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Evidence That Replication-Associated Mutation Alone Does Not Explain
Between-Chromosome Differences In Substitution Rates

Catherine J. Pink,*4 Siva K. Swaminathan,*1,4 Ian Dunham,�2 Jane Rogers,�3 Andrew Ward,* and
Laurence D. Hurst*
*Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom; and �The Wellcome Trust Sanger
Institute, Cambridge, United Kingdom

Since Haldane first noticed an excess of paternally derived mutations, it has been considered that most mutations derive
from errors during germ line replication. Miyata et al. (1987) proposed that differences in the rate of neutral evolution on
X, Y, and autosome can be employed to measure the extent of this male bias. This commonly applied method assumes
replication to be the sole source of between-chromosome variation in substitution rates. We propose a simple test of this
assumption: If true, estimates of the male bias should be independent of which two chromosomal classes are compared.
Prior evidence from rodents suggested that this might not be true, but conclusions were limited by a lack of rat Y-linked
sequence. We therefore sequenced two rat Y-linked bacterial artificial chromosomes and determined evolutionary rate by
comparison with mouse. For estimation of rates we consider both introns and synonymous rates. Surprisingly, for both
data sets the prediction of congruent estimates of a is strongly rejected. Indeed, some comparisons suggest a female bias
with autosomes evolving faster than Y-linked sequence. We conclude that the method of Miyata et al. (1987) has the
potential to provide incorrect estimates. Correcting the method requires understanding of the other causes of substitution
that might differ between chromosomal classes. One possible cause is recombination-associated substitution bias for
which we find some evidence. We note that if, as some suggest, this association is dominantly owing to male
recombination, the high estimates of a seen in birds is to be expected as Z chromosomes recombine in males.

Introduction

Following Haldane’s (1947) discovery that most mu-
tations in humans are male derived, it has been conventional
wisdom that this male excess is owing to a difference in
germ line replications (Crow 1997a, 1997b; Hurst and
Ellegren 1998; Li et al. 2002; Ellegren 2007). In males, sper-
matogenesis is an ongoing process through a male’s life,
whereas in females, the number of divisions prior to oocyte
production isfixed.Under thepresumptionof amalebiasow-
ing to replication differences, Miyata et al. (1987) proposed
a simple means to assay the extent of male bias. They argued
that the rate of evolution of putatively neutral sites on X, Y,
and autosome should reflect the amount of time spent in the
male germ line by the three chromosomal classes: The Y
shouldevolve the fastestbeingexclusively inmales, followed
by autosomes that spend half of the time in males, followed
by the X which spends only one-third of its time in males.

More formally, suppose that the mutation rate in fe-
males is l and the ratio of male-to-female germ line repli-
cation events (prior to generation of a successful gamete) is
a. Miyata et al. (1987) proposed that if germ line replication
is the source of all differences in substitution rate of se-
quence not under selection:

KY 5 al; ð1Þ

KAuto 5
al þ l

2
; ð2Þ

KX 5
al þ 2l

3
; ð3Þ

where KN indicates the evolutionary rate of sequences of
class N (Y, X, or autosomal). By considering the ratios
of any two classes at a time (KX/KAuto, KY/KAuto, or KY/
KX), it is possible to estimate a.

Typically, by employing just one of the three possible
comparisons, various authors have attempted to assess the ex-
tent of male bias in various taxa (e.g., Shimmin et al. 1993;
Changetal. 1994;MakovaandLi2002;Sandstedt andTucker
2005; Goetting-Minesky andMakova 2006; Bachtrog 2008).
It is commonly argued (Makova and Li 2002) that results
are broadly consistent with expectations, in that species with
relatively long-lived males (hence, a greater discrepancy be-
tweenthenumberofmaleandfemalereplications)havehigher
values of a. For humans, the estimate is typically around six
(Shimminetal.1994;Changetal.1996;Tayloretal.2006), for
rodents around two (Chang et al. 1994; Sandstedt and Tucker
2005), and for flies around one (Bauer and Aquadro 1997).

The case is by no means decided however. First, direct
observations of male bias (rather than molecular evolutionary
inferred estimates) do not agree with one another (Hurst and
Ellegren 1998; Hurst 2006). In part, this reflects the fact that
very high estimates ofa appear to be confounded by intramale
germ line selection favoring certainmutations (Qin et al. 2007;
Choi et al. 2008).Although these very strongmale biaseswere
initially taken as strong support for the replication hypothesis
(Li et al. 2002), theyno longer arbitrate on the issue.Whysome
(e.g., Yin et al. 1996) might show a female bias is unresolved.
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The molecular evolutionary comparisons also have
a number of unresolved issues. Z–W chromosomal compar-
isons in birds, for example, tend to give estimates (Bartosch-
Härlid et al. 2003) that are rather high given the short life
spans of the species (a ; 5) (Hurst and Ellegren 1998).
In Drosophila, one study claims there is a bias of the same
magnitude claimed for rodents (Bachtrog 2008). In mam-
mals there is also now strong evidence for within-autosome
(Matassi et al. 1999; Lercher et al. 2001; Malcom et al.
2003) and between-autosome (Lercher et al. 2001) variation
in rates. To account for this under the replication model, one
must suppose different genomic regions are subject to dif-
ferent rates of replication-associated mutations, but why
this might be is mechanistically unclear.

Although it has been claimed that differences in the
rate of evolution of different chromosomal classes can
be explained by the male mutation bias alone (Axelsson
et al. 2004), others have argued that mutations arising in
nonreplicating DNA also contribute substantially to rates
of evolution (Huttley et al. 2000). Further, substitution rates
are known to be effected by transcription (Green et al. 2003;
Majewski 2003; Lercher et al. 2004), location within an in-
version (Navarro and Barton 2003), GC content (Smith and
Hurst 1999b; Bielawski et al. 2000; Hurst and Williams
2000), and recombination (Perry and Ashworth 1999;
Rattray et al. 2001; Lercher and Hurst 2002; Hellmann
et al. 2003; Bussell et al. 2006; Dreszer et al. 2007). How-
ever, the quantitative effect of these processes, if any, on
Miyata et al.’s (1987) model has not yet been explored.

We propose that there is a simple test of whether rep-
lication alone is the source of the differences in evolution-
ary rate between X, Y, and autosome. If the logic is correct,
then equations 1 to 3 must hold. If so, all of the possible
pairwise comparisons (X–A, Y–A, and Y–X) should
provide the same estimate for a. If they do not, then the
‘‘replication-alone’’ method fails and application of
Miyata et al.’s (1987) commonly employed method must
be questioned.

In rodents, some prior evidence suggested that the value
of a is dependent on which chromosomal classes were em-
ployed (Smith andHurst 1999a).However, sample sizeswere
too limited tomakedefinitivestatementsandsubstitutionrates
at exonic silent sites were used. As we now know (Chamary
et al. 2006) that selection can act on synonymousmutations in
mammals (althoughestimatesofKS arevery similar toKi – the
intronic rate), it is worthwhile repeating this analysis using
a larger sample of well-aligned intronic sequence as well
as employing synonymous rates. To this end, we sequenced
two rat Y-linked bacterial artificial chromosomes (BACs).
Although this provides copious amounts of sequence, outside
of the coding regions it proved impossible to unambiguously
define orthology. We therefore confined analysis of BAC-
derived sequence to well-aligned introns. In addition, we
sequenced some further Y-linked cDNAs to expand the
inventory for analysis of synonymous substitution rates.

Methods
BAC Isolation, Sequencing, and Annotation

By reference to known rat Y-linked genes, we identi-
fied, by screening the RZPD’s rat BAC pool library

RPCIB657, two Y chromosome BACs (supplementary
table 1, Supplementary Material online). These were se-
quencedandassembled.Fromtheassemblies, andbyreference
to mouse Y-linked genes and rat cDNA sequencing (sup-
plementary table 2, Supplementary Material online), we
determined the full genomic sequence of Ube1y and Eif2s3y
and partial genomic sequence of Jarid1d (alias Smcy).

Genomic DNA samples obtained from male and fe-
male Wistar rats were used as controls for standardizing
rat Y-specific genomic polymerase chain reactions (PCRs).
If mouse genomic sequence information was available, the
same was used to design primers in exons with some prod-
ucts spanning across introns. Where rat partial cDNA infor-
mation was available, the same was used in designing
primers. Specific primer pairs thus designed were used to
standardize male-specific genomic PCRs in rat (supplemen-
tary table 3, Supplementary Material online). Positive am-
plifications were sequenced to verify the authenticity of the
genes targeted.

Y-specific PCRs standardized for the various mouse
orthologs in rat were used simultaneously to screen the
RZPD’s rat BAC pool library RPCIB657. Primary and sec-
ondary screenings were performed as prescribed by the
RZPD. Positive PCR products obtained were sequenced
to check the authenticity of the genes targeted. Large-scale
preparations of the BACs thus identified were done using
QiagenandClontechkits. PCRprimerpairs provenYspecific
were subsequently chosen for use in reverse transcriptase–
polymerase chain reactions (RT-PCRs; supplementary table
3,SupplementaryMaterialonline)usingRNAfrombrain,kid-
ney, and testis of Wistar rats. Products obtained were se-
quenced. Rapid amplification of cDNA ends PCRs for
Eif2s3y, Jarid1d,Uty, andDdx3ywere designed (supplemen-
tary table 3, Supplementary Material online) based on cDNA
sequences from deposited sequences or mRNA/genomic se-
quencesgeneratedaspartof thecurrentproject.Thesequences
thus obtained were further used in designing RT-PCRs for
these genes.

BAC mapping was done by PCR and Southern hy-
bridization. PCRs standardized earlier for the various
Y-linked genes were used in mapping experiments. Gene-
specific PCR products were cloned in TOPO vectors pcr4 or
pcr2.1. Insert DNA fragments were isolated and used as
probes in Southern hybridizations against digested BACs
immobilized on Osmonics nylon membranes. BAC sequenc-
ing was done using standard Sanger Institute sequencing and
assembly. Sequence analysis was done using GCG, Bioedit,
HGMP’s programs, NCBI, and some of our own scripts.

Sequences

Mouse (Mus musculus) and rat (Rattus norvegicus)
autosomal and X-linked intronic sequences were down-
loaded from the University of California Santa Cruz (UCSC)
Genome Bioinformatics database (Karolchik et al. 2004;
www.genome.ucsc.edu). Mouse exonic and intronic se-
quences were obtained from the February 2006 and July
2007 builds, respectively, whereas rat exonic and intronic
sequences were both obtained from the November 2004
build. Exonic sequences were concatenated by gene and
filtered so that only those containing complete codons,
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correct start and termination codons, no premature stops, or
ambiguous bases were retained. In addition to the full cod-
ing sequence of rat Ube1y and Eif2s3y and partial coding
sequence of Ddx3y (alias Dby), Uty, and Jarid1d (alias
Smcy) obtained by BAC sequencing, the full coding se-
quence of rat Sry and partial coding sequence of rat Zfywere
obtained from accession files NM_012772 and X75172, re-
spectively. The correct reading frame of partial rat Y-linked
exonic sequences was established as that free from internal
stop codons. Rat Y-linked sequences were subjected to
a blastn search against the mouse genome to identify orthol-
ogous mouse Y-linked coding sequence. Similarly, BAC
sequencing gave rise to intronic rat Y-linked sequences
of Jarid1d, Ube1y, and Eif2s3y, whereas the last intron
of Zfy was obtained from accession file X58934. A blastn
search of rat Y-linked sequences against the mouse genome
identified orthologous Y-linked mouse genes, for which in-
tronic sequences were downloaded from the UCSC Ge-
nome Bioinformatics database (Karolchik et al. 2004).

Ortholog Identification

From an initial set of MGI-defined mouse–rat ortho-
logs (Mouse Genome Database, Mouse Genome Informat-
ics, The Jackson Laboratory, Bar Harbor, Maine; [URL:
http://www.informatics.jax.org] [February 2007] [Eppig
et al. 2007]), autosomal and X-linked orthologs were fur-
ther strictly defined by reference to exon number and phase,
mouse and rat having to be the same, and by genomic lo-
cation, chromosomal class having to be known and of the
same type. Intronic orthologs were further filtered to retain
only those where the difference in coding sequence lengths
was less than 5% of the mean coding sequence length. Or-
thologous Y-linked genes were identified from blastn
search of rat sequence against the mouse genome.

Alignments

Orthologous introns were aligned individually using
LAGAN (Brudno et al. 2003), with exons identified by ref-
erence to mouse and/or rat cDNA in the case of new Y-linked
sequence or by RefSeq annotation in the case of X-linked and
autosomal genes. This left 40,168 orthologous introns.

By reference to a set of hand-aligned mouse–rat in-
trons (Chamary and Hurst 2004), we determined that there
should not be more than 0.84 indels per base pair of align-
ment and alignment length should be no greater than 1.16 of
the longest sequence. In all, 1,915 introns were eliminated
due to poor alignment. Rates of evolution of autosomal in-
tronsderivedfromtheLAGANalignment (Ki50.1666) were
in agreement with those previously obtained both by eye
(Ki 5 0.1533) and by a maximum likelihood protocol
(Ki 5 0.1791) (Chamary and Hurst 2004).

We additionally analyzed synonymous rates of evolu-
tion. Coding sequences were concatenated by gene and their
translations aligned using MUSCLE (Edgar 2004) under de-
fault parameters, from which the nucleotide alignment was
reconstructed. Exonic alignments of less than 300 sites,
equivalent to 100 amino acids assuming no indels, were ex-

cluded from the analysis to control for bias introduced due to
the influence of short sequences.

Filter for Introns With Hidden Exons or Other
Constrained Domains

Given the possibility of alternative splicing, it is pos-
sible, if not likely, that some of the above introns may con-
tain hidden exons (or indeed other residues under selection
such as binding or regulatory domains). To attempt to filter
out these introns, we asked whether, within an intron, sub-
stitutions/conserved residues were clustered or randomly
scattered through the intron. Our premise is that if a hidden
exon or a protein-binding domain is present, such regions
should be relatively free of substitution, so we will see lon-
ger runs of conserved residues than expected in the absence
of such domains.

The filter consisted of a linear model derived from
a simulation in which varying percentages of diverged
bases ranging from 10% to 90% were randomly distributed
along sequences varying in length from 100 to 100,000
bases. For each sequence length and percentage divergence
modeled, the number of switches in state between con-
served and diverged bases as one moves down the sequence
was counted. From multiple permutations ranging from
10,000 permutations for shorter sequences to 100 permuta-
tions for longer sequences due to computational limitations,
the lowest one-sided 95 percentile was identified. From this,
a linear model was developed from which the lowest num-
ber of switches in state per base (z) expected for a given
number of aligned nucleotides (l) and a given percentage
of diverged bases (d) could be predicted: z 5 �0.005757
þ 0.00000026 (l) þ 0.0192327 (d) � 0.000192 (d2)
þ 0.0000000136 ((l � 20350) (d � 50)) � 0.00000000014
((l � 20350) (d2 � 3166.67)). We do not suppose this
method to be perfect (it will likely miss small hidden
exons), but it should eliminate those introns most pro-
foundly affected by hidden exons.

After elimination of the 30 bp of sequence flanking
exon–intron boundaries (known to be under selective con-
straint; Chamary and Hurst 2004), we classified sites as
conserved or diverged and then calculated the number of
switches in state as one moves down the intron. By refer-
ence to the linear model, we eliminated any intron showing
a lower number of switches than predicted (z). In all, 21,041
(55%) introns showed such evidence of selective con-
straints and were excluded from the analysis. Autosomal
rates of evolution remained largely unchanged between
the purged and the unpurged data sets. Note that the filter
removed one intron (that of Zfy) previously employed in ro-
dents to estimate the evolutionary rate of the Y chromosome.

Assignment of Chromosomal Location and
Concatenation of Intronic Sequences

The first intron of each gene was eliminated from the
analysis, these being known to be unusually slow evolving
(Keightley and Gaffney 2003; Chamary and Hurst 2004).
Indels were removed from the remaining intronic
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alignments. Finally, for estimation of chromosomal rates,
all introns from a given chromosome, assigned by the lo-
cation of the mouse ortholog, were concatenated. This con-
stituted the first data set and consisted of 15,625 autosomal
introns (16.7 Mb), 349 X-linked introns (450 Kb), and 20
Y-linked introns (6,624 bp). For analysis of the effect of
GC, expression rate, and a past history of inversions, in-
trons from the same gene were concatenated (comprising
4,051 autosomal, 107 X-linked, and 3 Y-linked genes).
Aligned coding sequences for each gene were assigned
to the three chromosomal classes. This second data set
was comprised of 4,474 autosomal genes (5.8 Mb),
145 X-linked genes (180 Kb), and 7 Y-linked genes
(13,662 bp). As it is known that exonic synonymous muta-
tions can be subject to selection in mammals (Chamary
et al. 2006), we concentrated our attention on intronic
sequences.

Distance Estimation

The rate of intronic divergence (Ki) was estimated and
corrected for multiple hits according to the model of
Tamura and Kumar (2002), this correcting for inhomoge-
neous evolution. This was used for the main analysis and all
analyses at the gene level. We additionally employed sev-
eral other methods, including those of Jukes and Cantor
(1969), Kimura (1980), and Tamura and Nei (1993).

KS was estimated from exonic alignments using Li’s
(1993) protocol, correcting for multiple hits according to
Kimura’s two-parameter model (Kimura 1980). As meth-
ods for estimating the synonymous substitution rates are
subject to overestimation (McVean and Hurst 1997), the
synonymous rate at 4-fold degenerate sites (K4) was also
estimated, correcting for multiple hits according to Jukes and
Cantor (1969), Kimura (1980), and Tamura and Nei (1993).

a, r, and rm Estimates

Exonic chromosomal K estimates were calculated
from the average substitution rate of genes assigned to each
chromosomal class. This was repeated using mean, mean
weighted by alignment length, and median measures of
centrality.

Intronic X- and Y-linked substitution rates were deter-
mined directly from concatenated sequences assigned to
each chromosome. Intronic autosomal substitution rates
were calculated from the average substitution rate of each
concatenated autosomal alignment. Analyses were repeated
using the mean, mean weighted by alignment length, and
median measures of centrality. The main analysis utilized
comparisons of intronic X- and Y-linked substitution rates
to the autosomal mean. For analyses at the gene level, chro-
mosomal means weighted by alignment length were used.

The ratio of chromosomalK for each pairwise compar-
ison (KX to KAuto, KY to KAuto, and KY to KX) were
substituted into the equations of Miyata et al. (1987),
namely aXA 5 (3(KX/KAuto) � 4)/(2 � 3(KX/KAuto)),
aYA 5 (KY/KAuto)/(2 � (KY/KAuto)), and aYX 5 2(KY/
KX)/(3� (KY/KX)), in order to calculate the male-to-female
mutation rate ratio (a).

For the two-parameter model incorporating a single
recombination effect, chromosomal substitution rates were
substituted into the following equations to derive a and r:

a5 � KY

2KAuto � 3KX

;

r5
� 4KAuto þ 3KX þ KY

4KAuto � 6KX

:

For the two-parameter model excluding a female re-
combination effect (rf5 0), chromosomal substitution rates
were substituted into the following equations to derive a
and rm:

a5
2ðKY=KXÞ

3�ðKY=KXÞ
;

rm5

2

 �� 2ðKY=KXÞ
ð3�ðKY=KXÞÞ

�
�
�

ðKY=KAutoÞ
2

�
�
��� 2ðKY =KX Þ

3� ðKY=KX Þ

�
ðKY=KAutoÞ

�
2

��
ðKY=KAutoÞ

!

Error Limits

Within each chromosomal class, per-gene synony-
mous substitution rates derived from coding sequences
were randomly sampled, with replacement and preserving
sample size, from which an average substitution rate for the
chromosomal type was determined, using each K estimator
and measure of centrality previously described. Similarly,
alignments of the same length as the concatenated intronic
chromosomal sequences were created by random sampling
of aligned intronic base pairs with replacement, from which
chromosomal substitution rates were calculated using each
K estimator previously described and average autosomal
rates were determined using the three alternative measures
of centrality. Substitution of chromosomal rates of evolu-
tion for any given rate estimator into Miyata et al.’s
(1987) equations enabled estimation of a for each pairwise
comparison. Likewise for estimates of a, r, and rm derived
from the two novel models. 10,000 bootstraps enabled val-
ues for each calculated parameter to be ranked and the val-
ues lying at the 95 percentiles to be identified.

Significant differences between the rate of evolution of
different chromosomal classes were determined from
10,000 permutations, whereby for each comparison, pairs
of bootstrapped estimates were randomly sampled and
the number of occasions on which either the estimates were
equal or the chromosomal class with the higher rate was not
that originally observed was counted so that significance
was calculated as P 5 (count þ 1)/10,001. Likewise for
significance of differences between estimates of a.

Recombination Rates

Rat sex-averaged recombination rates over 5 Mb win-
dows were obtained from Jensen-Seaman et al. (2004).
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These rates were derived from the physical position of
markers placed on a previous build, 3.1. To control for po-
tential inaccuracies arising from incorrect annotation of
these positions, the relative proximity of neighboring genes
in the previous build, 3.1, and the current build, 3.4, were
compared. A most conservative approach did not allow for
any discrepancy between the relative positions in each
build. Runs of consecutive genes between which there
was no discrepancy in relative positions were used to iden-
tify regions in which the position of markers and the sub-
sequent calculation of recombination rates were likely to be
accurate. Recombination windows within such regions
were retained. Although relaxation of the size of the dis-
crepancy allowed did not qualitatively affect the results,
the most conservative data set was used for all subsequent
analyses. Autosomal and X-linked genes were assigned po-
sitions based on the midpoint between the start and end of
their coding sequence in build 3.1 and, where data were
available, these positions were used to assign orthologs a
sex-averaged recombination rate in rat. Data were analyzed
in nonoverlapping 1 Mb windows.

For both autosomal and X-linked genes, a linear re-
gression weighted by alignment length was performed
on recombination rate as a predictor of substitution rate.
Comparison of the higher steepness of the autosomal re-
gression compared with that of the X was tested for signif-
icance using a one-sided t-test (see later).

Regionality of Substitution Rates

The substitution rate of individual Y-linked introns
was estimated and subjected to an analysis of variance
(ANOVA) by gene. For each autosomal and X-linked gene,
the neighboring 5# and 3# orthologs were identified and the
mean of their substitution rates determined. For these chro-
mosomal classes, a Spearman’s rank correlation of a given
focal gene’s substitution rate with the mean of its neighbor-
ing orthologs was performed. A higher steepness of the au-
tosomal regression of focal verses flanking substitution

rates compared with that of the X regression was tested
for significance using a one-sided t-test:

t5
bX � bAutoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2X þ s2AutoÞ

p ;

for which degrees of freedom (df) were estimated using the
Welch–Satterthwaite equation (Satterthwaite 1946; Welch
1947):

df 5
ðs2X þ s2AutoÞ

2

ð s4
X

ðnX � 1Þ þ s4
Auto

ðnAuto � 1Þ Þ
;

where bN 5 slope of the regression, sN 5 standard error of
the mean (SEM), and nN5 sample size of the chromosomal
class N.

Rearrangement Index

For a given mouse autosome, the chromosomal loca-
tion of the rat orthologs of two randomly selected genes on
the mouse chromosome was determined. From 1,000 re-
peats per mouse chromosome, we counted the number of
times the randomly selected pair of mouse genes had their
orthologs located on two different chromosomes in rat.
Division of this count by the number of repeat samplings
generated a rearrangement index for each mouse autosome.
A linear regression of this index as a predictor of autosomal
Ki was then calculated.

Results
Estimates of a Are Dependent On Choice of
Chromosomes

We generated two data sets: aligned introns purged of
those in which conserved residues were clustered (possibly
owing to hidden exons) and synonymous rates in exons.
Qualitatively, estimates of a derived from each of the three
pairwise between-chromosome comparisons were unaf-
fected by which of the data sets we used. For brevity then
we consider what is probably the safest data set, namely, the
filtered introns. For this data set, we find that rates of evo-
lution are in the order KAuto 5 0.1645 (0.1642, 0.1647) .
KY 5 0.1494 (0.1393, 0.1598) . KX 5 0.1385 (0.1373,
0.1397), with the autosomal rates significantly higher than
the Y chromosome rate (P 5 0.0031; fig. 1). As KAuto .
KY, it is no surprise that the three comparators fail to agree
on the estimate of a, with one supporting a moderate male
bias, one a female bias, and one no or weak male bias (fig. 2).
These estimates are not mutually compatible (P , 0.0001;
for statistical test, see Methods).

Use of synonymous rates of evolution (supplementary
information 1, Supplementary Material online) or alterna-
tive K estimators (supplementary information 2, Supple-
mentary Material online) confirm this finding. Making
allowance for weak effects of differences in expression rate
(Lercher et al. 2004), past history of inversions (Navarro
and Barton 2003), or GC content (Hurst and Williams
2000) does not alter the conclusion that the results are
incompatible with germ line replication as a unique deter-
minant of substitution rate differences (supplementary
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0.17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y

Chromosome

Ki

Autosomal mean

FIG. 1.—Rates of intronic evolution on each mouse autosome, X
chromosome, and Y chromosome. For each chromosome, we plot the K
estimate for the concatenation and 95% confidence intervals determined
from bootstraps.
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information 3–5, SupplementaryMaterial online). These re-
sults strongly support the view that differences in replica-
tion rates alone do not fully explain between-chromosome
differences in rates of evolution at putatively neutral sites.

Might Recombination Also Be Important?

That autosomes have a higher substitution rate than
Y-linked sequence is most unexpected. Why might this
be? Although the replication model has dominated thinking
on between-chromosome substitution rates, there are now
regular reports that both neutral single nucleotide polymor-
phism diversity and neutral substitution rates increase
across autosomes in correspondence with the local recom-
bination rate (Lercher and Hurst 2002; Hellmann et al.
2003). This may be owing to recombination-induced muta-
tion (Perry and Ashworth 1999; Rattray et al. 2001; Lercher
and Hurst 2002; Hellmann et al. 2003; Bussell et al. 2006)
and/or recombination-associated biased gene conversion
(Dreszer et al. 2007). A correlation between substitution rate
and recombination rate is not, however, universally reported.
Both Nachman (2001) and Spencer et al. (2006) failed to ob-
serve a correlation in humans.

That there might be disagreement between studies is
unsurprising given that recombination rate data are based
on relatively recent crossover events, whereas substitution
rates reflect a much longer history. However, note that re-
combination is seen at high rates on the pseudoautosomal
region of X and Y, a region known to be associated with
high substitution rates (Perry and Ashworth 1999; Bussell
et al. 2006) but not included in our study.

First then we ask whether we see any evidence in ro-
dents that, across autosomes, regions with high recombina-
tion rates have high substitution rates. This issue is,

however, enormously problematic. What one needs to
know for any sequence is not the current recombination rate
alone, but rather the recombination rate to which the se-
quence has been exposed in both lineages over the course
of the divergence of the two species. This is impossible to
know. Perhaps, then, it is optimal to consider the mean re-
combination rate of a sequence in mouse and in rat? This
too is problematic. The mouse lineage has undergone very
many rearrangements (Ramsdell et al. 2008), so the recom-
binational environment of a gene in today’s mouse genome
need not correlate in any manner to its recombinational en-
vironment in mouse and rat since divergence of the two. At
the extreme, if a rearrangement is very modern, today’s re-
combinational environment may well be a very poor guide
to that to which the gene has been exposed over its evolu-
tionary history.

Given that the rat genome is vastly more stable than
the mouse, one can, however, define a test that is defend-
able. If we assume that each chromosomal region has a char-
acteristic recombination rate (on the megabase scale this is
defendable), then we may presume that the recombination
rate seen in rat should correlate with the recombination rate
of a sequence in the rat lineage and for some early part of the
mouse lineage of the gene. We therefore ask whether rat
recombination rates predict substitution rates. We find that
they do, with a significant relationship between substitution
rate and recombination rate in rat on the autosomes
(weighted linear regression R2 5 0.0346, P 5 5 � 10�5;
fig. 3).

With all the necessary caveats, the above result would
suggest that recombination is correlated with substitution

FIG. 2.—Estimates of a from three pairwise chromosomal compar-
isons under the germ line replication model. For each chromosomal
comparison, we plot the form of the curve relating the ratio of rates to a.
The 95% confidence intervals were determined from 10,000 bootstraps.

FIG. 3.—The relationship between substitution rate and recombina-
tion rate in rat. For each chromosomal class, we plot the K estimate for the
gene against the sex-averaged recombination rate of the rat ortholog. Data
for autosomal genes are in blue and for X chromosome in red. Also
shown are bin averages (±1 SEM), where, for each chromosomal class,
bins contain equal numbers of genes, 111–112 for autosomes, and 2–3 for
X chromosome. Regression lines are for all data, not bin means.
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rates independent of replication rates (all autosomes un-
dergo the same number of replications). What would be
the consequence of this? Such a model could predict that
if germ line replication–associated bias, a, were weak (as
probably seen in rodents but not necessarily in humans;
Makova and Li 2002), the fact that recombination in males
is limited to autosomes should increase the autosomal sub-
stitution rate, possibly exceeding the Y-linked rate.

As a first approximation, let us then consider a simple
extension to Miyata et al.’s (1987) model, whereby a
recombination-associated substitution/mutation effect
boosts the rate of evolution by an increment of r. Assuming
an equal contribution to the recombination effect from each
sex, we replace equations (2) and (3) with

KAuto 5
al þ l

2
þ r; ð4Þ

KX 5
al þ 2l

3
þ 2r

3
; ð5Þ

respectively. Using data from all three chromosomal clas-
ses, we can solve simultaneously for a and r. From this, we
find that a 5 1.7263 (1.5936, 1.8720) and r 5 0.5374l
(0.4666l, 0.6143l). This suggests that replication in males
provides a boost of 0.7263 and recombination supplies
a boost of about the same magnitude, probably a little
weaker.

This may not be the whole story. Recent evidence sug-
gests the effect of recombination on neutral substitution
rates and clusters of biased substitutions correlates strongly
with male recombination rates but not with rates seen in
females (Webster et al. 2005; Dreszer et al. 2007; Duret
and Arndt 2008; Tyekucheva et al. 2008; Berglund et al.
2009; Galtier et al. 2009). Allowance for this indicates
a much lower replication-associated bias. To see this, con-
sider a model excluding female recombination (rf 5 0),
such that equations (1) and (3) are unaltered but equation
(2) is replaced with

KAuto 5
al þ l

2
þ rm

2
; ð6Þ

where rm is a male recombination-associated substitution/
mutation effect. Solving simultaneously resolves to esti-
mates of a 5 1.1229 (1.0076, 1.2528) and rm 5
0.3496l (0.3182l, 0.3805l). If recombination in males
alone is associated with a substitution bias, then these re-
sults suggest that in rodents, at least, the effect of replication
may have been much overestimated.

Discussion

We find strong evidence that replication alone cannot
explain differences in the rates of evolution of X, Y, and
autosomes. This is important to know as it suggests that
the method of Miyata et al. (1987), although commonly
employed, is fundamentally incorrect. Whether the method
is grossly misleading, however, will depend on many
parameters.

First, if the true replication effect is very large com-
pared with the recombination effect (or whatever causes

the disparity), thenMiyata et al.’s (1987) method is unlikely
to greatly mislead. This may well be the case in humans
where a priori, if replication is associated with mutation,
a male bias should be very pronounced.

For example, Makova and Li (2002) estimate KY/KAuto

to be 1.68 and estimate a5 5.25. Assuming rm5 0.35l, we
can correct this estimate by considering that KY/KAuto 5 2a/
(1.35 þ a) and so estimate a 5 7.08. This corrected esti-
mate and the original are both around the proposed a 5
6 derived from germ line anatomy. Whether it is legitimate
to suppose that any recombination effect is the same in ro-
dent and human is unclear. The reason for this approximate
insensitivity is that, if a, the replication-associated bias,
is high, the relative impact of male recombination on be-
tween-chromosome estimates is reduced. Conversely, the
evolutionary rates of rodents may be especially instructive,
as any recombination and replication effects are likely to be
more balanced.

The models above also suggest that whether any re-
combination effect is associated with males alone may
be very important. A priori given a lack of understanding
of any substitution–recombination correlation on a mecha-
nistic basis, it seems impossible to arbitrate at the present.
The observation that gene conversion predominantly occurs
in the mitotically dividing spermatogonia (Böhme and
Högstrand 1997) might be important, but the regular finding
of increased pseudoautosomal evolutionary rates (Perry and
Ashworth 1999; Filatov and Gerrard 2003; but see Yi et al.
2004) is more obviously consistent with meiotic events.

We find some weak evidence consistent with a male
bias to recombination-associated substitution bias, but this
is not definitive. If male recombination is the sole or dom-
inant source of within-autosome heterogeneity in substitu-
tion rates, then we might expect to see no or lesser
regionality of substitution rates on the X chromosome
and the Y chromosome, these never being subject to recom-
bination in males (nor to translocations from autosomes).
Data remain limited on the Y, as it has too few genes on
it. Nonetheless, ANOVA reports no gene effect on substi-
tution rates for Y-linked sequences (P5 0.5628). For X and
autosome, we can compare the rate of evolution of a gene
with its immediate chromosomal neighbors (one 5# and
one 3#). On the X chromosome, there is no correlation
(Spearman’s rank correlation q2 5 0.007, P 5 0.40),
whereas on autosomes, we find a correlation an order
of magnitude higher (Spearman’s rank correlation q2 5
0.054, P 5 2.2 � 10�16; fig. 4). As expected, the slope
of the regression line of focal versus flanking for auto-
somes is steeper than that on the X (slope for autosomes 5
0.167 ± 0.01 [SEM], for X 5 0.0472 ± 0.07 [SEM],
t 5 1.69, df 5 107, P , 0.05). These data are consistent
with a dominant effect of recombination in the male germ
line. However, this test suffers two problems. First, the
gene density on the X is lower than on autosomes, so im-
mediate neighbors on the X from our ortholog sample are
less likely to be in the same recombination block. Second,
recombination in females is more scattered along chro-
mosomes than in males (Paigen et al. 2008), hence any
female effect on the X need not be visible in a comparison
between neighbours, while nonetheless a potent force in
determining the overall rate of evolution of the X.
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Further, if only male recombination is mutagenic, then
we would not expect to see a relationship between recom-
bination rate and substitution rate for X-linked genes, these
not recombining in males. Indeed, although we find that re-
combination rate in rat can predict the substitution rate on
the autosomes, no such effect is observed on the X chromo-
some (weighted linear regression for autosomes
R2 5 0.0346, P 5 5 � 10�5; for X, R2 5 0.004,
P 5 0.8122). However, given the weakness of the effect,
it is unsurprising that we do not find a steeper slope on the
autosomes than on the X (slope for autosomes 5 0.0086 ±
0.0021 [SEM], for X5�0.0026 ± 0.0111 [SEM], t5 1.0,
df 5 13.949, P 5 0.167). We are therefore unable to com-
pletely exclude a female recombination effect.

We further wish to make two observations. Any theory
to explain why X, Y, and autosomes evolve at different
rates should also attempt to account for why different au-
tosomes evolve at different rates. We suggest that a recom-
bination model might be able to explain one curious
observation. We find a striking correlation (q 5 0.7488,
P , 0.00009) between the probability that two randomly
chosen genes on a given mouse chromosome have their or-
tholog on the same chromosome in rat and the evolutionary
rate of the mouse chromosome (fig. 5). We suggest that two
factors might link this observation to recombination. Let us
assume that regions associated with high recombination
rates have high substitution rates. Such high-recombination,
fast-evolving domains may be expected to be associated
with genomic rearrangements, first because, at least in
some species, rearrangements tend to occur in regions of
high recombination (Akhunov et al. 2003), and second

because when chromosomal fusions and translocations
occur, they tend to move telomeres rendering them non-
telomeric (Dreszer et al. 2007). If high rates of telomeric
recombination are associated with increased substitution
rates, fusions of such regions should have elevated rates of
evolution, as recently reported at the fusion point of human
chromosome 2 (Dreszer et al. 2007).

Second, if recombination in females has little or no
effect on substitution rates but male recombination is im-
portant, then, in birds, in which Z chromosomes can recom-
bine in males, we expect Z–W comparisons to produce
estimates of a that are biased upward. It has indeed been
noted (Hurst and Ellegren 1998) that given their life span,
the Z-W derived estimates of a are sometimes unusually
high, although this in part may be related to extrapair
paternity influencing the number of replication events
(Bartosch-Härlid et al. 2003). Comparably, if male recom-
bination is the cause of disparity between estimators of a,
assuming nothing else peculiar about the X chromosome,
X–Y comparisons are probably best to estimate a, as male
recombination should not influence these predictions. It is
probably for this reason that X–Y comparisons are those
that in the past have more accurately reflected presumed
differences in germ line replication ratios (Li et al. 2002;
Sandstedt and Tucker 2005; Goetting-Minesky and Mako-
va 2006), whereas X–autosome comparisons have sug-
gested remarkably high (Smith and Hurst 1999a),
sometimes impossible (a . infinity) (McVean and Hurst
1997) estimates for a.
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FIG. 5.—The relationship between between-chromosome rearrange-
ment rates and rates of sequence evolution of genes on mouse autosomes.
For each mouse chromosome, we determined a rearrangement probability
by repeatedly taking random genes on a given mouse chromosome for
which 1:1 orthologs are known in rat and asking whether the two genes
reside on the same chromosome in rat. The index is the proportion of
times this is not true. As nearly all chromosomal rearrangements occur
down the mouse lineage, we employ mouse as the focal chromosome set.
The chromosomal rate is derived from intron concatenation. Spearman’s
q 5 0.7488, P 5 8.098 � 10�5.

FIG. 4.—No evidence for local similarity of substitution rates on the
X chromosome. For each gene we compare a focal gene’s intronic
substitution rate with the mean of its 5# and 3# nearest neighbors for
which we have data. Data for autosomal genes are in blue and for X
chromosome in red. Also shown are bin averages (±1 SEM), where for
each chromosomal class bins contain equal numbers of genes, 100 for X
chromosome, and 401 for autosomal. Regression lines are for all data, not
bin means.
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references are available at Genome Biology and Evolution
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