
freeness attribute (degree distribution follows a power
law), when compared with all random networks and other
experimental networks (Figure 2). Since the precision of
parmigene-based ARACNE multiplicative is better than
ARACNE additive, we selected ARACNE multiplicative
with threshold 0.8 as the “true” experimental AICR net-
work [25].

“Real-world networks” tend to form high-density clus-
ters and exhibit a clustering coefficient that is signifi-
cantly higher than expected by random chance [14,18].
Therefore, we computed clustering coefficients of the
AICR network and its corresponding random network
(Figure 3). A clustering coefficient describes the degree
of congregation among the nodes of a graph. The distri-
bution of the average clustering coefficient in the AICR
ranges between 0.4-0.8 and the frequency of the number

Table 1 Comparison of multiple algorithms used to
generate Arabidopsis Immune Co-expression (AICR)
Network

Algorithm Threshold Nodes Edges

PCC K = 3 Top 3 8250 1371822

PCC K = 10 Top 10 8336 1374677

PCC K = 20 Top 20 8358 1379968

PCC K = 50 Top 50 8369 1396874

PCC K = 100 Top 100 8373 1453118

PCC K = 250 Top 250 8377 1758775

PCC 90.00% 8377 2755191

ARACNE additive 90.00% 1999 10253

ARACNE multiplicative 90.00% 1999 10253

MRNET 90.00% 1999 3493

CLR 90.00% 12 11

ARACNE additive 80.00% 5147 32972

ARACNE multiplicative 80.00% 5147 38610

MRNET 80.00% 5058 6049

CLR 80.00% 57 60

PCC, pearson correlation coefficients; ARACNE, algorithm for the reconstruction
of accurate cellular networks; CLR, context likelihood of relatedness; MRNET,
minimum redundancy NETwork.

Tully et al. BMC Genomics 2014, 15:421 Page 3 of 14
http://www.biomedcentral.com/1471-2164/15/421



of neighbors with higher clustering coefficient in the
AICR is significantly greater than in a random network
(Figure 3). To understand how the differences in the
number of connections impact the topology of our co-
expression network, we measured the shortest path (short-
est distance between all pairs of nodes) and the closeness
centrality (the inverse sum of shortest distances to all other
nodes from a focal node) (Additional file 4: Figure S1 and
Additional file 5: Figure S2) [39]. The path lengths for
the majority of the nodes in the AICR are significantly
shorter than those of a random network (Additional file 4:
Figure S1). In addition, the number of neighbors with
significantly higher closeness centrality (threshold 0.2)
is higher in the AICR network compared with random
network (Additional file 5: Figure S2). In biological net-
works, highly connected nodes (hubs) and nodes cen-
tral to the network (betweenness) are thought to play
significant regulatory roles on their adjacent nodes.
Thus, we computed several topological properties in-
cluding shared neighbor distribution (number of inter-
action partners shared between two nodes) (Additional
file 6: Figure S3), neighborhood connectivity distribu-
tion (average connectivity of all neighbors) (Additional
file 7: Figure S4), topological coefficients (the tendency

of the nodes in the network to have shared neighbors)
(Additional file 8: Figure S5) and betweenness centrality
(nodes’ centrality in a network) (Figure 4) [37,38]. These
data suggest that the AICR network is not randomly orga-
nized and shares properties of several previously described
biological networks [5,12-15]. Another important character-
istic of scale-free networks is the presence of a main com-
ponent. Connected component analyses discovered that the

Figure 1 Construction of Arabidopsis immune co-expression regulatory (AICR) network. Network is displayed in Prefuse Force Directed
Layout algorithm in Cytoscape. A node (blue circle) represents genes and a grey edge linking two nodes indicates the co-expression relationship
between these two nodes based on Pearson Correlation Coefficient (PCC). Red nodes represent the proteins present in Plant-pathogen Interaction
network (PPIN-1) [5]. The common feature of experimental the AICR network is listed on the bottom.

Figure 2 Degree distribution of the AICR. Frequency of the
degree of the AICR (blue circles) and random (red diamonds) networks
are indicated in log scale. Presence of highly connected nodes (hubs)
can be observed in the AICR network.
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AICR network comprises 63 disconnected components,
each containing at least six members. The main com-
ponent in the AICR network has 2379 nodes and 33214
(86%) edges. The second largest component contains
only 79 nodes and 310 edges. This qualitative global
topology of the AICR network is similar to previously
known biological networks in Arabidopsis and other eu-
karyotes [14,40]. In addition, network biology analyses re-
vealed that degree distribution of main component of the
AICR follows a power law compared to the main compo-
nent of a random network with similar size (Additional
file 9: Figure S6 and Additional file 10: Figure S7).

Biological implications of topological properties of the
AICR network
Topological properties of the network can also be uti-
lized to prioritize genes for further functional analysis.

Highly connected and highly centered nodes are likely to
play crucial roles in maintaining network integrity and
controlling information flow throughout the plant immune
system. Specifically, we identified 190 highly connected
nodes (Hub50 encompassing at least 50 connections in the
AICR). To characterize the significance of these highly
connected proteins, we combined Hub50 of the AICR with
biophysical interactions from plant-pathogen immune
network, version 1′ (PPIN-1; Figure 1) [5]. The PPIN-1
was constructed using effectors (virulence factors) from
two pathogens, Arabidopsis immune proteins, and ~8,000
other Arabidopsis proteins covering almost one-third of
the genome [5]. Pathogens utilize effector molecules to re-
wire the host network in a manner conducive to pathogen
proliferation and dispersal [41]. PPIN-1 discovered 165 ef-
fector interacting proteins (effector targets) and it was also
demonstrated that these effector targets are highly inter-
connected host proteins [5]. Despite the unavailability of
effector targets from the entire Arabidopsis genome in
PPIN-1, we found that the AICR network contains 51 ef-
fector targets and three proteins (At3g63210, At4g11890
and At3g07780) are Hub50 in the AICR network (Figure 1).
Given that transcriptional regulation does not necessarily
coincide with biophysical interactions, this overlap is po-
tentially significant and biologically meaningful. This also
suggests that pathogen effectors target key regulatory pro-
teins in both transcriptional as well as protein-protein in-
teractions networks.
In addition, we selected ninety nodes (“top 90”) with the

highest betweeness centrality (Figure 4). Among them, we
found a number of previously characterized immune regu-
lators or defense-related proteins, encompassing various
levels of signal transduction flow: resistance proteins (RPP4,
uncharacterized TIR-NBS-LRR) [42,43], kinases mediating
early signaling events (MAPKKK13, WAK) [44], transcrip-
tional executors (ANAC072, WRKY54, MYB66, WER1)
[45-47], secretory proteins assisting with folding and
modification of newly synthesized proteins (TRAP, CNX3,
Sec14p, cyclophilin, UDP-Glycosyltransferase, DnaJ family,
KMS1, GlcNAc1pUT2) [48,49], enzymes involved in
production of phytohormones and antimicrobial com-
pounds (AOC2, ILL3, PAL2) and pathogenesis-related
proteins (PR1) [50,51], hormonal response modulators
(PYL6, IAA28) [52,53] and finally, components of ubiquitin-
mediated protein degradation (UBQ4, an F-box protein
that interacts with SKP1) [54,55]. Identification of these
key immune regulators serves as a proof of concept for
our analytical approach and justifies further analyses on
suite of “top 90” proteins selected among thousands of
other proteins in the AICR network.

Network clustering and module annotations
Another essential feature of a majority of biological net-
works is their ability to naturally organize into modules

Figure 4 Betweenness centrality of the AICR. Frequency of
Betweenness centrality of the AICR (blue circles) and random (red
diamonds) networks are indicated.

Figure 3 Average clustering coefficient of the AICR. A plot
between number of neighbors (X-axis) and average clustering coefficient
(Y-axis) is drawn representing the AICR (blue circles) and random
(red diamonds) networks.
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[14,17,18]. Discovery of such functional modules within
biological networks is imperative for understanding prin-
ciples of cellular organization and functions. To identify
functional modules (subnetworks) that are comprised of
highly interconnected sets of genes within the AICR
network, we employed a fast agglomerative algorithm
(FAG-EC) [56]. This new, low time complexity algorithm
operates based on a local variable, edge clustering coeffi-
cients, making it ideal to partition a relatively large net-
work [37,56]. Overall, we identified 156 immune-related
functional modules containing at least six members with
the largest module encompassing 178 nodes (Additional
file 11: Table S3). Furthermore, we subjected the AICR
network to a module size distribution analysis. We com-
puted the frequency and module size and demonstrated
that the distribution of the module size follows a power
law distribution with an exponential truncation (Additional
file 12: Figure S8), which is common for several previously
described “real-world” networks [14,18]. The module
size distribution property further indicates that the
AICR network possesses a modular structure.
We also investigated the enrichment of Gene Ontology

(GO) terms [57,58] in the ten largest immune-related mod-
ules (“top 10”) with sizes ranging from 38 to 178 distinct

nodes using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.7 [59] (Additional
file 13: Table S4). The GO enrichment terms are re-
markably informative in examining significant biological
functions among co-expressed genes in large-scale net-
works [58,59]. Several gene ontology (GO) categories
were enriched (p-values >0.01) among the genes in the
AICR network (Table 2). These major GO categories in-
clude: immune-related, plastid, reproductive processes,
nucleotide binding/kinases, intrinsic to membrane, metal-
binding, mitochondrion and non-membrane-bounded
organelle. We utilized these GO enrichments in com-
bination with significantly enriched cis-regulatory elements
to define the potential functions of the immune-related
modules (described below).

Development of OCCEAN software and identification of
cis-regulatory elements
We sought to investigate whether all or a subset of the
co-expressed genes within a given immune-related mod-
ule are also co-regulated (i.e., are direct targets of a com-
mon transcription factor). Given that transcriptional
regulatory networks are highly complex and that func-
tional modules may display crosstalk among themselves,

Table 2 Significantly enriched GO terms in the ten largest immune-related modules with sizes ranging from 38 to
178 genes

Module Go term Count % P value Fold enrichment

1 GO:0000166 ~ nucleotide binding 46 25.84 6.946003862092387E-5 1.732

1 GO:0006796 ~ phosphate metabolic process 31 17.42 5.723269851412882E-7 2.705

1 GO:0004672 ~ protein kinase activity 29 16.29 2.6741028021510666E-8 3.278

1 GO:0008219 ~ cell death 14 7.87 4.2878037087740953E-7 6.123

2 GO:0009536 ~ plastid 31 30.69 9.044388056227762E-4 1.748

2 GO:0004672 ~ protein kinase activity 12 11.88 0.007513 2.463

2 GO:0019748 ~ secondary metabolic process 8 7.92 0.003083 4.073

3 GO:0009536 ~ plastid 36 49.32 3.047542263866877E-10 2.718

3 GO:0055114 ~ oxidation reduction 11 15.07 0.002191 3.019

4 GO:0005886 ~ plasma membrane 16 22.22 0.001229 2.356

4 GO:0006793 ~ phosphorus metabolic process 14 19.44 9.785189944953485E-5 3.418

5 GO:0009628 ~ response to abiotic stimulus 9 15.52 0.009708 2.845

5 GO:0005618 ~ cell wall 5 8.62 0.056662 3.316

6 GO:0009507 ~ chloroplast 22 44.00 1.0752825917609916E-5 2.499

6 GO:0051186 ~ cofactor metabolic process 7 14.00 2.8760079199003342E-5 10.975

7 GO:0000166 ~ nucleotide binding 12 25.53 0.044134 1.777

8 GO:0009725 ~ response to hormone stimulus 8 17.39 0.001339 4.400

8 GO:0006793 ~ phosphorus metabolic process 6 13.04 0.093212 2.354

9 GO:0031224 ~ intrinsic to membrane 13 33.33 0.002493 2.407

9 GO:0006793 ~ phosphorus metabolic process 8 20.51 0.008887 3.139

10 GO:0032555 ~ purine ribonucleotide binding 10 26.32 0.083444 1.765

10 GO:0005886 ~ plasma membrane 8 21.05 0.052468 2.151
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we can also expect that the same transcription factor can
regulate co-expressed genes in multiple immune-related
modules. Whereas experimentally verified plant cis-regula-
tory elements can be retrieved from PLACE (A Database of
Plant Cis-acting Regulatory DNA Elements) [60], Athena
(Arabidopsis thaliana expression network analysis) [61] and
AGRIS (The Arabidopsis Gene Regulatory Information
Server) [11,62], only ~120 cis-regulatory elements are cur-
rently known in Arabidopsis, and a limited set of ~30
immune-related cis-elements have been described. In
addition, the prediction of cis-elements from classical
approaches is typically driven by a single experiment or
dataset. Moreover, the currently available online motif
discovery software has limited capacity to process a
small number of gene entries. For example, frequently
used software MEME (Multiple EM for Motif Elicitation)
can only process up to 60,000 characters in a single run
(e.g., 60 promoters, each of 1,000 bp in length) [63,64].
Another common software used to predict cis-regulatory
elements, AthaMap (Arabidopsis thaliana Map) can only
manage up to 200 gene entries [65]. These limitations can
substantially decrease the chance of identifying novel cis-
regulatory elements. Thus, we first aimed to develop
OCCEAN (One-Click Cis-regulatory Element ANalysis)
software that can process the promoter gene sequences at
the entire genome scale (over 30 million characters) in a
single run. OCCEAN identifies the statistically enriched/
depleted cis-regulatory elements (Figure 5) and integrates
data from (i) our newly developed BLASTN-based pro-
gram to identify short sequences and (ii) an improved
version of the bootstrapping tool POBO (a promoter
bootstrapping program) [64]. This user-friendly software
requires the sequences in FASTA format as input, pro-
cesses genome-scale level sequences, identifies common

sequences in a given set of promoters, performs boot-
strapping, and provides statistically enriched cis-regulatory
elements in the gene’s promoter as the output. OCCEAN
is freely available online at http://occean.cis.uab.edu:8080/
occean/. We employed OCCEAN to individually process
the sequences of immune-related genes’ promoters for
our “top 10” immune-related modules. The promoter
sequences of the genome (33,323 genes) were used as
background to compute the fold enrichments of putative
cis-regulatory elements. We also analyzed the occurrences
of all the putative cis-regulatory elements (cluster mean),
performed 1,000 × bootstrapping to determine the back-
ground mean and finally calculated fold enrichment ratios
for all six-mer sequences. Three different fold enrichment
ratios (≥4, ≥ 3 and ≥ 2) prioritized newly identified cis-
regulatory elements in “top 10” immune-related modules
(Additional file 14: Table S5). To analyze the performance
and robustness of our newly developed software, we
compared the efficacy of OCCEAN with MEME. We
generated a list of experimentally known cis-regulatory el-
ements and computed the precision of both OCCEAN
and MEME using cis-regulatory elements identified in our
top 10 immune-related modules. MEME was unable to
compute the analyses on top 4 immune-related modules
as it can’t process over 60,000 characters simultaneously.
We computed true positives (nTPs), false positives (nFPs)
and precision for MEME as well as OCCEAN enrichment
ratios ≥ 4, ≥ 3 and ≥ 2 (Figure 6). We selected an enrich-
ment ratio ≥ 3 as the optimal value for OCCEAN as it
yields a higher number of nTPs, significantly fewer nFPs
positives and greater precisions compared with enrich-
ment ratios ≥ 4 and ≥ 2. In summary, we demonstrated
that OCCEAN boasts higher capacity (can process the en-
tire genome scale; over 30 million characters in a single run)

Figure 5 Screenshot of OCCEAN (One Click Cis-regulatory Elements ANalysis). Results can be obtained as an excel sheet and Additional
information can be accessed in pop-up windows.
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and features higher precision than MEME (Figure 6).
Identification of cis-regulatory elements among co-expressed
genes could provide additional information for predic-
tion of biological function.

Inferring biological relevance of immune-related modules
To fend off potential pathogens, plants employ two
major types of immune responses: MAMPs-Triggered
Immunity (MTI) and Effector Triggered Immunity (ETI)
[4]. ETI is essentially a high amplitude re-booting of the
immediate but weaker MTI. ETI results in robust dis-
ease resistance responses, including localized host cell
death (hypersensitive response; HR) and systemic signal-
ing [4]. In addition, upon pathogen recognition at the
MTI and/or ETI levels, the plant cell undergoes extensive

transcriptional changes involving complex reiterative sig-
naling networks and cross-talk controlled by phytohor-
mones [66]. This leads to the metabolic reprogramming
and production of an array of antimicrobial compounds
[27]. Here we highlight two major immune-related func-
tional modules, the largest identified Module 1 (Figure 7,
Additional file 11: Table S3 and Additional file 13: Table
S4) and a more compact Module 8 (Figure 7, Additional
file 15; Supporting results, Additional file 11: Table S3 and
Additional file 13: Table S4) as two most representative
gene clusters reflecting the broad array of diverse patho-
gens and immune stimuli used in the microarray experi-
ments employed in our analyses. Module 1 is the largest
module identified by our clustering analyses and com-
prises 178 nodes, 15,720 edges, clustering coefficient of
0.692 and network density of 0.499. The genes of Module
1 are enriched in three major GO categories: (1) kinases/
ribonucleotide binding, (2) immune responses/programmed
cell death and (3) transmembrane proteins.
Diverse kinases account for the major functional cat-

egory of Module 1, encompassing 46 out of 178 proteins
representing receptor-like kinases (RLKs), mitogen-activated
protein kinases (MAPKs), calcium-dependent protein
kinases (CDPKs), wall-associated kinases (WAKs), etc.
Typically, RLKs perceive MAMPs such as flg22, elf18,
chitin and OGs and trigger MTI [27]. Subsequently, a
MAPK cascade is activated and downstream signaling
ensues including phytohormonal crosstalk [8,27,44,67].
These events result in the activation of a wide-spectrum
of immune responses, such as induced biosynthesis of
phytoalexins and other antimicrobial secondary metabo-
lites such as glucosinolates, calcium influx, as well as pro-
duction and accumulation of reactive oxygen species
(ROS) [27,68].
At the second, more powerful layer of the immune re-

sponse, plants usually deploy NLR receptors (nucleotide-
binding domain and leucine-rich repeat receptors; a
major class of R proteins). The NLR receptors directly
recognize specific effectors or indirectly detect effector
activities and trigger ETI [1,2,6,7]. We discovered 8 NLR
genes in the kinase sub-cluster of Module 1. These in-
clude proteins conferring resistance to diverse pathogens
such as Pseudomonas syringae, Albugo candida, Hyalo-
peronospora arabidopsidis and various Fusarium races.
The second most abundant GO category in Module 1

was immune-related genes (count: 32). This functional
sub-cluster contains various defense-related transcrip-
tion factors such as WRKY15, WRKY33, MYB113 and
ANAC061 [9,47], four members of the RING-H2 finger
protein family, a heat shock transcription factor HSF A-4a
[53], an ethylene-responsive transcription factor ERF105
and, intriguingly, three scarecrow-like GRAS family tran-
scription factor genes, known to be primarily implicated in
plant root development [69-71]. Collectively, transcription

Figure 6 Performance and accuracy of OCCEAN. True positives
(nTPs), false positives (nFPs) and precision for MEME as well as OCCEAN
with multiple enrichment ratios are shown.
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factor genes account for over 40% of this sub-cluster’s
gene count. In addition, we identified a small group of
genes strongly associated with response to fungal cell
wall elicitor chitin, such as two auxin-regulated SAUR
genes, one lectin-like, Enhanced Disease Susceptibility 1
(EDS1) and senescence-associated protein SAG102 [72-76].
Another enriched GO category in Module 1 was

membrane-associated proteins including both plasma
membrane- and organellar membrane-resident peptides;
not surprisingly, the largest class of these membrane
proteins is transporters. In plants, uptake and translocation
of nutrients play essential roles in physiological processes
including plant growth, nutrition, signal transduction, and
development [77-79]. Transport processes are also critical
for the reallocation of resources and it was previously
shown that defense signals cause realignment of transport
activities to redirect resources toward immune responses
and protect tissues of high value [80]. Of 31 genes assigned
to this sub-cluster, seven were transport proteins (22.6% of
this sub-cluster’s gene count). The prevailing class was
sugar (galactose and sucrose) transporters, in agreement
with the fact that this class of proteins constitutes a key
component for carbon partitioning at the whole plant
level and is involved in both symbiotic and parasitic
plant-fungi interactions [81]. Additionally, we identified

CNI1 (Carbon-Nitrogen Insensitive 1) that is a key regu-
lator of the Carbon/Nitrogen response for growth
phase transition in Arabidopsis seedlings [82], as well
as ATP Binding Cassette (ABC) and inorganic phos-
phate transporters that were previously postulated to
be required for organ growth, nutrition, development,
and stress responses [83]. Last but not least, we also
identified two other well-known immune regulators:
Syntaxin 121/PEN1 and MLO2 genes, required for re-
sistance against barley powdery mildew, Blumeria graminis
sp. hordei and a fungal pathogen Colletotrichum higginsia-
num [84,85].
Another essential aspect of large-scale transcriptomic

analyses is to link co-expression with co-regulation, i.e., to
determine presence of common cis-regulatory elements
among genes of the same module. Several known cis-
regulatory elements were discovered in the promoters
of Module 1 genes (Additional file 14: Table S5). Two of
the enriched elements, TCATGG and CATGGA, overlap
with the octadecameric CArG box sequence 5′-CTTACC
TTTCATGGATTA-3′, identified in the APETALA3 pro-
moter [86]. APETALA3, a class B homeotic organ iden-
tity gene, was originally discovered as the central
regulator of petal development in Arabidopsis flowers,
but later also shown to be involved in control of the

Figure 7 Inferring molecular functions of the immune-related modules. Module 1 (top) and Module 8 (bottom) is presented. Module 2 is
displayed in dark and light green colors. Red and green nodes represent up-regulation and down-regulation of genes within these modules by
OGs (oligogalacturonide) and flg22 (flagellin 22). The most over-represented biological process GO term was indicated with each module.
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floral meristem proliferation, regulation of flowering time,
and other plant reproductive processes [87-89]. Inhibition
of reproductive processes is an expected outcome of an im-
mune stimulation, given the recent report describing a tran-
sition from growth to defense following immune stimuli
treatments in Arabidopsis [53]. Involvement of a develop-
mental regulator in defense responses is not unprecedented
and was previously shown for a MYB-related gene ASYM-
METRIC LEAVES 1 (AS1) [90].
Jasmonic Acid (JA) and Ethylene (ET) are two plant

hormones antagonistic to SA [91] and down-regulation
of major JA/ET signaling proteins will promote SA signal-
ing by suppressing the JA/ET pathway [67]. Consistent
with this observation, we identified an enriched element,
ATCTTG that resembles the binding site for Ethylene-
Insensitive 3 (EIN3) and three EIN3-LIKE (EIL) proteins
[92] as well as two hexamers GTCGTC and CGTCGT,
which overlap with the core binding site of JASE2 motif
in two JA biosynthetic genes OPR1/OPR2 [93]. Recently,
EIN3 and EIL1 were shown to negatively regulate MAMP-
triggered immunity via a direct binding and down-
regulation of the SA biosynthetic gene SID2 [94]. Given
that OPRs are implicated in JA biosynthesis, we expect
a fine-tuned interplay between SA and JA/ET signaling
pathways [95]. In addition, several novel cis-regulatory
elements were discovered in our study (Additional file 14:
Table S5), and the identity of the cognate transcription
factors and their functional relevance will be subject to
future studies. Very recently, it was demonstrated that
numerous transcription factors can recognize secondary
elements, which in some cases are completely sequence-
unrelated to the primary element [96]. In conjunction with
this study, our analysis of Module 1 shows that ARR14
(a MYB family transcription factor) not only recognizes
the known primary cis-regulatory element AGATA/
TCG but also can specifically bind to a previously un-
known cis-regulatory element AGATCT. Thus, it’s likely
that transcription factor(s) have extended list of binding
specificities beyond the currently known cis-regulatory
elements. We propose that the above described tran-
scription factors and additional unknown regulatory
proteins coordinate the gene regulation in this module.
Our data provide further insights into the transcrip-

tional regulatory mechanisms repressing additional puta-
tive negative regulators of plant defense upon treatments
with pathogen-mimicking stimuli.

Conclusions
In this study, we used a systems-level network biology
approach to construct genome-wide Arabidopsis im-
mune co-expression network and demonstrated that this
network shares properties of a ‘real-world network’.
Topological properties-based partitioning allowed us to
unravel 156 distinct immune-related functional modules.

We demonstrated that nodes in the same module are not
only highly correlated at the expression level but also
densely connected to each other. Detailed analyses of two
key immune-related modules provided a systems-level un-
derstanding of how plant cells coordinate distinct immune
signals to orchestrate fine-tuned and pathogen-specific
defense responses. Our novel approach to discover cis-
regulatory elements using OCCEAN is an effective method
of solving the issue of finding novel motifs within a se-
quence set. OCCEAN has advantages over other programs
of the same purpose, such as APPLES (Analysis of Plant
Promoter-Linked Elements) and MEME [63,97]. APPLES
requires finding organisms of a specified relational distance
for comparison, which can burden the user, and MEME
has the statistical risk of discarding actual existing motifs.
These problems are avoided in our solution whilst continu-
ing to maintain a fair amount of focus on client-side
simplicity. In addition, OCCEAN has the capacity to be
expanded for analyses of other eukaryotes genomes,
such as fly and human. Our systems-level approach to
examine cis-regulatory elements (the putative transcrip-
tion factor binding sites) in the promoters of the co-
expressed genes made it possible to link co-expression
to co-regulation of genes in the same module.

Methods
Data download, selection criteria for differentially expressed
(DE) genes dataset and promoter sequence acquisition
We utilized available transcriptomic data of transcrip-
tional responses extracted from 271 microarray experi-
ments representing nine major immune-related studies
(Additional file 1: Table S1 and Additional file 2: Support-
ing methods) [26-34]. Priority was given to well-referenced
studies, employing the Affymetrix ATH1 GeneChip array,
encompassing the broadest possible spectrum of plant
defense responses upon pathogen infections or pathogen-
mimicking stimuli treatment (Additional file 2: Supporting
methods). Lists of probes showing significant up- or down-
regulation in each experimental condition were compiled,
using criteria for significance employed in the respective
original study (Additional file 3: Table S2). This led us
to the identification of a list 8,377 genes differentially
expressed between all treatments [5]. For each of these
genes, we acquired 1000 bp upstream of the transcrip-
tional start site from TAIR Version 10 at www.arabi-
dopsis.org [98]. These upstream regions were searched
for putative transcription factor binding sites.

Network construction, topological properties, network
clustering and Gene Ontology (GO)
The microarray data presented in Additional file 3: Table S2
was used to construct a gene co-expression network
using both linear and non-linear models. In the linear model,
Pearson Correlation Coefficients (PCC) was measured
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based on the mutual k-nearest neighbor method of
Ruan et al. [18,97] with some modifications. In contrast
to Ruan et al. [18,97], the k-list for each gene included
k-1 other genes, and at least one (and possibly more)
gene sharing the smallest of the k PCCs. For example,
for a k of 10, the k-list might include 9 genes in order
of decreasing PCC and one or more genes having the
next lower PCC value. This was done in consideration
of the fact that all genes of equal PCC are equally valid
as connected nodes. Random networks were con-
structed by randomly assigning gene expression values
(0 = no change, +1 = up-regulated, −1 = down-regulated)
to the genes from the immune transcriptional profiling
experiments. The network based on PCC-threshold was
inferred by first calculating the PCC for every gene-
gene pair in the dataset yielding 8,377 × 8,377 PCC
values. These values were tested against 0.9 threshold
and only the PCC values that were greater than or
equal to 0.9 were selected to indicate that there is an
edge between this gene pairs. Other values were dis-
carded. R was used to calculate the non-linear mutual
information (MI) [99]. First the MI was calculated using
parmigene package were the MI for every gene pair was
calculated resulting in 8377 × 8377 MI values [25]. Then
these values where used by the ARACNE multiplicative
(Algorithm for the Reconstruction of Accurate Cellular
Networks), ARACNE additive, CLR (Context Likelihood
of Relatedness), and MRNET (Minimum Redundancy
NETwork) algorithms, using the same package, to infer a
weighted adjacency matrix [21-25]. 80% and 90% of the
maximum MI values in each weight adjacency matrix
were chosen as the threshold to determine the existence
of an edge between each pair of genes. If the value is
greater than or equal to the threshold, this indicates an
edge between a given pair of genes.
A modified and parallelized Cytoscape version 2.8.4

[37,38] and the Clusterviz version 1.2 (FAG-EC algorithm)
[37,38,56,100] and ClusterMaker version 1.10 [100,101]
plugins were used to visualize this network, calculate its
parameters and network topological properties. Network
partitioning was performed using FAG-EC algorithm
[56,100] and the Markov Clustering Algorithm [102]. For
each gene in the network sub-clusters, a Gene Ontology
[57,58] molecular function and biological process was
assigned from the Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.7 [59].
BLAST-based generation of common cis-regulatory el-

ements Sequences obtained from TAIR [98] (1000 bp 5′
of the transcription start site) were incorporated into a
local BLAST [103,104] database using the formatdb util-
ity that is included in NCBI’s package download of
BLAST. Each sequence in the local BLAST database was
used in turn as a query sequence to find subsequences
shared in the promoter regions of a number of genes.

The resulting common subsequences were imported into
a relational database. Similar sequences with at least
75% identity and an E-value ≤ 1× 10−4 were scanned
using a sliding window search in order to extract all
contained 6-mers. All 6-mers having no more than four
consecutive single nucleotide repeats were deemed puta-
tive transcription factor binding sites and retained for
further computational analysis. This process has been in-
corporated into our web-accessible tool, OCCEAN.

Statistical enrichment of cis-regulatory elements using
modified version of POBO
Putative transcription factor binding sites results from
BLAST were analyzed for statistically significant over
representation/under representation using the POBO
(a promoter bootstrapping program) tool [64]. POBO
is an exceptional tool for statistical sequence signifi-
cance analysis, but is inhibited by the constraint that it
can perform analysis only on one cis-regulatory element at
a time. As our sequence sets were high in number, manual
entry would be infeasible. Therefore, a wrapper program
was written to take each individual sequence, create a
cluster file consisting of the set of promoter identifiers/
sequences from the original experimentally found gene
promoter dataset that contain the sequence, and run an
instance of POBO with the sequence and cluster file as in-
put. The program then extracted the desired information
from the resulting HTML files from all of the individual
runs and put them in a single spreadsheet for analysis.
Running POBO locally required downloading the source
code from http://ekhidna.biocenter.helsinki.fi/poxo/pobo/
and setting up a local MySQL database with all known
Arabidopsis gene promoters corresponding to ~33,000
genes as the background data. 1 kb promoter sequence for
all ~33,000 genes were obtained from the TAIR10 genome
release, and used as background for the POBO analysis.
The POBO results were converted to spreadsheet format
for further analysis. True positives (nTPs), false positives
(nFPs) and precision for MEME as well as OCCEAN were
calculated as described in [25].

Development of One-Click Cis-Element ANalysis (OCCEAN)
software for genome-wide identification of cis-regulatory
elements
The bulk of OCCEAN on the server-side was developed
in the Java language (version 7) using Apache Tomcat
(version 7, as well) on a Linux server. A Java Servlet inter-
face was used to communicate with OCCEAN’s web inter-
face. OCCEAN automates and integrates the information
obtained from BLAST and POBO analysis. This user
friendly software requires promoter sequences in FASTA
format. Background sequences of the species under study
are imbedded in the software. OCCEAN is time-efficient
and will return a link to the file containing the results the
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BLAST and POBO. OCCEAN’s web interface was devel-
oped using HTML, CSS, Javascript, and AJAX for in-page
update notifications.

Additional files

Additional file 1: Table S1. Differentially expressed (DE) genes that
were determined from defense-related experiments.

Additional file 2: Supporting methods Transcriptomic data of
transcriptional responses extracted from 271 microarray experiments
representing nine major immune-related previous studies.

Additional file 3: Table S2. AGIs of the up-regulated and down-regulated
genes derived from Table S1 studies.

Additional file 4: Figure S1. Distribution of shortest paths in the AICR
(blue circles) and random (red diamonds) networks.

Additional file 5: Figure S2. Closeness centrality property of the AICR
network. Distribution of closeness centrality in the AICR (blue circles) and
random (red diamonds) networks.

Additional file 6: Figure S3. Evaluation of frequency of number of shared
neighbors in the AICR (blue circles) and random (red diamonds) networks.

Additional file 7: Figure S4. Determination of neighborhood connectivity
frequency in the AICR (blue circles) and random (red diamonds) networks.

Additional file 8: Figure S5. Distribution of topological coefficients in
the AICR (blue circles) and random (red diamonds) networks.

Additional file 9: Figure S6. Degree distributions of main components
in the AICR (blue circles) and random (red diamonds) networks.

Additional file 10: Figure S7. Betweenness centrality of main
components in the AICR (blue circles) and random (red diamonds) networks.

Additional file 11: Table S3. Identification of 156 immune-related
modules. Size of each module is indicated.

Additional file 12: Figure S8. Distribution of module size in the AICR
network. Frequency of module size in the AICR (blue circles) network is
shown in log scale. The AICR network exhibits a power law distribution,
a network property shared by ‘real-world networks’.

Additional file 13: Table S4. GO enrichment in ten largest immune-
related modules.

Additional file 14: Table S5. Identification of cis-regulatory elements in
ten largest immune-related modules using OCCEAN.

Additional file 15: Supporting results Module 8 in Arabidopsis
immune co-expression regulatory (AICR) network.
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