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Abstract: Alternative splicing (AS) is a post-transcriptional level of gene expression regulation that
increases transcriptome and proteome diversity. How the AS landscape of rapeseed (Brassica napus L.)
changes in response to the fungal pathogen Sclerotinia sclerotiorum is unknown. Here, we analyzed
18 RNA-seq libraries of mock-inoculated and S. sclerotiorum-inoculated susceptible and tolerant
B. napus plants. We found that infection increased AS, with intron retention being the main AS event.
To determine the key genes functioning in the AS response, we performed a differential AS (DAS)
analysis. We identified 79 DAS genes, including those encoding splicing factors, defense response
proteins, crucial transcription factors and enzymes. We generated coexpression networks based
on the splicing isoforms, rather than the genes, to explore the genes’ diverse functions. Using this
weighted gene coexpression network analysis alongside a gene ontology enrichment analysis, we
identified 11 modules putatively involved in the pathogen defense response. Within these regulatory
modules, six DAS genes (ascorbate peroxidase 1, ser/arg-rich protein 34a, unknown function 1138,
nitrilase 2, v-atpase f, and amino acid transporter 1) were considered to encode key isoforms involved
in the defense response. This study provides insight into the post-transcriptional response of B. napus
to S. sclerotiorum infection.
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1. Introduction

Rapeseed (Brassica napus L.), the second largest oilseed crop in the world [1], is vulnerable to the
necrotrophic ascomycete pathogen Sclerotinia sclerotiorum, which targets over 400 host species [2,3],
including soybean (Glycine max), peanut (Arachis hypogaea), and sunflower (Helianthus annuus) [4].
S. sclerotiorum infects the leaves and stem of its host plants and causes Sclerotinia stem rot (SSR), also
known as white mold, in rapeseed, resulting in yield losses of up to 94% in severe SSR outbreak seasons
in the major growing areas such as Canada, China and the USA [5,6]. Despite this huge economic
impact, no highly resistant B. napus varieties have been developed.

Current research into SSR is mainly focused on the pathogenicity and resistance mechanisms involved.
The outcome of SSR is the product of the interaction of multiple factors in both B. napus and S. sclerotiorum,
resulting in a gradient of resistance phenotypes termed quantitative disease resistance [7–9]. The resistance
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strategy has been frequently explored using approaches such as genome-wide association studies [10],
quantitative trait locus mapping [11], RNA sequencing (RNA-seq) [12] and the identification of relevant
noncoding RNAs [13], resulting in the discovery of rare but highly effective factors. Previous RNA-seq
studies mainly focused on e transcriptional response and differential expression analyses. However,
here, we use RNA-seq data to analyze alternative splicing (AS) to shed light on B. napus resistance
to SSR.

AS is a type of post-transcriptional regulation that produces various mRNA transcripts from
precursor mRNAs (pre-mRNAs) of a single gene, increasing transcriptomic and proteomic diversity [14].
AS occurs in more than 95% of intron-containing genes in humans [15] and ca. 33–60% of these genes
in plants [16,17], with the types of AS including exon skipping (ES), intron retention (IR), alternative 5′

splice sites, alternative 3′ splice sites, mutually exclusive 3′ untranslated regions, tandem untranslated
regions, mutually exclusive 5′ exons and mutually exclusive exons [18]. Although the ratios of these
different AS types vary among different species, plant AS events predominantly involve IR, which is
the least common type in animals [19].

AS occurs following the recognition by the spliceosome, containing small nuclear RNAs, of four
cis-acting sequences: the exon–intron junctions at the 5′ and 3′ ends of the introns, the BRANCH-SITE
sequence, and the polypyrimidine tract [20]. Strong recognition of certain splice sites usually results in
constitutive splicing [21], which is generally based on the GU-AG rule [22]. The selection of splicing
sites leading to AS is determined by RNA-binding proteins [23], mainly serine/arginine-rich (SR)
proteins and heterogeneous nuclear ribonucleoprotein particle proteins, which recruit the spliceosome
to bind to the splicing regulatory elements, such as the stimulating (exonic/intronic splicing enhancers)
or inhibiting (exonic/intronic splicing silencers) splice sites [24].

AS affects the biology of a cell or organism by causing changes in mRNA stability, mRNA
localization and mRNA translation, which further leads to noncoding transcripts or differently
functional proteins and other biochemical properties [25]. AS may be associated with 15% of genetic
diseases in humans [26]. However, it can also play important roles in plant development and stress
response. In the area of pathogen defense, the AS of many R genes, including TIR-NBS-LRR, Arabidopsis
RPS4, Medicago truncatula RCT1, Flax L6, Tomato Bs4, CC-NBS-LRR and so on, is required for the defense
response [27] such as the production of the shorter and longer transcripts of the tobacco (Nicotiana sp.)
N gene for resistance to the tobacco mosaic virus [28]. The diverse AS isoforms of Arabidopsis thaliana
resistance to pseudomonas syringae 4 provide resistance to tomato strain DC3000 [29], whereas the
diverse AS isoforms of OsWRKY62 and OsWRKY76 in rice (Oryza sativa) convey resistance against the
pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae [30]. In addition to identifying single
AS events in a few genes in the past, recent studies have analyzed massive AS events and explored
genome-wide AS networks; for example, massive and rapid AS responses were identified in the first
few hours of cold stress in A. thaliana [14], while in the model grass Brachypodium distachyon, infection
by the panicum mosaic virus and its satellite virus significantly increased the number of AS events [19].
The AS landscape in B. napus in response to S. sclerotiorum has not been reported.

In this study, we performed a differential AS analysis of B. napus RNA-seq data to explore
candidate resistant genes in response to a S. sclerotiorum infection. We used coexpression analysis to
identify the regulatory networks of the AS isoforms based on isoform expression levels rather than
gene expression levels. This study elucidated the dynamic response of AS isoforms to enhance our
understanding of the B. napus response to S. sclerotiorum.

2. Materials and Methods

2.1. Transcriptome Analysis

The RNA-seq data of B. napus before and after inoculation with S. sclerotiorum were downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/; accession numbers SRR3537150,
SRR3537151, SRR3537153, SRR3537154, SRR3537155, SRR3537156, SRR3537159, SRR3537160,
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SRR1793826, SRR1793858, SRR1793863, SRR1793864, SRR1793865, SRR1793876, SRR1793909,
SRR1793924, SRR1793925, and SRR1793927) [12,31]. The raw data were converted to the FASTQ
format using the SRA Toolkit version 2.9.0 (https://www.ncbi.nlm.nih.gov/books/NBK158900/),
and quality trimming and adapter clipping were then performed using Trimmomatic version
0.36 [32] (modified parameters: ILLUMINACLIP = TruSeq3-PE.fa:2:30:10 or ILLUMINACLIP =

TruSeq3-SE.fa:2:30:10, LEADING = 3, TRAILING = 3, SLIDINGWINDOW = 4:15, and HEADCROP
= 10). By generating the index using the chromosome sequence from B. napus Genome Browser
(http://www.genoscope.cns.fr/brassicanapus/) [1], the prefiltered reads were mapped to the B. napus
reference genome using STAR version 2.5.3a (with sjdbOverhang = 150) [33]. The mapped reads were
assembled into putative transcripts using Cufflinks version 2.2.1 [34], then were tracked across all
samples using Cuffcompare to estimate their relative abundances.

2.2. AS Landscape and Differential AS (DAS) Analysis

Using the gtf annotation obtained from Cufflinks, the AS landscape (intron retention, alternate
acceptors, alternate donors, exon skipping, and other splicing events) of every sample was analyzed
using Astalavista version 4.0 [35]. The DAS genes between different cultivars and different treatments
were respectively quantified using rMATS (with cstat = 0.0001, tstat = 6, FDR < 0.01) [36], and were
then visualized using rmats2sashimiplot-master (https://github.com/Xinglab/rmats2sashimiplot).

2.3. Weighted Gene CoExpression Network Analysis (WGCNA) of Isoforms

To further explore the regulatory relationship of each isoform, a WGCNA [37,38] run in R version
3.4.4 was used to perform data cleaning (the top 14% transcripts were selected based on their fragments
per kilobase of transcript per million mapped reads (FPKM) variance analysis), sample clustering, soft
threshold filtering (power = sft$powerEstimate), scale-free check (scaleFreePlot), one-step network
construction (TOMType = “unsigned”, mergeCutHeight = 0.25, verbose = 3), module identification, and
network visualizing (random selection of 1000 transcripts). The weighted values of each relationship
between two coexpressed transcripts gained from each module were filtered with > 0.15 to obtain the
significantly coexpressed networks using Cytoscape version 3.5.1 [39]. Using R, the isoform heatmap
was constructed on the average FPKM values of the biological replicates, which were transformed into
log2 (FPKM + 1) values.

2.4. Functional Enrichment and Clustering

To determine the potential function of each module, a gene ontology (GO) enrichment analysis
was performed using the R package topGO [40]. The modules containing fungus relative terms with
classicFisher < 0.01 were selected as target modules, such as response to fungus and defense to fungus.
A GO enrichment Senior Bubble plot was drawn by the OmicShare tools (http://www.omicshare.com/

tools).

2.5. Homologous Gene Identification

Based on the studies showing that A. thaliana and B. napus have a common ancestor in the
Brassicaceae [41,42], the arabidopsis genes homologous to the BnDAS genes were identified using
BLASTP with an E value of ≤ e−5 using the NCBI BLAST version 2.2.30+ program [43].

3. Results

3.1. AS Landscape in B. napus in Response to S. sclerotiorum

To identify the AS landscape of B. napus in response to a S. sclerotiorum infection, a total of 18
RNA-seq libraries were analyzed in this study (Table 1). The raw data were downloaded from two
datasets, one of which comprised single-end reads and the other paired-end reads. The first dataset
contained eight RNA-seq libraries from the leaves of two B. napus cultivars (susceptible Westar and

https://www.ncbi.nlm.nih.gov/books/NBK158900/
http://www.genoscope.cns.fr/brassicanapus/
https://github.com/Xinglab/rmats2sashimiplot
http://www.omicshare.com/tools
http://www.omicshare.com/tools


Genes 2020, 11, 784 4 of 18

resistant ZY821) at 24 h postinoculation (hpi) with S. sclerotiorum or a mock treatment. The second
dataset contained ten libraries from the stems of two B. napus cultivars (susceptible J902 and resistant
J964) subjected to a mock treatment or at 24 and 48 hpi with S. sclerotiorum. Based on the reference
genome [1], we performed a quality trim, genome mapping, transcript assembly and transcript merging
to identify the FPKM of every isoform (Table S1). For the single-end transcriptome data, 70.31% of
the reads were uniquely mapped to the reference genome and the average mapped read length was
96.32 bp. For the paired-end transcriptome data, 82.55% of the reads were uniquely mapped to the
reference genome and the average mapped read length was 178.26 bp (Table S2).

The assembled transcript annotation file was further used to identify the AS landscape using
Astalavista. As shown in Figure 1 and Table S3, the results indicated that IR was the most common
AS event compared with the AA (alternate acceptors), AD (alternate donor), and ES. In addition, we
computed the AS event frequency of the merged transcripts (overall AS events/merged transcript
number). Compared with the mock treatment (Figure 1a,c,e,g), the AS ratio was slightly increased
in the 24 hpi plants (Figure 1b,d,f,h), whereas the AS ratio was decreased in the 48 hpi treatment
(Figure 1i). This indicated that S. sclerotiorum triggered AS at the early stages of infection.
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Figure 1. AS Landscapes of healthy and pathogen-inoculated B. napus. Frequency of AS types of mock
(a,c) and 24 hpi (b,d) in B. napus susceptible (cv. Westar) and tolerant (cv. ZY821) genotypes. Frequency
of AS types of mock (f), 24 hpi (e) in B. napus susceptible (cv. J902) and mock (i), 24 hpi (g), 48 hpi (h) in
B. napus tolerant (cv. J964) genotypes.

3.2. Identification of DAS Genes

In total, 160 DAS genes were identified from the paired-end RNA libraries using rMATS, whereas
no DAS genes were identified from the single-end data. We filtered the 160 DAS genes using a
false discovery rate (FDR) < 0.05, resulting in the identification of 79 important DAS genes. Using a
differential analysis of the mock-treated and infected materials, the number of infection-induced DAS
genes in the comparisons J2_24 h vs. J2_ck, J4_24 h vs. J4_ck, and J4_48 h vs. J4_ck were, respectively,
22, 6, and 10 (Table S4). Differential analysis between the resistant and susceptible cultivars (J2_24 h vs.
J4_24 h) after inoculation with S. sclerotiorum led to the identification of 49 cultivar-related DAS genes.
Eight overlapping DAS genes were detected in both infection-induced and cultivar-related DAS genes.

Homologs of 68 of the B. napus DAS genes were identified in arabidopsis (Table 3), which enabled
their annotation; the functions of the other 11 B. napus DAS genes remained unknown. In addition, 27
of the arabidopsis homologous genes were previously shown to be AS genes, according to the ASIP
database [44]. Based on the GO enrichment analysis, the 79 significantly DAS genes were involved in a
variety of functions including the valine catabolic process, nuclear retention of unspliced pre-mRNA,
nuclear mRNA surveillance of the spliceosome and fatty acid β-oxidation (Figure S1 and Table S5).
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Table 1. Statistical summary of RNA-seq material and the detected alternative splicing (AS) pattern.

Cultivar Treatment Dataset
Name

Data
Type Number Overall AS

Events
Merged

Transcript-Number
AS Event

Ratio
AS Type

IR AA AD ES Other Event

Westar Mock W_ck SE SRR3537150, SRR3537151 28,518 585,673 4.87% 8638 2724 1049 380 15,727
Westar 24 hpi W_24 h SE SRR3537153, SRR3537154, SRR3537155 44,388 784,570 5.66% 12,230 3860 1538 518 26,242
ZY 821 Mock Z_ck SE SRR3537156 7997 234,401 3.41% 964 617 237 100 6079
ZY 821 24 hpi Z_24 h SE SRR3537159, SRR3537160 16,770 467,414 3.59% 4993 2326 934 358 8159

J902 Mock J2_ck PE SRR1793858 34,734 388,008 8.95% 2470 2538 1371 79 28,276
J902 24 hpi J2_24 h PE SRR1793826 69,013 536,471 12.86% 3038 3311 1792 130 60,742
J964 Mock J4_ck PE SRR1793924, SRR1793925, SRR1793927 32,750 622,164 5.26% 10,156 8688 4606 453 8847
J964 24 hpi J4_24 h PE SRR1793863, SRR1793864, SRR1793865 34,397 639,525 5.38% 10,405 9084 4759 489 9660
J964 48 hpi J4_48 h PE SRR1793876, SRR1793909 15,202 387,918 3.92% 4912 4308 2087 239 3656
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Table 2. Annotation of the 79 DAS genes in B. napus.

DAS Comparison DAS Gene At Ortholog ASIP Synonym % Identity At Ortholog Family

J2_24 h vs. J2_ck

BnaC05g00740D AT1G01170 T25K16.16 92.50 Protein of unknown function (DUF1138)
BnaA05g20710D AT1G33970 F12G12.21 82.22 Immune-associated nucleotide binding 9
BnaA07g03760D AT1G64610 57.47 Transducin/WD40 repeat-like superfamily protein
BnaA07g25520D AT1G65950 F12P19.11 87.07 Protein kinase superfamily protein
BnaA09g18680D AT2G01540 94.67 Calcium-dependent lipid-binding protein
BnaA02g26350D AT2G02360 61.11 Phloem protein 2-B10
BnaA07g13990D AT2G28550 T17D12.11 80.88 (TF) Related to AP2.7
BnaC04g04760D AT2G46090 T3F17.26 84.18 Diacylglycerol kinase protein
BnaC03g25720D AT2G46340 77.77 SPA (suppressor of phyA-105) protein
BnaC01g36600D AT3G14770 T21E2.6 83.47 Vacuolar sugar transporter SWEET2
BnaCnng45490D AT4G16845 FCAALL.23 80.65 VEFS-Box of polycomb protein

BnaCnn1978 AT4G35785 F4B14.7 68.05 RNA-binding (RRM/RBD/RNP motifs) protein
BnaA03g06980D AT5G18230 88.12 Transcription regulator NOT2/NOT3/NOT5 protein
BnaA10g14420D AT5G21170 T10F18.200 80.12 5’-AMP-activated protein kinase β-2 subunit protein
BnaA03g09910D AT5G58110 88.38 ATPase activators
BnaA06g22260D AT5G62760 71.72 P-loop containing nucleoside triphosphate hydrolases superfamily
BnaC09g07670D AT5G66890 73.10 Leucine-rich repeat (LRR) protein
BnaC09g23900D unknown

J2_24 h vs. J2_ck\
J2_24 h vs. J4_24 h

BnaA09g50970D AT1G03140 79.02 Splicing factor Prp18 protein
BnaC09g09280D AT1G75660 F10A5.15 68.57 5′-3′ exoribonuclease 3
BnaA06g38980D AT3G44300 81.42 Nitrilase 2
BnaC04g40450D AT5G65940 K14B20.11 80.00 β-hydroxyisobutyryl-CoA hydrolase 1

J2_24 h vs. J4_24 h

BnaCnng45130D AT1G02305 78.82 Cysteine proteinases superfamily protein
BnaC05g05550D AT1G07890 F24B9.2 92.00 Ascorbate peroxidase 1
BnaC05g22390D AT1G29350 74.24 RNA polymerase II degradation factor-like protein (DUF1296)

BnaA06n0344 AT1G48840 50.79 Plant protein of unknown function (DUF639)
BnaC06g04140D AT1G50910 79.28 Hypothetical protein
BnaA02g12910D AT1G67170 69.08 Sarcolemmal membrane-associated protein
BnaA07g24840D AT1G68010 T23K23.14 96.90 Hydroxypyruvate reductase
BnaCnng00710D AT2G04560 82.68 Transferases
BnaCnng63360D AT2G19480 F3P11.8 84.7 Nucleosome assembly protein 1;2
BnaC04g33610D AT2G21270 80.73 Ubiquitin fusion degradation 1
BnaAnng26570D AT2G23010 77.02 Serine carboxypeptidase-like 9
BnaC04g45930D AT2G26900 89.86 Sodium Bile acid symporter family
BnaC04g47700D AT2G41460 69.98 Apurinic endonuclease-redox protein
BnaC04g03300D AT2G44065 90.23 Ribosomal protein L2 family
BnaA03g30650D AT3G09500 94.31 Ribosomal L29 protein
BnaAnng09240D AT3G12130 78.88 KH domain-containing protein/zinc finger (CCCH type) family
BnaC09g01340D AT3G27100 MOJ10.18 87.50 ENY2
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Table 3. Annotation of the 79 DAS genes in B. napus.

DAS Comparison DAS Gene At Ortholog ASIP Synonym % Identity At Ortholog Family

BnaC02g09410D AT3G44280 73.15 Peptidyl-prolyl cis-trans isomerase G
BnaA06g17710D AT3G46970 95.01 α-glucan phosphorylase 2
BnaA04g04080D AT3G54480 T14E10.50 85.87 SKP1/ASK-interacting protein 5
BnaC09g00230D AT4G02780 85.71 Terpenoid cyclases/Protein prenyltransferases superfamily

BnaA05n0101 AT4G15090 84.82 (TF) FRS (FAR1 Related Sequences) family
BnaA01g17760D AT4G17300 90.49 Class II aminoacyl-tRNA and biotin synthetases superfamily

J2_24 h vs. J4_24 h

BnaC03g02590D AT5G06440 MHF15.4 61.86 Polyketide cyclase/dehydrase/lipid transport superfamily protein
BnaA06g26720D AT5G24150 MLE8.1 77.76 FAD/NAD(P)-binding oxidoreductase protein
BnaA07g15350D AT5G41350 79.44 RING/U-box superfamily protein
BnaA02g22910D AT5G42210 81.51 Major facilitator superfamily protein
BnaA02g25070D AT5G47180 MQL5.3 94.09 Plant VAMP (vesicle-associated membrane protein) family
BnaC09g28380D AT5G52380 69.28 Vascular-related nac-domain 6
BnaC03g14120D AT5G55700 89.87 β-amylase 4
BnaC09g33270D AT5G56740 77.87 Histone acetyltransferase of the GNAT family 2
BnaC02g10170D AT5G59050 K18B18.4 77.24 G patch domain protein
BnaC07g16670D AT5G66550 80.10 Maf-like protein
BnaCnng08340D unknown
BnaA06g40000D unknown

BnaC07n0282 unknown
BnaCnn1013 unknown

BnaC02g22380D unknown
BnaA06n0074 unknown
BnaC07n0181 unknown
BnaA03n0594 unknown

J2_24 h vs. J4_24
h\J4_24 h vs. J4_ck

BnaA09 g19610D AT3G25840 K9I22.6 73.57 Protein kinase superfamily protein
BnaA03g58530D AT4G21120 90.05 Amino acid transporter 1

J2_24 h vs. J4_24
h\J4_48 h vs. J4_ck BnaC02g27060D AT4G02620 87.23 Vacuolar ATPase subunit F protein

J4_24 h vs. J4_ck

BnaC06g34460D AT1G73650 F25P22.29 88.66 Protein of unknown function (DUF1295)
BnaCnng43580D AT3G21865 82.39 Peroxin 22
BnaCnng19550D AT5G57860 MTI20.11 87.37 Ubiquitin-like superfamily protein
BnaA04g17110D AT5G65940 K14B20.11 80.52 β-hydroxyisobutyryl-CoA hydrolase 1

J4_48 h vs. J4_ck

BnaC08g42380D AT1G10130 T27I1.16 95.79 Endoplasmic reticulum-type calcium-transporting ATPase 3
BnaC03g69240D AT1G52490 47.73 F-box/associated interaction domain protein

BnaC09n0143 AT1G62800 F23N19.17 80.31 Aspartate aminotransferase 4
BnaAnng09100D AT1G75560 85.41 Zinc knuckle (CCHC-type) protein
BnaC08g21130D AT3G49430 T9C5.30 85.21 Ser/Arg-rich protein 34A
BnaC07g01360D AT5G03495 30.87 RNA-binding (RRM/RBD/RNP motifs) protein
BnaC04g37090D AT5G06480 69.11 Immunoglobulin E-set superfamily protein
BnaC08g02660D unknown

BnaC09n0005 unknown
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Based on the annotated functions of the homologous genes in A. thaliana, four of the 79 DAS genes
were putatively related to RNA splicing, including BnaCnn1978 (RNA-binding protein), BnaC08g21130D
(SR protein 34a), and BnaC07g01360D (RNA-binding protein). One gene (BnaA09g50970D, splicing
factor PRP18 protein), which was previously shown to be involved in promoting splicing at weak
splice sites [45], was identified in both the infection-induced and cultivar-related DAS gene groups.
Three of the 79 DAS genes were known to be related to the defense response, including BnaA05g20710D
(immune-associated nucleotide binding 9), which encodes a plasma membrane-localized protein
that functions as a negative regulator of basal immunity in A. thaliana [46]; BnaC09g07670D (LRR
[Leucine-rich repeat] protein), which is reported likely as a pseudogene with its two paralogs
transducing the defense signal downstream of TNL(TIR -type sensor NLR) in A. thaliana [47];
and BnaC04g37090D (immunoglobulin E-set superfamily protein). Two genes, BnaA07g13990D
(encoding a protein related to AP2.7) and BnaA03g06980D (transcription regulator NOT2/NOT3/NOT5
protein), were believed to be involved in transcriptional regulation. The cultivar-related AS genes
were BnaC05g22390D (RNA polymerase II degradation factor-like protein) and BnaA05n0101 (FRS
[FAR1-RELATED SEQUENCE] family protein). In addition, we identified DAS genes encoding some
important enzymes, such as protein kinases, nitrilase and transferases.

3.3. WGCNA of All Isoforms

WGCNA is used to describe gene correlation patterns and identify key genes by detecting gene
modules, intramodular connectivity, gene significance and other features [38]. To explore the potential
function of the DAS genes and analyze the diverse functions of the different isoforms encoded by
a single gene, we performed a WGCNA using 575,171 isoforms (Figure 2). The FPKM values of all
transcripts, including all isoforms, were next used to generate the coexpression network.
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Figure 2. Coexpression network generation in isoform level by WGCNA. (a) Sample clustering with
the FPKM of all isoforms from eighteen RNA-seq libraries. (b) Soft threshold selection based on the
recommended power. (c) Scale free topology check with coefficient of determination (R2) equal to
0.83. (d) Cluster dendrogram of all isoforms by dissimilarity to obtain 85 modules. Each vertical line
represents a single isoform. (e) Network heatmap of 1000 randomly selected isoforms.
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We performed a variance analysis to remain 40,441 isoforms so that the soft threshold could be up
to five. Based on the distribution that approximately followed a straight line (Figure 2c), the network
was a scale-free topology, meaning it was suitable for use in the coexpression analysis. We identified
85 modules (Table S6), then randomly selected 1000 isoforms to plot the network heatmap.

We performed a GO analysis on each of the identified modules (Figure S2 and Table S7), and 11
modules were selected for a further analysis to identify the response-related isoforms based on the GO
terms and defense response (Figure 3). Among the 11 pathogen-related modules, we identified 25
response-related isoforms whose precursor genes were identified as 19 DAS genes (Figure 4, Table S8).
Three of these 19 genes (BnaC05g05550D, BnaC08g21130D, and BnaC05g00740D) encoded nine isoforms
that were identified in several modules, which suggested that these genes might play crucial roles
in different response-related networks by producing different isoforms. In addition, another three
overlapping DAS genes (BnaA06g38980D, BnaC02g27060D, and BnaA03g58530D) were identified as
being differentially spliced in both infection- and cultivar-specific manners. These six DAS genes were
considered to be the key candidate defense genes on which to perform further analysis.
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represents black, plum2, royalblue, coral1, yellowgreen, tan, lightyellow, darkseagreen4, cyan, blue,
turquoise module. The x-axis represents the RichFactor which shows the enrichment level. The size of
the bubble represents the enriched gene number.
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3.4. The Isoform Expression Landscape of Crucial DAS Genes

To further elucidate the function of the above six candidate genes, we illustrated their DAS
pattern in terms of their genomic coordinates and the expression pattern of their isoforms. In Figure 5,
the reads of the ES isoforms and exon inclusion isoforms were quantified for each candidate gene
to determine inclusion levels (IncLevels), representing the normalized proportion of exon inclusion
events. In addition to illustrating the proportion of AS events, Figure 5 also provides modified values
for the number of reads per kilobase of transcript per million mapped reads (RPKM) (y axis) of every
site along the genomic coordinate (x axis) and the junction reads (the number labeled on the line) to
present the read density [48].

BnaC05g05550D is homologous to AT1G07890, which encodes ascorbate peroxidase 1 (APX1).
This gene was DAS in the susceptible and resistant cultivars at 24 hpi with S. sclerotiorum (Figure 5a).
In susceptible cultivar J2, the IncLevel of BnaC05g05550D was much lower than it was in the resistant
cultivar J4, whereas the first and the third exons were expressed to a much greater level. This
suggests that, in the resistant cultivar, APX1 tended to reduce the ES events so that as many exons
as possible were retained in the transcripts, whereas the susceptible cultivar tended to skip its
second exon. Expression heatmaps of all 13 isoforms of APX1 were made (Figure 6a), which were
differently abundant in the different conditions analyzed. Only five isoforms (TCONS_00410992,
TCONS_00415336, TCONS_00420888, TCONS_00420889, and TCONS_00420890) were involved in the
defense-related modules (turquoise, yellow-green, and cyan modules). This suggested that these five
defense-related isoforms may function differently in the two cultivars when infected with S. sclerotiorum,
resulting in differences in their resistance levels to this pathogen.

BnaC08g21130D is homologous to AT3G49430, which encodes SR34a. This gene was DAS in
the mock-treated and infected resistant cultivar plants at 48 hpi (Figure 5b). In the infected material,
the IncLevel was much lower than in the mock-treated material, and the first and third exons were
expressed to a much higher level. This suggests that, in response to the infection, the ES events in
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SR34a were increased, with the second exon being skipped. Expression heatmaps were made of all 19
isoforms of SR34a (Figure 6b). Only five isoforms were identified in the two different materials above,
with the TCONS_00494944 isoform involved in a defense-related network (turquoise). This suggested
that the five isoforms might respond to the infection in the resistant cultivar after 48 h.

BnaC05g00740D is homologous to AT1G01170, which encodes the protein of unknown function
1138. The BnaC05g00740D transcripts were differentially alternatively spliced in the mock-treated
and infected susceptible cultivar at 24 hpi (Figure 5c). Under the infection, the IncLevel was much
higher than in the mock-treated plants, suggesting that BnaC05g00740D reduces the ES events to retain
all the exons at 24 hpi. Expression heatmaps were made of all eight isoforms of BnaC05g00740D
(Figure 6c). Four of the isoforms showed different abundances in the different experimental conditions.
The isoforms associated with the defense-related network were not significantly differently abundant
between the different conditions, however. This suggested that the four differently abundant isoforms
may have novel roles in responding to S. sclerotiorum infection.Genes 2020, 11, x FOR PEER REVIEW 11 of 19 
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Figure 5. Quantitative visualization (sashimiplot) of the six candidate DAS genes. (a–c) illustrates the
DAS between two groups of BnaC05g05550D, BnaC08g21130D and BnaC05g00740D. (d–f) illustrates
the DAS between four groups of BnaA06g38980D, BnaC02g27060D and BnaA03g58530D. The different
colors represent five different conditions: blue, cv. J902 at 24 hpi; red, cv. J964 at 48 hpi; pink, cv.
J964 mock inoculation (ck); green, cv. J902 mock inoculation; and orange, cv. J964 at 24 hpi. The y
axis represents a modified RPKM value. The x axis represents the genomic coordinates of each DAS
gene. The numbers on the curved lines indicate the counts of each splice junction. The IncLevel value
represents the normalized proportion of EI (Exon Inclusion) events.
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Figure 6. Expression heatmaps of each isoform of the six candidate DAS genes. (a–k) represents the
isoform expression pattern of BnaC05g05550D, BnaC08g21130D, BnaC05g00740D, BnaA06g38980D,
BnaC02g27060D and BnaA03g58530D. The arrows indicate the materials in which the DAS genes are
significantly differently abundant. The colors written behind the isoforms represent their involved
coexpression modules. S1-CK, mock-inoculated Westar plants; S1–24 h, Westar plants at 24 hpi; R1-CK,
mock-inoculated ZY821 plants; R1–24 h, ZY821 plants at 24 hpi; S2-CK, mock-inoculated J902 plants;
S2–24 h, J902 plants at 24 hpi; R2-CK, mock-inoculated J964 plants; R2–24 h, J964 plants at 24 hpi;
R2–48 h, J964 plants at 48 hpi.

BnaA06g38980D is homologous to AT3G44300, which encodes nitrilase 2 (NIT2). This gene was
DAS in the susceptible and resistant B. napus cultivars at 24 hpi with S. sclerotiorum, and between the
mock-treated and 24 hpi susceptible cultivar plants (Figure 5d). In the infected susceptible cultivar J2,
the IncLevel was much lower than in the infected resistant cultivar J4, suggesting that the resistant
cultivar tended to reduce the number of ES events to retain as many exons as possible. The susceptible
cultivar J2 had a much higher IncLevel when infected with S. sclerotiorum for 24 h than it did in the
mock-treated condition, suggesting that it tends to reduce the ES events to retain all exons during
infection. Expression heatmaps were made of all 16 isoforms of BnaA06g38980D (Figure 6d), enabling
the identification of five isoforms that significantly differed in abundance between the different
experimental conditions. After infection, TCONS_00150596 and TCONS_00150597 were detected in
the susceptible cultivar, whereas TCONS_00151240 from the turquoise module only occurred in the
resistant cultivar, suggesting that the isoforms that are specific to the cultivars may be key factors in
the defense response.

BnaC02g27060D is homologous to AT4G02620, which encodes the vacuolar ATPase subunit F
family protein (V-ATPase F). This gene was DAS in the mock-treated resistant cultivar and the same
plants at 48 hpi with S. sclerotiorum, and between the two different cultivars at 24 hpi (Figure 5e).
In the susceptible cultivar J2 at 24 hpi, the IncLevel was much higher than it was in the infected
resistant cultivar J4, suggesting that the retention of the second exon in the resistant cultivar resulted
in its high level of resistance to this pathogen. When compared with the mock-treated plants, the
IncLevel of V-ATPase F was much lower in the resistant cultivar at 48 hpi, suggesting that infection
may stimulate the ES events that generate the diverse isoforms. Expression heatmaps were made of all
13 isoforms of BnaC02g27060D (Figure 6e). Six isoforms were significantly differently abundant in
the different materials. TCONS_00301858 was included in the darkseagreen4 module expressed in all
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the susceptible cultivars, but not in the resistant cultivars, which may suggest that this isoform was
specific to the susceptible cultivar. None of the isoforms were expressed in the mock-treated resistant
cultivars, indicating that V-ATPase F was only expressed in the resistant cultivars when induced by
the pathogen.

BnaA03g58530D is homologous to AT4G21120, which encodes an amino acid transporter 1
(AAT1). This gene was DAS in the mock-treated and infected resistant cultivar J4 at 24 hpi, and
between the susceptible and resistant cultivars at 24 hpi (Figure 5f). Compared with the infected
resistant cultivar, the infected susceptible cultivar and the mock-treated resistant cultivar both had
higher IncLevels. More ES events may therefore occur in the infected resistant cultivar, which
may therefore play a greater role in the infection response. Expression heatmaps were made of all
four isoforms of BnaA03g58530D (Figure 6f). Two of these isoforms were significantly differently
abundant in the different materials. TCONS_00080439 from the turquoise module occurred in both
of the cultivar-related and infection-induced DAS groups, suggesting that it might be a key isoform
responsible for enhancing resistance.

4. Discussion and Conclusions

In this study, we aimed to identify genetic factors and specific response mechanisms that influence
resistance to SSR by analyzing the RNA-seq data of infected and mock-treated resistant and susceptible
cultivars. Two types of analysis were performed: post-transcriptional differences were explored using
a DAS analysis, and isoform-level transcriptional regulation was elucidated using a coexpression
network analysis. A total of 79 DAS genes were identified, which was fewer than expected. However, a
previous study showed that the use of ten differential splicing analysis tools resulted in the identification
of different numbers of DAS genes. The number of identified DAS genes ranged from 0 (cuffdiff2) to
4506 (edgeR) in a human prostate cancer dataset, with 2962 and 0 DAS genes identified using rMATS in
human and mouse datasets, respectively [49]. In addition, 252, 171, and 42 DAS genes were identified
in comparisons between control and intolerant, control and tolerant and intolerant and tolerant catfish
following heat stress [50]. Additionally, rMATS was used to identify 24, 40, and 74 DAS genes in the
root, juvenile leaves and old leaves of B. napus, respectively, in response to boron deficiency [51].

The 79 DAS genes identified here were mainly involved in the nuclear retention of unspliced
premRNA and the nuclear mRNA surveillance of the spliceosome. Using the same double-end
RNA-seq data here, it has been reported that 13,276 differentially expressed genes (DEGs) participated
in metabolic processes and responses to stimuli such as response to chitin, RNA methylation, secondary
cell wall biogenesis and gravitropism [31]. However, these genes had little overlap with the 79 DAS
genes identified here. A small overlap was identified between the DEGs and DAS genes in rice
plants exposed to mineral (phosphorus, zinc, manganese, copper, and iron) deficiencies [52]. These
comparisons suggested that AS is an additional layer of regulation, complementary to DEGs, that
enables plants to respond to their environment.

S. sclerotiorum infects B. napus using mycelia, or through the production of apothecia which are laden
with fungal spores [53]. The fungus produces multiple pathogenicity factors that attack B. napus, such
as oxalic acid and an array of lytic enzymes [54]. When attacked by fungi, plants undergo a three-step
process: pathogen perception, signal transduction and the defense response. In the plant–Sclerotinia
system, pathogen detection is based on the recognition of pathogen-associated molecular patterns
(PAMPs) by pattern recognition receptors, such as RLP30 (receptor-like protein 30) [7] and other
receptor-like kinases, or via cytoplasmic leucine rich proteins (LRRs) [55]. The subsequent signal
transduction involves a MAPK (mitogen-activated protein kinase) cascade or MAPK-independent
pathways [56] involving many signaling molecules, including reactive oxygen species (ROS) [57], nitric
oxide [58], salicylic acid [59], jasmonic acid and ethylene [60]. These signals drive plant PAMP-triggered
immunity through the production of nuclear proteins including transcription factors and protein
kinases that activate ROS production, detoxification, oxidative protection, callose deposition, camalexin
production and the production of other specialized metabolites [61,62]. The DAS genes identified here,
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such as the immune-associated genes and those encoding important enzymes, might play a major role
in the response to S. sclerotiorum.

Among the 79 DAS genes, we identified several genes, including SR, that are involved in RNA
splicing. As constitutive and AS regulators, SR proteins consist of RNA recognition motif and a
Ser/Arg-rich domain, which, respectively, recognize RNA and the spliceosome [63]. It has been
reported that genes encoding SR proteins in plants appear to function mainly in stress responses; for
example, in arabidopsis, the sr34b T-DNA insertion mutant had a lower cadmium tolerance with a
splicing defect in its iron-regulated transporter 1 [64], whereas the sr45 mutant was hypersensitive
to glucose and abscisic acid [65]. In rice, the SR40, SCL57, and SCL25 proteins were important for
phosphorus uptake and remobilization [52]. Recent studies have reported the stress-triggering AS
pattern of certain SR transcripts, which may contain premature termination codons, resulting in
their degradation by the nonsense-mediated decay pathway. For example, the abundance of an
unproductive premature termination codon-containing AS isoform of arabidopsis SR30 decreases at
elevated temperatures [66]. The AS of SR genes can increase plant tolerance to hormones and stress
treatments in rice and B. napus [51,67,68]. It was interesting to discover that the gene encoding the
splicing factor PRP18 protein (BnaA09g50970D) is an overlapping DAS gene, as the homologous mutant
in A. thaliana produces short roots and small siliques following its induction of large genome-wide
IR events [45]. Additionally, BnaCnn1978, encoding an RNA binding protein, was identified as an
infection-induced DAS gene. The splicing-related gene SR34a was also involved in two defense-related
modules, and the increased number of ES events at 48 hpi with S. sclerotiorum suggests that this crucial
splicing factor might be activated in response to pathogen stress to regulate downstream networks.
The regulation relationships should be verified in further experiments.

In addition to SR34a, we also identified other five DAS genes (APX1, NIT2, AAT1, V-ATPase F and
a gene encoding an unknown protein) as crucial candidate genes in the response to pathogen defense.
APX isoenzymes function in controlling ROS metabolism and eliminating H2O2 [69]. APX can respond
to environmental stresses such as oxidative stresses [70,71], light stress [69] and pathogen infection
(Trichoderma harzianum) [72,73]. In this study, we identified APX1 as a cultivar-related DAS with
isoforms involved in different coexpression networks in the response to pathogen stress. NIT2 in A.
thaliana is able to hydrolyze a broad substrate range [74], whereas a recent study revealed that AtNIT2
expression was de novo-induced by a plant pathogen (Pseudomonas syringae pv. tomato) and responsible
for R gene-mediated resistance responses [75]. We established that BnNIT2 was differently spliced in
the susceptible cultivar at 24 hpi compared with the mock-treated plants, and seemed to reduce the ES
events in the susceptible cultivar in response to S. sclerotiorum. V-ATPase F proton pumps are responsible
for the ATP hydrolysis that drives ion transport [76]. It has been reported that V-ATPase functions
in response to phosphorus deficiency [77], copper stress [76], fungal infection (the dermatophyte
Trichophyton rubrum) [78] among other stresses. We identified V-ATPase F as a pathogen-induced and
cultivar-related DAS gene, and its AS frequency increased at 48 hpi. AATs are responsible for the
long-distance transport of amino acids from the root to the shoot [79]. The overexpression of AtAAT1
resulted in improved resistance against the pathogen Pseudomonas syringae [80]. In this study, we
identified AAT1 as both a pathogen-induced and cultivar-related DAS gene, which might lead to the
generation of more AS events at 24 hpi with S. sclerotiorum to increase plant resistance to this pathogen.

In this study, a total of 79 DAS genes were identified in B. napus after inoculation with S. sclerotiorum,
and a combination of a DAS analysis and an isoform WGCNA revealed six candidate genes with
important putative functions in pathogen resistance. These observations enhance our understanding of
the post-transcriptional response of B. napus to S. sclerotiorum infection and pave the way to developing
rapeseed lines with improved resistance to this devastating pathogen. Continuous advances in
molecular biological experiments in exploring the function of different isoforms of one single gene
should facilitate our findings of the candidate isoforms in pathogen defense.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/7/784/s1,
Table S1: FPKM values of 575172 isoforms in 18 samples. Table S2: The mapped reads to reference genome and
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mapped read length of 18 RNA-seq raw data. Table S3: The AS patterns of various plant materials. Table S4:
Differential alternative splicing analyses using rMATs. Table S5: Enriched GO terms of 79 DAS genes. Table S6:
Network nodes of every module gained from WGCNA. Table S7: Enriched GO terms of genes in the 85 WGCNA
modules. Table S8: The node relationships of 11 co-expression networks by Cytoscape. Figure S1: Enriched GO
terms of 79 DAS genes. Figure S2 Enriched GO terms of genes in the 85 WGCNA modules.
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