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Abstract

Cytoskeleton dynamics, membranes trafficking and positioning are essential for the proper functioning of any mammalian
cell. The identification of the molecules and mechanisms that allow these cellular processes to interface is vital for
understanding cell behaviors. Ndel1, the mammalian homolog of the Aspergillus nidulans NudE, organizes the cytoskeleton
and regulates molecular motors, thereby impacting on the positioning of membranes. Hypothetically, Ndel1 can act in
concert with enzymes controlling membrane trafficking (vesicle-mediated transport) per se, but this idea has never been
investigated. We now report that a pool of Ndel1 associates directly with Dynamin 2 (Dyn2), a large cytosolic GTPase
involved in the trafficking of the AMPA receptor subunit GluR1. In vitro, Ndel1 enhances Dyn2 GTPase activity in its
unassembled and assembled forms, without promoting oligomerization of the enzyme. In cells, gain and loss of function of
Ndel1 recapitulate the effects of overexpression of Dyn2 and Dyn2 dominant negative with reduced GTPase activity on the
intracellular localization of GluR1, respectively, without affecting the stability of microtubules. Together, these results
indicate that Ndel1 regulates Dyn2 GTPase activity and impacts GluR1-containing membranes distribution in a manner
reminiscent of Dyn2.
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Introduction

Composed of microfilaments (MFs), Intermediate Filaments

(IFs), Microtubules (MTs) and their associated proteins, the

cytoskeleton is the internal scaffolding that provides structure for

the cell, as well as transports materials and sends signals across the

cell. Emerging evidence indicate that Ndel1, a 345 amino-acid

coiled-coil protein and the mammalian homolog of the Aspergillus

nidulans NudE, organizes the cytoskeleton and regulates molecular

motors in numerous cell types [1–7]. In mitotic cells, through

association with MTs, Ndel1 ensures the assembly of the mitotic

spindle, centrosomal maturation and mitosis [8,9]. During mitosis,

Ndel1 also regulates the alignment and segregation of chromo-

somes. In the developing neocortex, Ndel1, in association with the

Dynein motor and the lissencephaly protein Lis1, contributes to

neuronal migration [8,10–12] (for a review on neuronal migration,

refer to [13]). It does so by stabilizing MTs and promoting

nucleokinesis, the process that pulls the nucleus toward the

extending leading process of a migrating neuron [12]. In addition,

Ndel1 can also influence actin organization and dynamics through

interactions with Rho GTPases and Paxillin during cell migration

and adhesion [14–17]. Finally, Ndel1 induces neuronal differen-

tiation and maintains cell integrity of maturing neurons through

polymerization of neuronal IFs (neurofilaments) transported by

Dynein and Kinesin [1,18,19]. In each of these biological

processes, Ndel1 not only plays a key role in maintaining

structural integrity but also appears to position organelles and

traffic membranes via MTs and molecular motors. For instance,

Ndel1 participates in the positioning of Golgi membranes through

the MTs/Lis1/Dynein pathway [20,21]. Whether Ndel1 contrib-

utes to membrane trafficking (vesicle-mediated transport) per se

through other mechanisms such as by regulating proteins that

shape membranes structure, remains however undefined.

Dynamin (Dyn) is a large cytosolic GTPase (,100 kDa) that

was first isolated from the brain as a microtubule-binding protein,

although little evidence points to a role for Dyn in MTs

remodelling [22]. However, a recent study indicates that Dyn2 is

involved in dynamic instability of MTs [23]. Dyns are most well

characterized for their action on membranes. Dyn associates with

membranes and through oligomerization into ring-like structures,

wraps around the neck of budding vesicles [22,24,25]. Following

hydrolysis of GTP, Dyn changes its conformation to constrict and
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pinch membranes [22,24]. A longitudinal tension appears to be

required to pull apart the membranes and allow membrane fission

during membrane trafficking in yeast, vertebrate and mammalian

cells [25–27].

There are three isoforms of Dynamin: Dyn1, Dyn2 and Dyn3

[22,28]. Whereas Dyn1 and Dyn3 are expressed in a tissue-specific

manner, Dyn2 is ubiquitously expressed [29]. Dyn2 is enriched in

clathrin-coated pits at the plasma membrane [30]. A very minor

fraction of Dyn2 is presumably found at the trans-Golgi network

(TGN) [31,32]. Dyns have also been linked to actin dynamics and

implicated in calveolae internalization, vesicles recycling at the

synapse, lamellipodia formation, cell migration and invasion [33–

41]. In a yeast two-hybrid screen, we recovered Dyn2 as a Ndel1-

binding partner. We verified this interaction biochemically and

molecularly. We also found that Ndel1, like Dyn2, impacts the

intracellular distribution of the á-amino-3-hydroxyl-5-methyl-4-

isoxazole-propionate (AMPA) receptor GluR1, possibly through

regulation of Dyn2 GTPase activity.

Results

Ndel1 interacts directly with Dynamin 2
In a yeast two-hybrid screen, we recovered Dyn2 as a Ndel1-

binding partner. To determine whether Dyn2 forms a complex

with the MT-associated factor Ndel1 in cells, co-immunoprecip-

itation experiments with Ndel1 antibodies were performed on

HeLa cell lysates. As shown in Fig. 1A, Dyn2 co-immunoprecip-

itated with Ndel1 as did Lis1 and Dynein. The association between

Ndel1 and Dyn2 was also detected in neuroblastoma CAD cells,

rat primary cultured hippocampal neurons and adult mouse cortex

(Fig. 1B). All co-immunoprecipitation experiments were controlled

with the absence of antibodies or the presence of Myc antibodies.

Using a post-mitochondrial fraction (PMF), an intermediate

fraction composed of cytosol, Golgi, endoplasmic reticulum

(ER), endosomes and plasma membranes, we succeeded in co-

immunoprecipitating Dyn2 with Ndel1 (Fig. 1C). Taken together,

these results indicate that Dyn2 forms a complex with Ndel1 in

vivo.

The direct interaction between Ndel1 and Dyn2 was demon-

strated by an in vitro binding assay using purified His-Ndel1 and

GST-Dyn2 fusion proteins. While GST protein did not associate

with His-Ndel1, GST-Dyn2 pulled down His-Ndel1 (Fig. 1D). The

direct interaction between the two proteins was further tested by

Far-western assays. Incubation of GST-Dyn2 with membrane-

bound His-Ndel1 revealed specific binding of Dyn2 to Ndel1 at

the expected molecular weight (,45 kDa). The binding occurred

in a dose-dependent manner, as increasing the amounts of His-

Ndel1 (1 to 2 mg) resulted in stronger signals with Dyn2 antibodies

(Fig. 1E). Lanes with no protein loaded did not exhibit

immunoreactivity. In the reverse experiment, incubation of soluble

His-Ndel1 protein with membrane-bound GST-Dyn2 verified the

direct interaction between the two proteins (Fig. 1E).

Like other Dynamins, Dyn2 is composed of a GTPase domain,

a middle domain, critical for tetramerization and high-order self-

assembly, a Pleckstrin Homology domain (PH) for membrane

association, a GTPase Effector Domain (GED) that acts as an

intramolecular GTPase Activating Protein (GAP) and a Proline-

Rich Domain (PRD) that varies among members of the Dyn

family and indirectly promotes cell signalling through association

with various protein partners bearing SH3 domains [22]. To map

the domain(s) of interaction between Ndel1 and Dyn2, recombi-

nant His-Ndel1 and truncated GST fragments of Dyn2 were

expressed and purified for in vitro binding assays (Fig. 2A). The

GTPase domain, the middle domain, the PH and GED domains,

but not the PRD of Dyn2 interacted with His-Ndel1 (Fig. 2B). The

F5 construct containing all three binding sites bound less to Ndel1

than the individual F1-F3 constructs suggesting possible confor-

mational changes in Dyn2 and/or competition between multiple

binding sites. To map the interaction domain(s) on Ndel1, N-

terminus (a.a. 1–201), C-terminus (a.a. 191–345) or full length (a.a.

1–345) Flag-Ndel1 constructs were transfected in HeLa cells and

co-immunoprecipitation experiments were performed with Flag

antibody. The C-terminus and full length Ndel1, but not the N-

terminus, interacted with endogenous Dyn2 (Fig. 2C). This Ndel1

tail/Dyn2 direct interaction was confirmed by yeast two-hybrid

assays (Fig. 2D). Together, these results indicate that the C-

terminus of Ndel1 is sufficient for direct interaction with Dyn2,

possibly with all domains excluding the PRD.

Ndel1 enhances Dynamin 2 GTPase activity in vitro
The above findings showing that Ndel1 binds to Dyn2 through

its regulatory domains including the GTPase domain (Figs. 2A,

2B) raised the question as to whether Ndel1 regulates Dyn2

GTPase activity. To test whether Ndel1 modulates Dyn2 activity,

we performed two different in vitro GTPase assays. Previous

studies have shown that Dyn2 activity is stimulated by oligomer-

ization of the enzyme [22,42,43]. Based on these reports, we

reconstituted Dyn2 oligomers in vitro under low salt conditions

and measured the GTPase activity upon addition of GTP and in

the presence or absence of Ndel1 (see Materials and Methods). We

found that addition of Ndel1 to the reaction mixture enhanced the

hydrolysis of GTP into GDP by ,2 fold, in a time-dependent

manner (Fig. 3A). In this radioactive assay, Ndel1 itself did not

exhibit any GTPase activity (Fig. 3A).

Using a non-radioactive assay we further confirmed that Ndel1

augments the GTPase activity of assembled Dyn2 (Fig. 3B).

Consistent with data obtained with the radioactive assay, we also

confirmed that Ndel1 shows no detectable intrinsic activity

(Fig. 3B). Phospholipase D (PLD), an activator of Dyn2 GTPase

activity, and high salt conditions that disassemble Dyn2 oligomers,

were used as positive and negative controls, respectively (Fig. 3B

and [43,44]). Interestingly, even under high salt conditions, we

found that Ndel1 significantly augments Dyn2 basal activity

(Fig. 3B and see below). Taken together, these results indicate that

Ndel1 enhances the GTPase activity of unassembled and

assembled Dyn2.

The F1 and F5 fragments of Dyn2 contain the GTPase domain,

and the GTPase+middle+PH+GED domains, respectively. Both

fragments have detectable activity (Fig. 3C). We further tested

whether Ndel1 impacts the activity of F1 and F5. We found that

Ndel1 enhances the activity of F5 by ,1.3 fold. This increase in

activity is within the same magnitude as the augmentation

observed with the full length protein (Figs. 3B, 3C). Remarkably,

Ndel1’s effect was maintained when oligomerization of F5 was

prevented under high salt conditions (Fig. 3C). In contrast to F5

and Dyn2 full length, F1, which cannot oligomerize, did not

display detectable levels of activity (Fig. 3C+[44]). However, the

addition of Ndel1 or PLD (positive control) elevated the GTPase

activity to detectable levels. Thus, our data confirmed the

existence of a low intrinsic activity of the GTPase domain (F1)

that can be stimulated by PLD [44], and revealed that Ndel1 can

also increase this activity. In sum, these results indicate that Ndel1

can augment the basal (unassembled) and oligomeric (assembled)

GTPase activity of Dyn2 in vitro.

Ndel1 decreases the oligomerization of Dynamin 2
We found that Ndel1 increases the GTPase activity of Dyn2 in

its oligomeric form. We also made the observation that Ndel1

Ndel1 Regulates Dyn2 Activity
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counteracts the decrease in activity caused by high salt conditions

and we attributed this to an enhancement in basal activity.

However, Dyn2 self-assembly per se has been proposed as a major

regulator of its GTPase activity [43]. Since Ndel1 binds the middle

domain of Dyn2, which is important for its oligomerization, it is

possible that Ndel1 facilitates Dyn2 oligomerization. To determine

whether Ndel1 facilitates Dyn2 self-assembly in vitro, Dyn2

oligomers were assembled in vitro in the presence or absence of

Ndel1. The complexes were analyzed by a sedimentation assay

that separates Dyn2 oligomers in the pellet (P) from unassembled

Dyn2 in the supernatant (S) after centrifugation. Using this assay,

,70% of Dyn2 sedimented (Fig. 4). Incubation of Ndel1 with non-

assembled Dyn2 did not enhance the amount of Dyn2 recovered

in the pellet (Fig. 4). In fact, at the opposite, a significantly lower

Figure 1. Interaction between Ndel1 and Dyn2. (A) Dynamin2 (Dyn2) co-immunoprecipitates with Ndel1, so do Lis1 and Dynein intermediate
chain (DIC) in HeLa cells. Co-immunoprecipitations in absence of antibody (noAb) or with Myc antibody serve as negative controls. (B) Dyn2 co-
immunoprecipitates with Ndel1 in diverse cell types (HeLa cells, neuroblastoma CAD cells, primary cultured rat hippocampal neurons) and mouse
cortex. (C) Co-immunoprecipitation of Dyn2 with Ndel1 in a post-mitochondrial fraction from HeLa cells (left panel). Co-immunoprecipitations in
absence of antibody (No Abs) or with Myc antibody serve as negative controls. The right panel presents a Western blot analysis of the membranes
content of a post-mitochondrial fraction. Endoplasmic reticulum (ER), trans-Golgi (TGN), plasma membrane, endosomes and cytosolic proteins are all
present in this fraction, as detected by KDEL ER marker/BiP, p230 trans-Golgi, Na+/K+ ATPase, EEA1 and Tubulin antibodies, respectively. (D) In vitro
pull-down of His-Ndel1 by GST-Dyn2 but not GST. The protein detected by anti-GST antibodies in GST-Dyn2 pull-down corresponds to the cleaved
GST from GST-Dyn2. (E) Far-western assays demonstrating the direct interaction between Ndel1 and Dyn2. His-Ndel1 bound to membranes was
overlaid with GST-Dyn2 protein that was detected with a Dyn2 antibody at the His-Ndel1 molecular weight (,45 kDa). Consistently, GST-Dyn2 bound
membranes overlaid with His-Ndel1 that was detected with a Ndel1 antibody at the GST-Dyn2 molecular weight (,125 kDa = ,100 kDa for
Dyn2+,25 kDa for GST).
doi:10.1371/journal.pone.0014583.g001

Ndel1 Regulates Dyn2 Activity

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e14583



amount of Dyn2 sedimented in presence of Ndel1. These results

indicate that Ndel1 decreases Dyn2 oligomerization. They are

consistent with the findings that Ndel1 enhances Dyn2 GTPase

activity (GTP hydrolysis) (Fig. 3) and GTP hydrolysis stimulates

Dyn2 disassembly [43]. The data also confirmed that the Ndel1-

mediated increase in Dyn2 activity under high salt conditions

(Fig. 3B) is not related to a facilitation of Dyn2 oligomerization but

rather to an increase in basal activity.

Ndel1 mimics the effects of Dynamin 2 on GluR1
intracellular localization

We have shown that Ndel1 interacts with Dyn2 and regulates

its GTPase activity in vitro. Considering that Dyn2 regulates

intracellular trafficking [31,32] and endocytosis of the AMPA

receptor subunit GluR1 [45,46], we propose that Ndel1 may

regulate GluR1 intracellular distribution in a similar way to

Dyn2. To verify this hypothesis, we compared the effects of

exogenous Ndel1, exogenous Dyn2, Ndel1 siRNA and mutant

Dyn2 with reduced GTPase activity (Dyn2(K44A)) [45–47] on

GluR1 distribution in HeLa cells, by membrane fractionation.

Our rationale is that Ndel1’s gain of function would mimic the

effects of exogenous Dyn2 on GluR1 localization, while loss of

function of Ndel1 would recapitulate the effects of Dyn2

(K44A).

Heavy membrane and light membrane fractions from the five

groups of transfected cells were separated by velocity sucrose

gradient (see Materials and Methods). This method of fraction-

ation is not selective to specific organelles, as shown in Fig. 5A, but

provides the general information on the localization of GluR1 in

the presence or absence of functional Ndel1 or Dyn2. When

expressed at low levels, GluR1 is normally found at the cell

periphery (Fig. 5C). As shown in Fig. 5B, the overexpression of

Ndel1 reduced the ratio of GluR1 in heavy membranes vs total

levels of GluR1 (heavy membranes + light membranes = 100%) in

a manner reminiscent of cells overexpressing Dyn2, when

compared to cells transfected with an empty vector. These results

indicate that GluR1 localization is similarly affected in the

presence of an excess of Ndel1 or Dyn2, the total amount of

GTPase activity being higher in these cells. Conversely, the

expression of the dominant negative Dyn2(K44A) with reduced

GTPase activity enhanced the ratio GluR1 (heavy membranes)/

GluR1 (total levels) (Fig. 5B). Remarkably, depletion of Ndel1 by

siRNA also increased the ratio GluR1 (heavy membranes)/GluR1

(total levels). The impaired localization of GluR1 in Ndel1 siRNA-

Figure 2. Ndel1 interacts with Dyn2 on multiple domains. (A) GST-tagged constructs of Dyn2 used for GST pull-downs. Mid, middle domain;
PH, pleckstrin homology domain; GED, GTPase effector domain; PRD, proline-rich domain. (B) GST pull-downs experiments indicating that all domains
in Dyn2 with the exception of the PRD bind to His-Ndel1. (C) Endogenous Dyn2 co-immunoprecipitates with Ndel1 full length (fl) (a.a. 1–345) and C-
terminus (tail) (a.a. 191–345) in transfected HeLa cells. *Bands that have been confirmed with Ndel1 antibodies. C, cells transfected with an empty
vector. (D) Dyn2 full length interacts with Ndel1 full length (a.a. 1–345) and Ndel1 tail (a.a. 191–345) but not Ndel1 coiled-coil domain (a.a. 1–201) in
yeast 2-hybrid assays as detected by X-Gal and 3-AT.
doi:10.1371/journal.pone.0014583.g002
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Figure 3. Ndel1 increases the GTPase activity of Dyn2 in vitro. (A) Radioactive GTPase assays for Ndel1 (red), Dyn2 full length (FL, orange) and
Ndel1 together with Dyn2 FL (green). Ndel1 itself does not have intrinsic GTPase activity. The addition of Ndel1 to oligomerized Dyn2 FL enhances the
activity of the latter by ,2 fold over 60 minutes. Error bars indicate s.d. (n = 4). Two-way ANOVA: p,0.0001. (B) Non-radioactive GTPase assays for

Ndel1 Regulates Dyn2 Activity
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treated cells is therefore similar to the distribution defects observed

in Dyn2(K44A)-expressing cells. This alteration was unlikely

caused by destabilization and collapse of the MT network as

levels of acetylated-Tubulin (Ac-Tubulin: stable MTs) and MT

structures remain essentially unchanged in Ndel1-depleted cells

(Fig. 5B and references [1,4]). Nor was it caused by remodelling or

fragmentation of the TGN or endoplasmic reticulum (ER) as

revealed by the fractionation profiles of the KDEL ER marker and

TGN marker p230 trans-Golgi in the heavy and light membrane

fractions, and their staining pattern in these Ndel1-depleted cells

(Fig. S1). To further confirm the changes in GluR1 intracellular

localization, we stained HeLa cells co-transfected with GluR1 at

low levels and control siRNA. In these cells, GluR1 was distributed

properly throughout the cell body and cell periphery (Fig. 5C). In

contrast, in GluR1-expressing cells depleted of Ndel1, GluR1

mostly accumulated in perinuclear regions, with very little proteins

transported to the periphery (Fig. 5C).

Taken together, these results support the notion that Ndel1

regulates GluR1 intracellular localization in a similar fashion to

Dyn2. As loss of Ndel1 function mimics the effects of Dyn2(K44A)

with reduced activity, these results combined with the in vitro

GTPase assays suggest that Ndel1 may in part positively regulate

Dyn2 GTPase activity to impact GluR1 localization.

Discussion

We have discovered that Ndel1 is a novel regulator of the basal

(unassembled) and assembled Dyn2 GTPase activity, and impacts

the intracellular localization of one of Dyn2 targets, the AMPA

receptor subunit GluR1. Whether Ndel1 regulates GluR1

distribution through control of Dyn2 GTPase during trafficking

and/or organelles remodelling (changes in positioning/morphol-

ogy) remains to be determined.

Ndel1 is not a typical GAP
The GTPase Effector Domain (GED) of Dyns favors self-

assembly and consequently, acts as an intramolecular GTPase

Activating Protein (GAP) to enhance the GTPase activity of Dyn2

[48]. Several molecules such as Grb2 can indirectly stimulate the

GTPase activity of Dyns by promoting self-assembly through the

GED domain. In 2006, the first ‘‘external’’ GAP, Phospholipase D

(PLD), acting directly on the active and assembled Dyns was

identified [23,42,44]. Like other GAPs that use an arginine finger-

based mechanism for activation, the PHOX homology domain of

PLD contains two arginine residues essential for the GAP function.

Consistent with the mechanism of other GAPs, the PHOX

homology domain of PLD also interacts with the GTPase domain

of Dyns in its GTP-bound state. Our biochemical experiments

indicate that Ndel1 binds to the GTPase domain of Dyn2. Using

in vitro radioactive and non-radioactive GTPase assays, we found

that Ndel1 enhances the GTPase activity of Dyn2 in its

unassembled and assembled states by a mechanism independent

of the oligomerization of the enzyme. In cells, Ndel1 depletion by

siRNA also mimics the effects of Dyn2(K44A), a mutant with

reduced GTPase activity, while overexpression of Ndel1 impacts

on GluR1 distribution in a similar way to enhancing Dyn2

activity. These results suggest that Ndel1 may regulate GluR1

intracellular distribution through Dyn2 GTPase activity. It

remains unclear which of the two (unassembled or assembled)

Dyn2 GTPase activities is regulated by Ndel1 in cells.

Interestingly, the interaction between Ndel1 and Dyn2 is GTP-

independent (data not shown) and Ndel1 does not exhibit a

PHOX homology domain. Thus, we propose that Ndel1 may act

on Dyn2 in a different way than a typical GAP. Taking in

consideration the relatively small molecular weight of Ndel1, its

binding to all domains (GTPase, middle, PH and GED) except the

PRD of Dyn2 suggests that it may adopt a particular conformation

for interaction. The crystal structure of the Dyn2/Ndel1 interfaces

will help define the mechanism of this novel activator.

Figure 4. Ndel1 decreases oligomerization of Dyn2. A sedimen-
tation assay for Dyn2 with or without Ndel1 detects lower amounts of
Dyn2 in pellet of samples with Ndel1 protein vs without Ndel1 protein.
Error bars indicate s.d. (n = 3). Student t-test: *, p,0.05.
doi:10.1371/journal.pone.0014583.g004

Dyn2 FL. Ndel1 does not show detectable GTPase activity, but increases the GTPase activity of assembled Dyn2 FL. The activator Phospholipase D
(PLD, positive control) also increases the activity of oligomerized Dyn2 FL. Under high salt conditions (negative control), unassembled Dyn2 FL shows
reduced GTPase activity when compared to assembled Dyn2 FL. The presence of Ndel1 enhances Dyn2 FL GTPase activity even under high salt
conditions. Error bars indicate S.E.M. (n = 3). Two-way ANOVA: p,0.0001 for all conditions. (C) Non-radioactive GTPase assay for F1 and F5. Ndel1 itself
does not have detectable intrinsic GTPase activity. The addition of Ndel1 increases the GTPase activity of oligomeric F5. PLD and high salt conditions
elevates and diminishes F5 GTPase activity, respectively. The presence of Ndel1 enhances F5 activity even under high salt conditions. Note that the
GTPase activity of F1, which cannot forms oligomers, is below detectable levels but becomes recordable following addition of Ndel1 or PLD. Error
bars indicate S.E.M. (n = 3). Two-way ANOVA: p,0.0005 for all conditions.
doi:10.1371/journal.pone.0014583.g003

Ndel1 Regulates Dyn2 Activity
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Figure 5. Ndel1 controls GluR1 localization in a similar way to Dyn2. Fractionation of GluR1 in heavy membranes (HM) and light membranes
(LM) from HeLa cells transfected with a combination of Dyn2, GluR1, Flag-Ndel1, Dyn2(K44A) constructs and/or treated with Ndel1 siRNA. (A) The HM
fraction comprises several organelles, including the trans-Golgi network (TGN) and the endoplasmic reticulum (ER), as detected with p230 trans-
Golgi/TGN38 and KDEL ER marker antibodies, respectively. The LM fraction includes cytosolic proteins and small organelles like early endosomes as
indicated by Tubulin and EEA1 antibodies, respectively. (B) The framed Western blots depict the separation of GluR1 in HM vs GluR1 in LM in HeLa
cells. Increasing the levels of Dyn2 or Ndel1 reduces the ratio GluR1 HM/GluR1 (HM+LM), indicating GluR1 is redistributed from the heavy membranes

Ndel1 Regulates Dyn2 Activity
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How does Ndel1 regulates GluR1 distribution?
Our membrane fractionation experiments indicate that Ndel1

impacts the intracellular localization of GluR1 in a similar way to

Dyn2. In cells overexpressing or lacking Ndel1, the ER and TGN

distribution remain unaffected (Fig. S1). Thus, it is unlikely that

the Ndel1 siRNA-mediated redistribution of GluR1 is due to

remodelling of these organelles [20]. However, we cannot exclude

the possibility that Ndel1 affects the positioning and morphology

of organelles other than the ER and TGN. It should also be noted

that Dyn2 affects TGN biology as shown on Fig. S1C [31] but it is

unknown whether this contributes to the redistribution of GluR1

in cells through a Ndel1-independent mechanism. As a third non-

mutually exclusive scenario based on the interactions data, in vitro

GTPase assays and comparative studies with Ndel1 siRNA and

dominant negative Dyn2, we speculate that Ndel1, by regulating

Dyn2 GTPase activity, could modulate the trafficking, i.e. vesicle-

mediated transport, of GluR1. This speculative model finds

support in the literature. Indeed, by virtue of its interactions with

Dyn2 (this study), cytosolic proteins involved in membrane

morphogenesis such as aCOP [4], cytoskeletal proteins and

molecular motors [2,3,12,49,50], Ndel1 would be a candidate of

choice to integrate cytoskeleton dynamics and membrane fission

during membrane trafficking. On the one hand, by increasing

Dyn2 GTPase activity, Ndel1 could help the cytosolic enzyme to

constrict membranes and sever GluR1-containing vesicles from

heavy membranes. On the other hand, Ndel1 and Dyn2 have

been linked to actin [14–17,34–36,38,39] and Ndel1 can modulate

actin organization and dynamics to provide the longitudinal

tension necessary to pull apart membranes during fission [25].

Such longitudinal force has already been suggested in yeast in the

form of localized actin polymerization at the site of endocytosis at

the plasma membrane [27,51,52]. Alternatively, by regulating

Dynein and Kinesin activities through Lis1 [5,7,12,49,50,53] and

by activating the walking of soluble molecular motors on MTs,

Ndel1 could generate a similar longitudinal force through MTs.

Ndel1 could also facilitate the polymerization of MTs to extend

this force. This idea of longitudinal force generated by MTs/

Dyn2/Ndel1 would be compatible with a recent study reporting

that Dyn2 also controls MTs stability [23]. Furthermore, a vesicles

population with both Dynein and Kinesin I bound that may be

capable of bi-directional motility along MTs has been described

[49]. Further studies are required to test this appealing speculative

model of dual (constrictive and longitudinal) forces involving

Ndel1/Dyn2/MTs and active transport of Dyn2 in mammalian

cells.

Ndel1 and other cellular functions associated with
Dynamins

We have focused our study on the full length Dyn2 due to its

ubiquitous nature in context of GluR1 trafficking. As a

centrosomal protein, Ndel1 may participate in centrosome

cohesion via binding to Dyn2 and gamma-Tubulin [40]. The

Dyn family contains 3 members (Dyn1, Dyn2, Dyn3) expressed in

a tissue-specific manner [22]. The alternative splicing sites in the

Dynamin gene further increase the diversity of Dyn proteins in cells.

So far, more than 20 Dyn isoforms have been reported [54].

Therefore, Ndel1 may also interact with other Dyn members and

isoforms to control cellular functions such as clathrin-mediated

receptor endocytosis, calveolae internalization, vesicles recycling at

the synapse and lamellipodia formation [33–39,41].

Finally, Ndel1 has been extensively studied in regards to its

essential role in brain development and maturation. Its association

with the MT-associated factors Lis1 and DISC-1 (the lissencephaly

and schizophrenia-causing proteins, respectively), has incriminated

it as a potential candidate in developmental and neuropsychiatric

disorders. The findings that Ndel1 acts on the functions of

intermediate filament protein NF-L [1] and Dyn2 (this study), both

mutated in the sensory motor neurodegenerative Charcot-Marie-

Tooth disease [55–58] further highlight his key role in degener-

ating neurons. Thus, investigation of the roles of Ndel1/Dyn

complex in nerve cells will provide a better understanding of the

importance of cytoskeleton/membrane interface in the healthy

and diseased nervous system.

Materials and Methods

Immunoprecipitations
Cells were lysed in lysis buffer (50 mM Tris–HCl at pH 7.4,

150 mM NaCl, 10 mM KCl, 1 mM EDTA, 0.5% NP40, 0.5%

Tween-20 containing a protease inhibitor cocktail (Roche

Diagnostics)) by sonication. Supernatants were incubated with

appropriate antibodies and the resulting immune complexes were

washed 4 times with lysis buffer, separated by SDS–PAGE and

immunoblotted.

Far-western and in vitro pull-down assays
Far-western assays were performed with affinity-purified GST-

fused Dyn2 and His-tagged Ndel1 proteins. GST-fused Dyn2 (Mr

of ,130 kDa) and His-tagged Ndel1 (Mr of ,45 kDa) proteins

were expressed in BL-21 Escherichia coli (Stratagene) cells and

purified on a Glutathione Sepharose 4 Fast Flow column (GE

Healthcare) or Ni-NTA Agarose column (Qiagen) according to the

manufacturer’s protocol. The in vitro pull-down assays of the

GST-fused Dyn2 and His-tagged Ndel1 were carried out with

Glutathione Sepharose 4 Fast Flow beads or Ni-NTA Agarose

beads in 500 mL of binding buffer containing 20 mM HEPES,

150 mM NaCl, 1 mM DTT, a protease inhibitor cocktail and

0.1% bovine serum albumin (BSA) at 4uC for 2 hours.

Yeast two-hybrid assays
Dyn2 full length isoform was amplified by PCR and inserted into

the SalI and NotI sites of pPC86 vector (GAL4-activation-domain)

(Invitrogen). Full-length (a.a. 1–345), coiled-coil domain (a.a. 1–201)

and carboxyl tail (a.a. 191–345) of Ndel1 were cloned into pPC97

vector (GAL4-DNA-binding-domain). MaV203 yeast cells were co-

transformed with various constructs of pPC97 and pPC86 vectors.

Colonies grown on SD-Leu/Trp media were streaked onto a YPD

(yeast peptone dextrose) plate and colony-lifting assays for b-

galactosidase expression were carried out according to the

manufacturer’s instructions (Clontech). Also, transformants were

plated on SD-Leu/Trp/His media, containing 20 mM or 40 mM 3-

amino-1,2,4-triazol (3-AT) and incubated for 5 days at 30uC.

to the lighter membranes. The usage of a dominant negative mutant of Dyn2 (Dyn2(K44A)) or the treatment of cells with Ndel1 siRNA reverts the
ratio, indicating accumulating GluR1 in the HM fraction. ‘‘C’’ corresponds to control (cells transfected with an empty vector). Error bars indicate s.d.
(n = 3). One way ANOVA: ***, p,0.001; **, p,0.01; *, p,0.05. Note that the levels of stable (acetylated) Tubulin are similar in Ndel1 siRNA-treated cells
vs control siRNA-treated cells. (C) In HeLa cells treated with control siRNA, the AMPA receptor GluR1 (red) is found at the cell periphery and up to the
cell edge. In HeLa cells treated with Ndel1 siRNA most of GluR1 (red) is found close to the nucleus with very little amount at the cell periphery. Cells
were double stained with a marker for the trans-Golgi network (p230 trans-Golgi, blue). Scale bar, 10 mm.
doi:10.1371/journal.pone.0014583.g005
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Cell culture, transfection
HeLa cells (ATCC) were cultured at 37uC, 5% CO2 in DMEM

supplemented with 10% fetal bovine serum. For the transfection

and transient expression of proteins (Dyn2-GFP, Dyn2(K44A)-

GFP, Flag-tagged Ndel1, GluR1 and ER-mCherry (see below)),

cells were transfected with Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. HeLa cells were

transfected with synthetic siRNAs (25–100 nM, duplexes) specific

for Ndel1 (59- GCAGGUCUCAGUGUUAGAA -39) by using

HiPerfect transfection reagent (Qiagen) according to the manu-

facturer’s instructions and then cultured for 24 hours or 48 hours

to achieve Ndel1 silencing. Allstars negative control siRNA

duplexes (Qiagen) were used as a control. The molar ratios of

GluR1 construct to other DNA constructs or Ndel1 siRNAs for co-

transfection were 1:1 for biochemical analyses. For ER structure

experiments, HeLa cells were co-transfected with ER-mCherry

and control or Ndel1 siRNA using Lipofectamine 2000. The total

number of cells analyzed for classifications of described ER

phenotypes exceeded 200 for control siRNA-treated cells and 450

for Ndel1 siRNA-treated cells.

Immunocytochemistry
Briefly, HeLa cells were fixed for 20 minutes in warm PBS with

4% paraformaldehyde and permeabilized with 0.5% saponin. They

were incubated in 10% goat serum (2.5 hours, 25uC), appropriate

primary antibody in PBS with 3% BSA, 0.5% saponin (overnight,

4uC) and secondary antibody in PBS with 3% BSA, 0.5% saponin

(2 hours, 25uC). The immunofluorescent staining was performed

with GluR1 (Chemicon International), Ndel1 (custom-made) and

p230 trans-Golgi (BD Biosciences) antibodies. For ER staining, cells

were transfected with an ER-targeted fluorophore, ER-mCherry,

produced using variations of previously reported methods [59,60].

PCR primers complementary to the mCherry sequence of the

mCherry vector in pcDNA 3.1(+) (a generous gift from Dr Michael

A Colicos) were used to amplify the mCherry sequence and add a

BamHI restriction site on 59 end and the KDEL ER retention signal

plus EcoRI restriction site on 39 end. An ER targeting peptide,

corresponding to the 17 initial amino acids of Calreticulin was

synthesized and NheI and BamHI restrictions sites were added on 59

and 39 end respectively. Both inserts were further ligated between

the NheI and EcoRI restriction sites of the pcDNA 3.1(+) (Invitrogen)

under control of the CMV promoter. Confocal images were

captured with a Nikon Eclipse C1 laser and detector units mounted

on a Nikon Eclipse TE2000-E microscope with a 60X 1.40 oil

objective using EZ-C1 3.50 imaging software.

Post-mitochondrial fractions preparation
Briefly, post-mitochondrial fractions (PMF) from HeLa cells

were isolated using a series of centrifugations and homogeniza-

tion/resuspension in hypotonic/isotonic extraction buffers (for

additional details, see the manufacturer’s protocol for isolation kit

ER0100; Sigma-Aldrich). The PMF is the source of ER

microsomes and is also enriched in plasma membrane, Golgi

membranes and small vesicles/endosomes membranes (Fig. 1C).

The PMF was examined by Western blot analysis using Tubulin

(Sigma-Aldrich), p230 trans-Golgi, EEA1 (BD Biosciences), Na+/

K+ATPase (Upstate), BiP and KDEL ER marker (Santa Cruz

Biotechnologies) antibodies.

Preparation of heavy and light membrane fractions by
velocity sucrose gradient centrifugation

The preparation was performed according to reference [61].

Briefly, 26107 cultured HeLa cells transfected with or without

Dyn2-GFP, Dyn2(K44A)-GFP, Flag-tagged Ndel1, Ndel1 siRNA

and GluR1 constructs were washed twice with ice-cold PBS and

re-suspended in 0.5 mL ice-cold Homogenization Buffer (0.2 M

sucrose, 10 mM HEPES, 1 mM EDTA, protease inhibitor

cocktail (Roche Diagnostics) pH 7.4). The nuclei and unbroken

cells were pelleted by centrifugation at 1,0006 g for 10 minutes

after homogenization. The supernatant (,1 mL) was loaded onto

a 0.2 M to 1.2 M linear sucrose gradient and centrifuged at

25,000 r.p.m. in a Beckman rotor (SW41) for 15 minutes (after

reaching the final speed). Five millilitres from the top of the

gradient were collected as the light membrane fraction (LM). Four

millilitres from the bottom of the gradient were collected as the

heavy membrane fraction (HM). The collected fractions were

subjected to buffer change by ice-cold Homogenization Buffer

without sucrose and concentrated by an Amicon Ultra centrifugal

filter device (Millipore). All steps were carried out at 4uC.

Dynamin 2 GTPase assays
Radioactive GTPase assays were conducted in Assay buffer

(10 mM HEPES, 10 mM PIPES, 2 mM MgCl2, 1 mM EGTA,

1 mM DTT at pH 7.0, 0.1% BSA) containing 0.5 mM GTP in a

final volume of 20 mL. Bacterially-expressed Dyn2 (1.5 mM) was

preincubated with or without purified His-Ndel1 protein for 30

minutes at room temperature. Reactions were initiated by

adding GTP spiked with 0.5 mCi a-32P-GTP and incubated at

37uC. Aliquots (1.5 mL) were removed at specified times and

spotted onto polyethyleneimine (PEI) cellulose thin-layer chro-

matography (TLC) plates (Scientific Absorbents Incorporated).

Nucleotides were resolved by thin layer chromatography in 1:1

ratio of 1 M LiCl: 2 M formic acid solution. The TLC plates

were dried in a warm air drier and autoradiographed with

HyBlot CL film (Denville Scientific Inc.) for 4 hours at 280uC.

GTP and GDP levels were quantified using the Labscan

program (Image Master, 2D software v3.10; Amersham

Pharmacia Biotech). Percentages of GTP hydrolysis were

calculated for a minimum of three time points, and were defined

as (GDP/(GTP+GDP))6100.

Alternatively, the non-radioactive ELIPA GTPase assay (Cyto-

skeleton, Inc.) was used in accordance with the manufacturer’s

instructions. Bacterially-expressed Dyn2 constructs (0.8 mM) were

preincubated with or without purified Ndel1 (1.5 mM) in Assay

Buffer (10 mM HEPES, 10 mM PIPES, 2 mM MgCl2, 1 mM

EGTA, 1 mM DTT at pH 7.0, 0.1% BSA) for 20 minutes at

37uC. Reactions were initiated by adding 1.5 mM GTP and

incubated at 37uC. OD 360 nm was measured at regular intervals

using a SpectraMax Plus384 (Molecular Devices) for 60 minutes.

This assay evaluates GTPase activity by assessing the amount of

inorganic phosphate (Pi) generated through GTP hydrolysis.

Sedimentation assay
Dyn2 self-assembly with or without Ndel1 was tested by

sedimentation after high-speed centrifugation. Dyn2 (2 mM) with

or without Ndel1 (2 mM) was incubated in 10 mM HEPES,

10 mM PIPES, 2 mM MgCl2, 1 mM EGTA, 1 mM DTT at

pH 7.0, 0.5 mM GTP in a final volume of 50 mL at 37uC for 15

minutes. Mixtures were then spun at 16,000 r.p.m. (20,8006g) for

20 minutes in a microfuge refrigerated at 4uC to obtain

supernatant (S) and pellet (P) fractions. The pellet fraction was

resuspended in 50 mL of the same buffer to obtain equal volumes

of supernatant and pellet fractions. Samples were heated at 95uC
for 5 minutes after addition of 10 mL of 6 X SDS–PAGE buffer,

resolved on a 8% polyacrylamide gel and visualized by Coomassie

staining.

Ndel1 Regulates Dyn2 Activity

PLoS ONE | www.plosone.org 9 January 2011 | Volume 6 | Issue 1 | e14583



Supporting Information

Figure S1 Ndel1 depletion does not alter the distribution of the

trans-Golgi network and endoplasmic reticulum. (A) Confocal

pictures of HeLa cells transfected with a control siRNA or Ndel1

siRNA and stained for Ndel1 and p230 trans-Golgi, a protein

associated with the trans-Golgi network (TGN). The depletion of

Ndel1 does not alter the structure and intracellular localization of

the TGN. Scale bar, 5 mm. (B) Confocal pictures of HeLa cells

transfected with a control siRNA or Ndel1 siRNA and co-

transfected with a construct encoding an endoplasmic reticulum

(ER)-targeted fluorophore (ER-mCherry). The three upper panels

represent the three ER phenotypes observed in both treatments:

perinuclear, partially dispersed and fully dispersed ER. The bar

graph shows the distribution of ER phenotypes among cells. Note

that the distribution of the ER, labelled with the ER-mCherry

remains largely unchanged in Ndel1 siRNA-transfected cells when

compared to control siRNA-transfected cells. The bar graph

reports the results of one experiment and is representative of the

data found in 3 independent experiments. Chi-square analysis. ns,

not significant. Scale bar, 10 mm. (C) Analysis by Western blots of

the content of the KDEL ER marker and TGN marker p230

trans-Golgi in the light and heavy membrane fractions (LM and

HM respectively) isolated from cells overexpressing GluR1

together with either Dyn2, a mutant inactive form of Dyn2

(Dyn2(K44A)), Ndel1, or depleted of Ndel1 by siRNA. Note that

Ndel1 does not affect the distribution of the KDEL ER marker

and TGN marker among the fractions: p230 is for instance mostly

found in the HM fraction of cells overexpressing or lacking Ndel1

in a similar way to untransfected control cells. Dyn2, which is

important for TGN biology affects p230 trans-Golgi fractionation

[31] but not KDEL ER marker distribution. On the contrary, the

inactive Dyn2(K44A) mutant does not affect p230 trans-Golgi

distribution.

Found at: doi:10.1371/journal.pone.0014583.s001 (7.83 MB TIF)
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