# scientific reports

Check for updates

## **OPEN** Larvicidal and adulticidal effects of some Egyptian oils against Culex pipiens

Mohamed M. Baz<sup>1</sup>, Abdelfattah Selim<sup>2≥</sup>, Ibrahim Taha Radwan<sup>3</sup>, Abeer Mousa Alkhaibari<sup>4</sup> & Hanem F. Khater<sup>5</sup>

Mosquitoes and mosquito-borne diseases represent an increasing global challenge. Plant extract and/ or oils could serve as alternatives to synthetic insecticides. The larvicidal effects of 32 oils (1000 ppm) were screened against the early 4th larvae of Culex pipiens and the best oils were evaluated against adults and analyzed by gas chromatography-mass spectrometry (GC mass) and HPLC. All oils had larvicidal activity (60.0–100%, 48 h Post-treatment, and their Lethal time 50 (LT<sub>50</sub>) values ranged from 9.67 (Thymus vulgaris) to 37.64 h (Sesamum indicum). Oils were classified as a highly effective group (95-100% mortalities), including Allium sativum, Anethum graveolens, Camellia sinensis, Foeniculum vulgare, Nigella sativa, Salvia officinalis, T. vulgaris, and Viola odorata. The moderately effective group (81–92% mortalities) included Boswellia serrata, Cuminum cyminum, Curcuma aromatic, Allium sativum, Melaleuca alternifolia, Piper nigrum, and Simmondsia chinensis. The least effective ones were C. sativus and S. indicum. Viola odorata, Anethum graveolens, T. vulgaris, and N. sativa provide 100% adult mortalities PT with 10, 25, 20, and 25%. The mortality percentages of the adults subjected to 10% of oils (H group) were 48.89%, 88.39%, 63.94%, 51.54%, 92.96%, 44.44%, 72.22%, and 100% for A. sativum, An. graveolens, C. sinensis, F. vulgare, N. sativa, S. officinalis, T. vulgaris, and V. odorata, respectively. Camellia sinensis and F. vulgare were the most potent larvicides whereas V. odorata, T. vulgaris, An. graveolens and N. sativa were the best adulticides and they could be used for integrated mosquito control.

Mosquitoes are an ancient nuisance pest and mosquito-borne diseases represent an increasing global health challenge, threatening over 40% of the world's population and it is expected that almost half of the world's population will be at risk of arbovirus transmission by 2050<sup>1</sup>. Culex pipiens (Diptera: Culicidae) is widely distributed, transmitting dreadful diseases leading to severe morbidity and sometimes mortality to humans and animals<sup>2-5</sup>.

Vector control is the primary method for reducing public concerns about mosquito-borne diseases<sup>6-11</sup>. Controlling adults and larvae through repellents and insecticides<sup>12,13</sup>, are the most effective approach for reducing mosquito bites. Using synthetic insecticides led to insecticide resistance, environmental pollution, and health hazards to human health and non-target organisms.

Searching for eco-friendly alternatives in botanicals such as essential oils (EOs) is a curtail need. EOs are volatile components found in many plant families like Asteraceae, Rutaceae, Myrtaceae, Lauraceae, Lamiaceae, Apiaceae, Piperaceae, Poaceae, Zingiberaceae, and Cupressaceae<sup>14</sup>. EOs contain complicated mixtures of products as phenols, sesquiterpenes, and monoterpenes<sup>15</sup>.

EOs have antibacterial, antiviral, and antifungal activities. They also possess insecticidal effect interfering with insects' physiological, metabolic, behavioral, and biochemical functions through inhalation, ingestion, or skin absorption of EOs inducing a neurotoxic action<sup>16</sup>. EOs act as adulticides, larvicides, deterrents, and repellents. They are less toxic, biodegradable, and overcome insecticidal resistance<sup>15,17,18</sup>.

EOs have higher popularity with organic growers and environmentally conscious consumers and suitability for urban areas, homes, and other sensitive areas.

<sup>1</sup>Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt. <sup>2</sup>Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt. <sup>3</sup>Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, P.O. Box 11835, Cairo, Egypt. <sup>4</sup>Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia. <sup>5</sup>Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt. <sup>⊠</sup>email: Abdelfattah.selim@fvtm.bu.edu.eg

|     |                                      | Plant oils     |                |                   |  |
|-----|--------------------------------------|----------------|----------------|-------------------|--|
| No. | Oil name                             | Order          | Family         | English name      |  |
| 1   | Allium sativum <sup>a</sup>          | Asparagales    | Amaryllidaceae | Garlic            |  |
| 2   | Anethum graveolens <sup>a</sup>      | Apiales        | Apiaceae       | Dill              |  |
| 3   | Argania spinosa <sup>b</sup>         | Ericales       | Sapotaceae     | Argan             |  |
| 4   | Boswellia serrata R.ª                | Sapindales     | Burseraceae    | Olibanum          |  |
| 5   | Brassica carinata <sup>a</sup>       | Brassicales    | Brassicaceae   | Mustard           |  |
| 6   | Camellia sinensis <sup>a</sup>       | Ericales       | Theaceae       | Green Tea         |  |
| 7   | Cedrus libani Aª                     | Pinales        | Pinaceae       | Cedar wood        |  |
| 8   | Citrullus colocynthis L <sup>b</sup> | Cucurbitales   | Cucurbitaceae  | Bitter apple      |  |
| 9   | Crocus sativus L.ª                   | Asparagales    | Iridaceae      | Saffron crocus    |  |
| 10  | Cucurbita maxima D.ª                 | Cucurbitales   | Cucurbitaceae  | Pumpkin           |  |
| 11  | Cuminum cyminum L <sup>a</sup>       | Apiales        | Apiaceae       | Cumin             |  |
| 12  | Cupressus sempervirens <sup>b</sup>  | Pinales        | Cupressaceae   | Italian cypress   |  |
| 13  | Curcuma aromatica S.ª                | Zingiberales   | Zingiberaceae  | Curcuma           |  |
| 14  | Curcuma longa L.ª                    | Zingiberales   | Zingiberaceae  | Common turmeric   |  |
| 15  | Foeniculum vulgare M.ª               | Apiales        | Apiaceae       | Sweet fennel      |  |
| 16  | Gadus morhuaª                        | Gadiformes     | Gadidae        | Cod Liver         |  |
| 17  | Lepidium sativum L.ª                 | Brassicales    | Brassicaceae   | Garden pepperwort |  |
| 18  | Linum usitatissimum L.ª              | Malpighiales   | Linaceae       | Common flax       |  |
| 19  | Melaleuca alternifoliaª              | Myrtales       | Myrtaceae      | Tea tree          |  |
| 20  | Nigella sativaª                      | Ranunculales   | Ranunculaceae  | Black cumin       |  |
| 21  | Panax ginseng <sup>a</sup>           | Apiales        | Araliaceae     | Chinese ginseng   |  |
| 22  | Piper nigrum L.ª                     | Piperales      | Piperaceae     | Black pepper      |  |
| 23  | Prunus dulcis <sup>b</sup>           | Rosales        | Rosaceae       | Almond            |  |
| 24  | Ruta chalepensis L.ª                 | Sapindales     | Rutaceae       | Rues              |  |
| 25  | Salvia officinalis L.ª               | Lamiales       | Lamiaceae      | Sage              |  |
| 26  | Sesamum indicum <sup>a</sup>         | Lamiales       | Pedaliaceae    | Sesame            |  |
| 27  | Simmondsia chinensis <sup>b</sup>    | Caryophyllales | Simmondsiaceae | Jojoba            |  |
| 28  | Syzygium aromaticum L                | Myrtales       | Myrtaceae      | Clove             |  |
| 29  | Tilia americana L.ª                  | Malvales       | Malvales       | Tilia             |  |
| 30  | Thymus vulgaris L                    | Lamiales       | Lamiaceae      | Garden            |  |
| 31  | Viola odorata L.ª                    | Malpighiales   | Violaceae      | Sweet violet      |  |
| 32  | Zingiber officinale <sup>a</sup>     | Zingiberales   | Zingiberaceae  | Ginger            |  |

**Table 1.** Plants species screened (oil No = 32) used for larvicidal activity. <sup>a</sup>Plant oils purchased from ELCAPTAIN company for extracting natural oils, plants and cosmetics "Cap Pharm". <sup>b</sup>Plant oils purchased fromHarraz for Food Industry & Natural products.

The role of EOs in mosquito control has been discussed<sup>15,19</sup>. This study aimed to screen and evaluate the lethal time values of the larvicidal effects of thirty-two oils and evaluate the adulticidal effect and phytochemical analyses of the most effective ones against *Cx. pipiens*.

#### Materials and methods

**Plant oils.** Thirty- two oils were purchased from EL CAPTAIN Company for extracting natural oils, plants, and cosmetics "Cap Pharm," El Obor, Cairo, Egypt and Harraz for Food Industry & Natrual products, Cairo, Egypt (Table 1).

**Culex pipiens.** *Culex pipiens* (anautogenous strain) was provided from the colony reared at the Department of Entomology, Faculty of Science, Benha University, Egypt, and maintained at  $27 \pm 2$  °C, 75–85% RH and 14: 10 h (L/D) photoperiod.

**Larvicidal efficacy.** Thirty-two oils were screened for their larvicidal efficacy<sup>20</sup> against the early fourth instar larvae, *Cx. pipiens*. Oils were added to a solvent (emulsifier) consisting of dechlorinated water plus 1.0 mL 0.5% Tween-20, through a shaker plate to yield a homogenous solution. Oils were added to a solvent consisting of dechlorinated water plus 5% tween 20. For each oil, twenty larvae were placed in a 500 mL glass beaker containing 250 mL of 1000 ppm. The experiment and the control group, treated with the solvent only, were replicated three times. Larval mortalities were recorded 0.5, 2, 8, 24, and 48 h post-treatment (PT).

Adulticidal efficacy. Susceptibility tests for adult mosquitoes were performed for the promising larvicidal oils through the CDC bottle bioassays<sup>21</sup> with modifications. For each concentration, three bottles were coated. Several concentrations for each oil were prepared using pure ethanol as a solvent. The bottles were coated with the desired concentrations and left overnight at 27 ± 2 °C for solvent evaporation.

Adult mosquitoes (15-10, aged 3-4 days) fed on 10% sucrose solution were released to each bottle using a hand aspirator. The exposure time was set to 30 min. The mosquitoes were removed from the bottles. Mosquito groups were added to separate transparent paper cups  $(10 \times 9 \times 6 \text{ cm})$  having 10% sucrose solution and mortalities were checked after 24 h. Three replicates were made for each concentration.

GC/MS analysis. A Thermo Scientific Trace GC Ultra/ISQ Single Quadrupole MS, TG-5MS fused silica capillary column was used for the GC/MS study (0.1 mm, 0.251 mm and 30 m film thickness). An electron ionisation device with a 70 eV ionisation energy was employed for GC/MS detection. At a constant flow rate of 1 mL/min, helium gas was used as the carrier gas. Temperatures were established at 280 °C for the injector and MS transfer line. The oven temperature was set at 50 °C (hold for 2 min), then increased to 150 °C at a rate of 7 °C per minute, then to 270 °C at a rate of 5 °C per minute (hold for 2 min), and finally to 310 °C at a rate of 3.5 °C per minute (hold 10 min). A percent relative peak area was used to explore the quantification of all of the discovered components. The chemicals were tentatively identified by comparing their respective retention times and mass spectra to those of the NIST, WILLY library data from the GC/MS instrument. The identification was done using mass spectra and a computer search of user-generated reference libraries. To check peak homogeneity, single-ion chromatographic reconstruction was used. When identical spectra could not be identified, only the structural type of the relevant component was provided based on its mass spectral fragmentation. When possible, reference compounds were co-chromatographed to confirm GC retention durations<sup>22</sup>.

**Data analysis.** Data were analyzed through one-way analysis of variance (ANOVA), Duncan's multiple range tests, and Probit analysis for calculating the lethal concentration (LC) and lethal time (LT) values using the computer program PASW Statistics 2009 (SPSS version 22). The relative efficacies (RE) were calculated<sup>18</sup> according to the following formula:

RE for  $LC = LC_{50}(LC_{90} \text{ or } LC_{99})$  for reference oil/ $LC_{50}(LC_{90} \text{ or } LC_{99})$  for EO.

RE for  $LT = LT_{50}(LT_{90} \text{ or } LT_{99})$  for reference oil/ $LT_{50}(LT_{90} \text{ or } LT_{99})$  for EO. Non-parametric, Kruskal–Wallis test was performed to compare the mean differences of more than two groups followed by the Mann-Whitney test to compare the mean differences between the effective oil groups.

#### Results

The larvicidal effect of 32 oils was screened against the early 4th larvae, Cx. pipiens. The results showed that all plant oils had larvicidal activity (60.0-100%, 48 h PT) and their Lethal time 50 (LT<sub>50</sub>) values ranged from 9.67 (Thymus vulgaris) to 37.64 h (Sesamum indicum), Tables 2 and 3.

The efficacy of oils could be classified, 48 h post-treatment (PT) as the highly effective group (H group) inducing 95-100% mortalities, including eight oils: Allium sativum, Anethum graveolens, Camellia sinensis, Foeniculum vulgare, Nigella sativa, Salvia officinalis, T. vulgaris, and Viola odorata. Camellia sinensis and F. vulgare provided 100%, 24 h PT (Table 2).

The LT<sub>50</sub> values of the H group ranged from 9.67 (T. vulgaris) to 19.91 (An. graveolens) hours and those of LT<sub>99</sub> values ranged from 29.97 (Foeniculum vulgare) to 55.32 (An. graveolens). The relative effects (RE) of such oils according to LT<sub>50</sub> values were 2.7, 1.9, 2.9, 3.7, 2.4, 2.4, 3.9, and 3.6 times, respectively, times than S. indicum; whereas those of LT<sub>99</sub> values were 2.1, 1.8, 2.4, 3.3, 2.0, 2.0, 3.0, and 3.0 times, respectively, than C. sativus. The Chi-square, significance, and regression equations were provided for all teste oils (Table 3).

The moderately effective (M group) group of oils resulted in 81-92% mortalities 48 h PT, including B. serrata, C. cyminum, C. aromatic, L. sativum, M. alternifolia, P. nigrum, and S. chinensis. They provided 63.33-71.67% mortalities, 24 h PT (Table 2).

The LT<sub>50</sub> values of M group ranged from 19.00 (S. chinensis) to 22.65 (C. cyminum) hours and those of LT<sub>99</sub> values ranged from 57.95 (S. chinensis) to 66.22 (M. alternifolia) (Table 3). Their RE regarding the  $LT_{50}$  values were 1.8, 1.7, 1.8, 1.9, 1.7, 1.9, and 1.9 times than S. indicum, respectively, whereas those of LT<sub>99</sub> values were 1.7, 1.6, 1.6, 1.7, 1.5, 1.6, and 1.8 times than C. sativus, respectively (Table 3).

The least effective group (L group) included the other 17 oils, and the least effective ones were C. sativus, and S. indicum, providing 62.33 and 60.00% mortalities, 48 h PT, whereas their  $LT_{50}$  values were 37.07 and 37.64 h and their LT<sub>99</sub> values were 96.88 and 92.89 h, respectively (Table 3).

Furthermore, the Kruskal-Wallis test was performed to compare the mean differences of more than two groups, followed by the Mann-Whitney test to compare the mean differences between groups. Whereas Kruskal-Wallis and Friedman's tests showed there are significant indications between the three groups at different times (P = 0.001) (Tables 4 and 5).

Viola odorata, A. graveolens, T. vulgaris, and N. sativa provide 100% adult mortalities PT with 10. 25. 20, and 25%. The mortality percentages of the adults subjected to 10% of oils (H group) were 48.89%, 88.39, 63.94, 51.54, 92.96, 44.44, 72.22, and 100.0% for A. sativum, An. graveolens, C. sinensis, F. vulgare, N. sativa, S. officinalis T. vulgaris, and V. odorata, respectively. Their adulticidal LC<sub>50</sub> values, 24 h PT, were 15.57, 2.42, 9.01, 15.07, 3.42, 20.46, 3.08, and 1.88%; whereas their LC<sub>90</sub> values were 38.86, 9.47, 32.18, 33.34, 5.44, 50.76, 16.08, and 7.37%, respectively. Salvia officinalis followed by A. sativum were the least effective oils against adults. According to LC90, N. sativa, V. odorata and An. graveolens killed mosquitoes 9.3, 6.9, and 5.4 times more than S. officinalis (Table 6).

|                        | Mortality % (                | nean±SD)/h                    |                                 |                            |                                 |          |  |
|------------------------|------------------------------|-------------------------------|---------------------------------|----------------------------|---------------------------------|----------|--|
| Oils                   | 0.5                          | 2                             | 8                               | 24                         | 48                              | Grouping |  |
| Allium sativum         | $6.67\pm0.58^{aE}$           | $22.33 \pm 1.53^{D}$          | $46.67 \pm 0.58^{efgiC}$        | $81.33 \pm 1.53^{dB}$      | $96.67 \pm 0.58^{eA}$           | Н        |  |
| Anethum graveolens     | $8.33\pm0.58^{aE}$           | $23.33 \pm 1.15^{D}$          | $48.67 \pm 1.15^{jC}$           | $83.67 \pm 1.53^{dB}$      | $98.33 \pm 0.58^{eA}$           | Н        |  |
| Argania spinosa        | $5.00\pm1.00^{aE}$           | $11.67 \pm 0.58^{D}$          | 21.67±1.53 <sup>bcdC</sup>      | $43.33 \pm 1.53^{cB}$      | $66.67 \pm 1.53^{dA}$           | L        |  |
| Boswellia serrata      | $3.33\pm0.58^{aE}$           | $15.00 \pm 1.00^{\mathrm{D}}$ | $31.67 \pm 1.53^{bcdeC}$        | $70.00 \pm 1.00^{dB}$      | $90.00 \pm 1.00^{eA}$           | М        |  |
| Brassica carinata      | $3.33\pm0.58^{aE}$           | $13.33\pm0.58^{\rm D}$        | $25.00 \pm 1.00^{bcdC}$         | $45.00 \pm 1.53^{cB}$      | $68.33 \pm 2.08^{dA}$           | L        |  |
| Camellia sinensis      | $8.33\pm0.58^{aE}$           | $23.33 \pm 1.00^{aC}$         | $61.67 \pm 1.531^{\mathrm{jB}}$ | $100.00 \pm 1.00^{dA}$     | $100.00 \pm 0.58^{eA}$          | Н        |  |
| Cedrus libani          | $5.00\pm1.00^{abE}$          | $15.00 \pm 0.00^{aD}$         | $25.00 \pm 1.00^{cC}$           | $56.67 \pm 1.00^{dB}$      | $78.33 \pm 1.53^{eA}$           | L        |  |
| Citrullus colocynthis  | $3.33\pm0.58^{aE}$           | $11.67 \pm 0.58^{cdeD}$       | $33.33 \pm 0.58^{defgC}$        | $65.00\pm1.00^{defB}$      | $75.00 \pm 1.00^{deA}$          | L        |  |
| Crocus sativus         | $3.33\pm0.58^{aE}$           | $10.00\pm1.00^{\rm defD}$     | $21.67 \pm 1.15^{hijC}$         | $39.33 \pm 1.00^{\rm hiB}$ | $62.33 \pm 1.00^{fgA}$          | L        |  |
| Cucurbita maxima       | $3.33\pm0.58^{aE}$           | $10.00\pm1.00^{defD}$         | $21.67 \pm 1.53^{hijC}$         | $48.33 \pm 1.53^{ghB}$     | $65.00\pm1.35^{efgA}$           | L        |  |
| Cuminum cyminum        | $3.33\pm0.58^{aE}$           | $8.33\pm0.58^{efD}$           | $33.33 \pm 1.53^{defgC}$        | $63.33 \pm 1.53^{defB}$    | $88.33 \pm 1.53^{bcA}$          | М        |  |
| Cupressus sempervirens | $5.00\pm1.00^{aE}$           | $8.33\pm0.58^{\rm efD}$       | $16.67 \pm 0.58^{ijC}$          | $41.67\pm2.08^{hiB}$       | $63.33 \pm 2.00^{fgA}$          | L        |  |
| Curcuma aromatic       | $5.00\pm1.00^{aE}$           | $16.67 \pm 1.53^{abcdeD}$     | $35.00 \pm 1.73^{\text{defC}}$  | $71.67 \pm 1.53^{cdB}$     | $88.33 \pm 1.53^{bcA}$          | М        |  |
| Curcuma longa          | $5.00\pm1.00^{aE}$           | $10.00\pm1.00^{\rm defD}$     | $20.00 \pm 1.00^{ijC}$          | $40.00\pm2.08^{hiB}$       | $61.67 \pm 1.53^{fgA}$          | L        |  |
| Foeniculum vulgare     | $8.33\pm0.58^{aE}$           | $25.00 \pm 1.15^{aC}$         | $63.33 \pm 0.58^{aB}$           | $100.00 \pm 1.00^{aA}$     | $100.00 \pm 0.00^{aA}$          | Н        |  |
| Gadus morhua           | $5.00\pm1.00^{abE}$          | $13.33\pm0.58^{bcdeD}$        | $31.67 \pm 1.53^{defghC}$       | $55.00\pm1.00^{fgB}$       | $75.00 \pm 1.00^{deA}$          | L        |  |
| Lepidium sativum       | $6.67\pm0.58^{aE}$           | $15.00\pm1.00^{abcdeD}$       | $36.67 \pm 1.15^{deC}$          | $70.00\pm1.00^{cdeB}$      | $90.00\pm1.00^{abcA}$           | М        |  |
| Linum usitatissimum    | $3.33\pm0.58^{aE}$           | $15.00\pm1.00^{abcdeD}$       | $40.00 \pm 1.00^{cdC}$          | $55.00\pm1.00^{fgB}$       | $75.00 \pm 1.00^{deA}$          | L        |  |
| Melaleuca alternifolia | $6.67\pm0.58^{aE}$           | $10.00\pm1.00^{defD}$         | $40.00 \pm 1.00^{cdC}$          | $71.67 \pm 1.53^{cdB}$     | $81.67 \pm 0.58^{cdA}$          | М        |  |
| Nigella sativa         | $5.00\pm1.00^{aE}$           | $20.00\pm1.00^{abcdD}$        | $50.00 \pm 1.00^{bcC}$          | $78.67 \pm 1.53^{bcB}$     | $95.00\pm1.00^{abA}$            | Н        |  |
| Panax ginseng          | $5.00\pm.1.00^{\mathrm{aE}}$ | $11.67 \pm 0.58^{cdeD}$       | $30.00\pm1.73^{defghC}$         | $48.33 \pm 1.53^{ghB}$     | $71.67 \pm 1.15^{defA}$         | L        |  |
| Piper nigrum           | $5.00\pm1.00^{aE}$           | $20.00\pm1.00^{abcdD}$        | $38.33 \pm 0.58^{dC}$           | $70.00\pm1.00^{cdeB}$      | $88.33 \pm 1.58^{bcA}$          | М        |  |
| Prunus dulcis          | $3.33\pm0.57^{aE}$           | $13.33\pm0.33^{bcdeD}$        | $31.67\pm0.88^{defghC}$         | $50.00 \pm 0.57^{ghB}$     | $75.00 \pm 0.57^{deA}$          | L        |  |
| Ruta chalepensis       | $3.33\pm0.58^{aE}$           | $15.00\pm1.00^{abcdeD}$       | $33.33 \pm 2.08^{defgC}$        | $60.00 \pm 2.00^{efB}$     | $80.00 \pm 1.00^{cdA}$          | L        |  |
| Salvia officinalis     | $6.67\pm0.58^{aE}$           | $21.67\pm1.53^{abcD}$         | 51.67±1.53 <sup>bC</sup>        | $80.00 \pm 1.53^{bcB}$     | $97.33 \pm 1.00^{abA}$          | Н        |  |
| Sesamum indicum        | $3.33\pm0.58^{aE}$           | $8.33 \pm 1.15^{\rm efD}$     | $15.00 \pm 1.00^{jC}$           | $36.67 \pm 1.15^{iB}$      | $60.00 \pm 1.15^{gA}$           | L        |  |
| Simmondsia chinensis   | $5.00\pm1.00^{aE}$           | $11.67\pm0.58^{cdeD}$         | $36.67 \pm 1.53^{deC}$          | $70.00\pm2.0^{cdeB}$       | $91.67 \pm 0.58^{abA}$          | М        |  |
| Syzygium aromaticum    | $5.00\pm1.00^{aE}$           | $13.33\pm0.58^{bcdeD}$        | $23.33 \pm 1.15^{\text{ghijC}}$ | $50.00\pm1.00^{ghB}$       | $76.673 \pm 1.53^{dA}$          | L        |  |
| Tilia americana        | $5.00\pm0.57^{aE}$           | $15.00\pm0.0^{abcdeD}$        | $25.00\pm0.57^{fghijC}$         | $56.67\pm0.88^{fgB}$       | $88.33\pm0.88^{bcA}$            | L        |  |
| Thymus vulgaris        | $8.33\pm0.58^{aE}$           | $21.67\pm0.58^{abcD}$         | $58.33 \pm 2.08^{abC}$          | $85.00 \pm 0.58^{\rm bB}$  | $100.00 \pm 1.00^{\mathrm{aA}}$ | Н        |  |
| Viola odorata          | $8.33\pm0.58^{aE}$           | $23.33\pm1.00^{abD}$          | $58.67 \pm 1.53^{abC}$          | $89.67\pm1.53^{abB}$       | $100.00 \pm 0.00^{aA}$          | Н        |  |
| Zingiber officinale    | $5.00\pm1.00^{aE}$           | $13.33\pm0.58^{bcdeD}$        | $26.67 \pm 1.53^{efghiC}$       | $48.33 \pm 1.53^{ghB}$     | $75.00 \pm 1.00^{deA}$          | L        |  |
| Control                | $0.33\pm0.33^{aA}$           | $0.33 \pm 0.33^{fA}$          | $0.33 \pm 0.33^{kA}$            | $0.33\pm0.33^{jA}$         | $0.33 \pm 0.33^{hA}$            | L        |  |

**Table 2.** Larval mortality (%) of plant oils used at 1000 ppm through different time periods. Numbers of the same raw followed by the same small letter are not significantly different (one-way ANOVA, Duncan's MRT, P > 0.05). H: The highly effective (95–100% mortalities), 8 oils. M: The moderately effective group (81–92% mortalities), 7 oils. L.: The moderately effective group, include the rest of oils, 17 oils.

**Oil phytochemical analysis.** Phytochemical analysis of oils of *F. vulgare Mill., An. graveolens L., V. odorata L., T. vulgaris L., A. sativum, S. officinalis* and *C. sinensis* by GC/MS and HPLC analysis revealed their major compounds. *F. vulgare* oil contains Estragole (70.36%); Limonene (8.96%) and 1,3,3-trimethyl Bicyclo [2.2.1] heptan-2-one (2.81%) (Table 7 and Fig. 1).

Anethum graveolens showed abundance of 4-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone (32.13%); 1,5-dimethyl-1,5-Cyclooctadiene (17.19%); Dihydrocarvone (5.98%); 3a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8aà)] (Carotol) (21.26%); and tricyclic compound Daucol (2.39%) (Table 8 and Fig. 2).

*Viola odorata L.* oil contains Diphenyl ether (42.04%); alpha.-Ionone(11.87%); (Z)-5-(4-tert-Butyl-1-hydroxycyclohexyl)-3-methylpent-2-en-4-yne (7.22%); 2,3,3a,4,5,5a,6,7,9a,9b-decahydro-3,5a,9-trimethyl-7,9a-peroxy Naphtho-[1,2-b]furan-2-one (6.6%); 2-hexyl-1-Decanol (4.15%); and hexadecahydro-Pyrene (2.79%) (Table 9 and Fig. 3).

*Thymus vulgaris* oil included 2-Ethynyl-3-hydroxypyridine (12.37%); 2-á-pinene(8.92%),2,5-Dipropoxybenzalde-hyde (7.70%); 5-Amino-8-cyano-7-methoxy-3,4-dihydro-3-methy-l1,6-naphthyridin- (1H)-one (5.05%); à-terpinyl acetate (5.00%); 4-methyl-1-(1-methyl-ethyl)-3-Cyclohexen-1-ol (4.73%), 3-(6,6-Dimethyl-5-oxohept-2-enyl)-cyclo-heptanone (4.54%); 10-Methylnonadecane(4.12%); 9-methyl Nonadecane-(3.55%); n1,1'-oxybis Decane (2.36%); 7,11-Hexadecadienal (2.14%); and (2R,3R)-3- (2-Methoxy-4-methylphenyl)-2,3-dimethylcyclopentanone (2.01%) (Table 10 and Fig. 4).

*Allium sativum* contains many effective chemical compounds including the 9-Octadecenamide, (Z)-(29.07%), Trisulfide, di-2-propenyl (14.86%), and isochiapin B%2 < (8.63%) compounds (Table 11 and Fig. 5).

| Oil name                   | LT <sub>50</sub> (lower-<br>upper) | RE (LT <sub>50</sub> ) | LT <sub>90</sub> (lower-<br>upper) | RE (LT <sub>90</sub> ) | LT99 (lower-<br>upper)   | RE (LT <sub>99</sub> ) | Chi (Sig)      | Regrision<br>equation  |
|----------------------------|------------------------------------|------------------------|------------------------------------|------------------------|--------------------------|------------------------|----------------|------------------------|
| Allium sativum             | 13.95<br>(3.16-54.44)              | 2.7                    | 31.17 (18.49–<br>174.49)           | 2.2                    | 45.20 (26.92–<br>276.44) | 2.1                    | 39.30 (0.000a) | $y = 0.86 + 0.06^{*}x$ |
| Anethum<br>graveolens      | 19.90 (11.30–<br>36.52)            | 1.9                    | 39.41 (27.22-<br>81.32)            | 1.8                    | 55.31 (37.96–<br>120.10) | 1.8                    | 23.13 (0.000a) | y = 1.23 + 0.06*x      |
| Argania spinosa            | 33.02 (22.75–<br>55.92)            | 1.1                    | 63.55 (45.59–<br>120.49)           | 1.1                    | 88.45 (62.33–<br>175.00) | 1.1                    | 13.91 (0.008a) | y = 1.31 + 0.04 x      |
| Boswellia<br>serrata       | 20.78 (12.05–<br>37.26)            | 1.8                    | 41.01 (28.56-<br>82.20)            | 1.7                    | 57.50 (39.77–<br>121.10) | 1.7                    | 22.42 (0.000a) | y = 1.27 + 0.06*x      |
| Brassica<br>carinata       | 32.09 (21.04–<br>59.25)            | 1.2                    | 62.39 (43.53–<br>132.05)           | 1.1                    | 87.09 (59.69–<br>193.58) | 1.1                    | 17.05 (0.002a) | y=1.33+0.04*x          |
| Camellia<br>sinensis       | 13.02<br>(3.56–56.12)              | 2.9                    | 27.65 (16.38–<br>172.03)           | 2.5                    | 39.58 (23.51–<br>269.84) | 2.4                    | 40.31 (0.000a) | $y = 0.96 + 0.07^*x$   |
| Cedrus libani A            | 26.87 (17.55–<br>44.77)            | 1.4                    | 52.99 (38.06-<br>98.01)            | 1.3                    | 74.29 (52.64–<br>143.56) | 1.3                    | 16.60 (0.002a) | $y = 1.24 + 0.05^*x$   |
| Citrullus colo-<br>cynthis | 26.08 (12.80-<br>65.61)            | 0.0                    | 52.72 (34.03–<br>169.10)           | 0.0                    | 74.44 (47.49–<br>257.33) | 1.3                    | 32.23 (0.000a) | $y = 1.25 + 0.05^*x$   |
| Crocus sativus             | 37.07 (25.39–<br>68.56)            | 1.0                    | 70.02 (49.05–<br>147.56)           | 1.0                    | 96.88 (66.53–<br>213.77) | 1.0                    | 14.35 (0.006a) | $y = 1.41 + 0.04^{*}x$ |
| Cucurbita<br>maxima        | 30.90 (22.00-<br>47.60)            | 1.2                    | 57.85 (43.01–<br>97.25)            | 1.2                    | 79.81 (58.44–<br>139.44) | 1.2                    | 12.91 (0.012a) | y = 1.44 + 0.05 * x    |
| Cuminum<br>cyminum         | 22.65 (13.54-<br>I40.07)           | 1.7                    | 43.44 (30.47-<br>86.24)            | 1.6                    | 60.39 (42.00-<br>126.16) | 1.6                    | 22.68 (0.000a) | y=1.39+0.06*x          |
| Cupressus<br>sempervirens  | 34.67 (26.87–<br>47.96)            | 1.1                    | 67.29 (52.45–<br>100.54)           | 1.0                    | 93.88 (71.85–<br>144.86) | 1.0                    | 18.16 (0.66a)  | y=1.41+0.05*x          |
| Curcuma<br>aromatic        | 20.49 (10.77–<br>39.97)            | 1.8                    | 41.98 (28.40–<br>94.24)            | 1.7                    | 59.51 (40.00-<br>141.25) | 1.6                    | 25.53 (0.000a) | y = 1.14 + 0.05 * x    |
| Curcuma longa              | 33.89 (24.46–<br>52.94)            | 1.1                    | 63.92 (47.28–<br>109.44)           | 1.1                    | 88.41 (64.29–<br>157.09) | 1.1                    | 11.35 (0.023a) | y = 1.37 + 0.04 x      |
| Foeniculum<br>vulgare      | 10.22<br>(5.29–21.14)              | 3.7                    | 20.99 (13.93–<br>49.73)            | 3.3                    | 29.77 (19.68–<br>74.34)  | 3.3                    | 21.56 (0.000a) | y = 1.06 = 0.1 x       |
| Gadus morhua               | 27.64 (16.47–<br>54.29)            | 1.4                    | 55.69 (37.98–<br>128.11)           | 1.3                    | 78.56 (52.78–<br>191.03) | 1.2                    | 21.54 (0.000a) | y=1.2+0.04*x           |
| Lepidium<br>sativum        | 20.06 (11.18–<br>36.90)            | 1.9                    | 41.06 (28.31-<br>84.97)            | 1.7                    | 58.18 (39.83-<br>126.60) | 1.7                    | 22.42 (0.000a) | y=1.11+0.05*x          |
| Linum usitatis-<br>simum   | 26.78 (12.80–<br>77.92)            | 1.4                    | 55.74 (35.22-<br>213.81)           | 1.3                    | 79.35 (49.44–<br>328.66) | 1.2                    | 31.75 (0.000a) | y = 1.18 + 0.04 x      |
| Melaleuca<br>alternifolia  | 22.36<br>(9.11-58.90)              | 1.7                    | 46.52 (29.47–<br>159.02)           | 1.5                    | 66.22 (41.73–<br>244.98) | 1.5                    | 36.44 (0.000a) | $y = 1.12 + 0.05^*x$   |
| Nigella sativa             | 15.67<br>(5.25-46.57)              | 2.4                    | 33.48 (20.57–<br>130.64)           | 2.1                    | 48.00 (29.54–<br>202.69) | 2.0                    | 36.89 (0.000a) | $y = 1.01 + 0.06^{*}x$ |
| Panax ginseng              | 30.16 (19.05–<br>57.39)            | 1.2                    | 59.66 (41.18-<br>131.40)           | 1.2                    | 83.70 (56.80–<br>194.15) | 1.2                    | 18.86 (0.001a) | y = 1.25 + 0.04 x      |
| Piper nigrum               | 20.14<br>(9.84–41.84)              | 1.9                    | 42.45 (28.17–<br>103.75)           | 1.6                    | 60.63 (40.01–<br>157.34) | 1.6                    | 27.10 (0.000a) | y=1.07+0.05*x          |
| Prunus dulcis              | 26.75 (19.88–<br>36.78)            | 2.6                    | 58.25 (45.50-<br>85.63)            | 1.4                    | 78.56 (64.49–<br>127.36) | 1.2                    | 21.11(0.03a)   | $y = 1.2 + 0.04^{*}x$  |
| Ruta cha-<br>lepensis      | 25.12 (14.06–<br>50.27)            | 1.5                    | 50.74 (34.32-<br>119.52)           | 1.4                    | 71.63 (47.88-<br>178.94) | 1.4                    | 24.68 (0.000a) | y=1.24+0.05            |
| Salvia offici-<br>nalis    | 15.42<br>(5.38–41.36)              | 2.4                    | 34.12 (21.26–<br>116.53)           | 2.1                    | 49.37 (30.77–<br>181.26) | 2.0                    | 32.84 (0.000a) | y=0.89+0.06*x          |
| Sesamum<br>indicum         | 37.64 (32.87–<br>44.04)            | 1.0                    | 68.08 (58.97-<br>81.70)            | 1.0                    | 92.89 (79.68–<br>112.98) | 1.0                    | 8.60 (0.720a)  | y=1.54+0.04*x          |
| Simmondsia<br>chinensis    | 19.00 (14.03–<br>25.19)            | 1.9                    | 40.45 (32.52-<br>55.17)            | 1.8                    | 57.95 (46.08-<br>81.12)  | 1.8                    | 4.20 (0.241a)  | y=1.23+0.06*x          |
| Syzygium<br>aromaticum     | 32.14 (21.00-<br>44.84)            | 1.2                    | 63.13 (43.91–<br>102.50)           | 1.1                    | 88.39 (60.37–<br>19.40)  | 1.1                    | 16.81 (0.031a) | y = 1.26 + 0.04 x      |
| Tilia americana            | 26.03 (19.61–<br>35.05)            | 1.4                    | 52 (43.55–<br>78.29)               | 1.3                    | 78.62 (61.30–<br>115.31) | 1.2                    | 16.6 (0.471a)  | y=1.24+0.05*x          |
| Thymus<br>vulgaris         | 9.67 (3.58–<br>33.79)              | 3.9                    | 21.89 (13.29–<br>104.01)           | 3.2                    | 31.86 (19.19–<br>163.28) | 3.0                    | 33.04 (0.000a) | $y = 0.88 + 0.09^{*}x$ |
| Viola odorata              | 10.31<br>(3.88–28.58)              | 3.6                    | 22.15 (13.76–<br>78.00)            | 3.2                    | 31.81 (19.76–<br>120.35) | 3.0                    | 29.95 (0.000a) | y=.96+0.09*x           |
| Zingiber<br>officinale     | 29.27 (19.73–<br>48.49)            | 1.3                    | 57.30(41.31-<br>105.43)            | 1.2                    | 80.16 (56.91–<br>153.86) | 1.2                    | 14.90 (0.005a) | y = 1.26 + 0.04 x      |
| Reference oil              | Sesamum indici                     | um                     | Crocus sativus                     |                        | 1                        |                        | 1              |                        |

**Table 3.** Lethal time values of applied oils (1000 ppm) against *Culex pipiens* larvae. *RE* Relative efficacy.Significant values are in [bold].

|            | Mortality % (mean ± SD)* |                  |                    |                  |                  |  |  |  |  |  |
|------------|--------------------------|------------------|--------------------|------------------|------------------|--|--|--|--|--|
| Oil groups | 0.5 h                    | 2 h              | 8 h                | 24 h             | 48 h             |  |  |  |  |  |
| Low        | $4.2 \pm 0.847$          | $12.3 \pm 2.278$ | $25.980 \pm 6.590$ | 49.4±7.838       | 71.6±7.39        |  |  |  |  |  |
| Medium     | $5.0 \pm 1.361$          | $13.8 \pm 4.050$ | $35.950 \pm 2.864$ | $69.5 \pm 2.841$ | 88.3±3.191       |  |  |  |  |  |
| High       | $7.5 \pm 1.260$          | $22.7 \pm 1.527$ | $54.792 \pm 6.389$ | 87.1±8.533       | $98.3 \pm 1.992$ |  |  |  |  |  |
| Chi-Square | 16.909**                 | 18.152**         | 23.037**           | 25.391**         | 25.098**         |  |  |  |  |  |
| df         | 2                        | 2                | 2                  | 2                | 2                |  |  |  |  |  |
| Asymp. Sig | 0.001                    | 0.001            | 0.001              | 0.001            | 0.001            |  |  |  |  |  |

**Table 4.** Kruskal–Wallis test for larval mosquito mortality (%) of plant oil groups at 1000 ppm. \*Means produced by non-parametric analysis (Kruskal–Wallis, p 0.05). \*\*The X<sup>2</sup> value is sig. at significant level 1% H: The highly effective group (95–100% mortalities) are 8 oils (*A. sativum, A. graveolens, C. sinensis, F. vulgare, N. sativa, S. officinalis, T. vulgaris,* and *V. odorata*). M: The moderately effective group (81–92% mortalities) are 7 oils (*B. serrata, C. cyminum, C. aromatic, L. sativum, M. alternifolia, P. nigrum,* and S. chinensis). L.: The moderately effective group are included the rest of oils, 17 oils (*A. spinosa, B. carinata, C. libani, C. colocynthis, C. sativus, C. maxima, C. sempervirens, C. longa, G. morhua, L. usitatissimum, P. ginseng, P. dulcis, R. chalepensis, S. indicum, S.aromaticum, T. americana, and Z. officinale).* 

| Oil groups | 0.5 h            | 2 h               | 8 h                | 24 h               | 48 h              | Chi <sup>2</sup><br>Df=4 |
|------------|------------------|-------------------|--------------------|--------------------|-------------------|--------------------------|
| Low        | $4.2 \pm 0.847$  | $12.3 \pm 2.278$  | $25.980 \pm 6.590$ | $49.4 \pm 7.838$   | $71.6 \pm 7.39$   | 68**                     |
| Medium     | $5.0 \pm 1.361$  | $13.8 \pm 4.050$  | $35.950 \pm 2.864$ | $69.5 \pm 2.841$   | 88.3±3.191        | 28**                     |
| High       | 7.5±1.260        | $22.7 \pm 1.527$  | $54.792 \pm 6.389$ | 87.1±8.533         | 98.3±1.992        | 31.7**                   |
| total      | $5.21 \pm 1.733$ | $15.21 \pm 5.111$ | 35.36±13.379       | $63.23 \pm 17.613$ | $81.93 \pm 13.09$ | 127.6**                  |

**Table 5.** Friedman test for larval mosquito mortality (%) of plant oil groups at 1000 ppm. \*\*The  $X^2$  value is sig.at significant level 1%

Salvia officinalis oil showed abundance of Terpinen-4-ol (17.35%), Camphor (16.08%), 14-á-H-PREGNA (9.25%), and 1-CHLOROOCTADECANE (6.82%), (Table 12 and Fig. 6). Finally, *C. sinensis* oil is dissolved in distilled water and its major components include Gallic acid (1674  $\mu$ g/ml), Catechin (421  $\mu$ g/ml), Methyl gallate (1076  $\mu$ g/ml), Coffeic acid (678  $\mu$ g/ml), Coumaric acid (566  $\mu$ g/ml), Naringenin (178  $\mu$ g/ml), and Kaempferol (218  $\mu$ g/ml), Table 13. Essential oils and the most active ingredients of the analyzed oils were drawn (Fig. 7).

#### Discussion

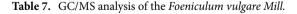
EOs could serve as suitable alternatives to synthetic insecticides because they are relatively safe, available, and biodegradable<sup>15</sup>. In this study, 32 oils were evaluated against *Cx. pipiens. Thymus vulgare* and *C. sinensis* were the most effective larvicides (100% mortality 24 h PT). The larvicidal effect of the H group could be arranged according to their  $LT_{50}$  values (h) as follows: *T. vulgaris* (9.67), *F. vulgare* (10.22), *V. odorata* (10.31), *C. sinensis* (13.02), *A. sativum* (13.95), *S. officinalis* (15.42), *N. sativa* (15.67), then *An. graveolens* (19.90). On the other hand, their  $LT_{99}$  values ranged from 29.77 (*F. vulgare*) to 55.31 (*An. graveolens*).

In this study, the most effective oils against adults were *An. graveolens* and *V. odorata* followed by *T. vulgaris* then *N. sativa*. The data revealed that *F. vulgare* is a highly potent larvicide. Similarly, its oil controlled *Anopheles atroparvus*, *Culex quinquefasciatus*<sup>23,24</sup>, and *Aedes aegypti*<sup>25</sup>. Despite its effectiveness as larvicide in this study, *F. vulgare* was the least effective adulticide. In contrast, it induced adulticidal properties against *Cx. quinquefasciatus*<sup>23</sup>.

Our data indicated that *C. sinensis* was a highly effective larvicide and the less effective adulticide. Comparatively, the chemical extracts of *C. sinensis* induced larvicidal and adult repellent effects against *Cx. pipiens* providing the highest protection (100%) from the bites of starved females at the dose of 6 mg/cm<sup>226</sup>. Moreover, its leaf extract showed larvicidal effect against *Anopheles arabiensis* and *Anopheles gambiae* (*s.s.*)<sup>27</sup>.

*Thymus vulgarisd An. graveolens* showed potent larvicidal and adulticidal effects in this work. Likewise, *T. vulgaris* has both effects against *Cx. quinquefasciatus*<sup>28</sup> and *Ae. aegypti*<sup>29</sup>. *Thymus vulgaris* exhibited larvicidal properties, 100% mortality, against *Cx. pipiens* larvae, at 200 ppm, whereas the LC<sub>25</sub> and LC<sub>50</sub> vlalues indicated no effect on AChE activity, activation of the detoxification system, as indicated by an increase in GST activity and a decrease in GSH rate<sup>30</sup>.

Our findings agree with another study found that the most potent EOs out of 53 oils against larvae were *F. vulgare, T. vulgaris, Citrus medica* (lime), and *C. sinensis* ( $LC_{50}$ =27.5, 31.6, 51.3, 53.5 ppm, respectively). *C. sinensis* was the most efficient EOs enhancing the efficacy of deltamethrin, co-toxic factor=316.67, over than PBO, the positive control, co-toxic factor=283.35)<sup>31</sup>.


Some oils applied in this study showed a similar larvicidal effect against *Cx. pipiens* as *N. sativa*<sup>32,33</sup> and *S. officinalis*<sup>34</sup>. Some essential oils such as *T. vulgaris*, *S. officinalis*, *C. sempervirens* and *A. graveolens* had a larvicidal effect against mosquito larvae and their LC<sub>90</sub> values were < 200–300 ppm. This result may be due to several

| Oil name           | Conc. % | Mortality%<br>(mean±SD)                | LC <sub>50</sub> (lower-<br>upper limit) | RE (LC <sub>50</sub> ) | LC <sub>90</sub> (lower-<br>upper limit) | RE (LC <sub>90</sub> ) | LC <sub>95</sub> (lower-<br>upper limit) | RE (LC <sub>95</sub> ) | Chi (Sig)      | Equation                                 |
|--------------------|---------|----------------------------------------|------------------------------------------|------------------------|------------------------------------------|------------------------|------------------------------------------|------------------------|----------------|------------------------------------------|
|                    | 0       | 0±0e                                   |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0.5     | 20.00±6.67d                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 2.0     | 24.44±5.88d                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
| Allium sativum     | 5.0     | 42.22±2.22c                            | 15.57<br>(8.49–28.46)                    | 2.4                    | 38.86 (26.79–<br>81.87)                  | 1.9                    | 45.47 (31.19–<br>97.80)                  | 1.9                    | 24.40 (0.000a) | Y = 0.051 + 0.008*x                      |
|                    | 10      | 48.89±4.44c                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 20      | 62.22±8.01b                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 40      | 86.67±3.85a                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0       | 6.37±18.75d                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0.1     | 36.86±15.46bc                          |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0.5     | 41.66±27.57b                           |                                          |                        |                                          |                        |                                          |                        |                |                                          |
| Anethum            | 2       | 46.12±11.77b                           |                                          | 0.05                   | 9.47 (4.66-                              | 5.4                    | 23.25 (7.17-                             | 26                     | 22.254 ( 000.) | V 0.242 - 0.120*-                        |
| graveolens         | 5       | 75.96±18.84a                           | 2.42 (0.08-4.22)                         | 8.05                   | 17.80)                                   | 5.4                    | 129.13)                                  | 2.6                    | 33.254 (.000a) | $Y = 0.242 + 0.130^{*}x$                 |
|                    | 10      | 88.39±7.27a                            | 1                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 20      | 91.85±9.24a                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 25      | $100.00 \pm 0.00a$                     | 1                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0       | 3.57±20.00c                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 2       | 51.51±2.62b                            | 1                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 5       | 61.21±6.30ab                           |                                          | 2.3                    |                                          |                        |                                          | 1.5                    |                | Y=0.644+0.106*x                          |
| Camellia           | 10      | 63.94±10.22ab                          | 9.01 (-17.75 to                          |                        | 32.18 (19.96-                            | 1.6                    | 38.754 (24.052-                          |                        | 26.52 (0.000a) |                                          |
| sinensis           | 15      | 75.35±29.22ab                          | _ 23.09)                                 |                        | 170.57)                                  |                        | 218.98)                                  |                        |                |                                          |
|                    | 20      | 78.78±16.87ab                          | 1                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 25      | 91.99±0.45a                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0       | 10.50±25.00d                           |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 5       | 36.73±16.93bc                          | 15.07 (0.10–                             |                        |                                          |                        |                                          |                        |                | Y = 0.331 + 0.03*x<br>Y = 0.261 + 0.06*x |
| Foeniculum         | 10      | 51.54±11.47ab                          |                                          |                        | 33.34 (21.67-                            |                        | 38.53 (24.63-                            |                        |                |                                          |
| vulgare            | 15      | 51.70±2.27ab                           | 104.60)                                  | 1.4                    | 789.17)                                  | 1.5                    | 986.39)                                  | 1.5                    | 22.19 (0.000a) |                                          |
|                    | 20      | 59.00±16.87ab                          | -                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 25      | 75.96±1.36a                            | -                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0       | 4.95±20.61e                            |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0.05    | 41.87±12.75 cd                         | -                                        |                        | 5.44 (- 14.41 to<br>84.13)               | 9.3                    |                                          | 2.0                    | 57.88 (0.000a) |                                          |
|                    | 0.1     | $60.68 \pm 3.73 \text{ bc}$            | 1                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0.5     | 72.91 ± 6.45ab                         |                                          |                        |                                          |                        |                                          |                        |                |                                          |
| Nigella sativa     | 1       | 74.54±19.78ab                          | 3.42 (-53.96 to<br>30.15)                | 6.0                    |                                          |                        | 29.95 (15.87-<br>1184.48)                |                        |                |                                          |
|                    | 2       | 78.09±18.28ab                          | 1                                        |                        |                                          |                        | 1104.40)                                 |                        |                |                                          |
|                    | 10      | 92.96±9.44ab                           | -                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 25      | 100.00±6.11ab                          | -                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0       | 0±0e                                   |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0.5     | 17.78±2.22d                            | 4                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 2.0     | $17.78 \pm 2.22d$<br>$22.22 \pm 2.22d$ | 4                                        |                        |                                          |                        |                                          |                        |                |                                          |
| Salvia officinalis | 5.0     | 22.22 ± 2.22d<br>37.78 ± 4.45c         | 20.46 (11.34–                            | 1.0                    | 50.76 (33.24-                            | 1.0                    | 59.35 (38.59-                            | 1.0                    | 25.35 (0.000a) | $Y = 0.8022 + 0.091^{*}x$                |
| Sarria officinalis | 10      | $44.44 \pm 4.44$ bc                    | 45.85)                                   | 1.0                    | 140.52)                                  | 1.0                    | 168.23)                                  | 1.0                    | 23.33 (0.000d) | 1 = 0.0022 + 0.091 X                     |
|                    | 20      | 44.44 ± 4.44bc<br>53.33 ± 3.85b        | 4                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 40      | 55.55±5.850<br>73.33±7.70a             | -                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 40      |                                        |                                          |                        |                                          |                        |                                          |                        |                |                                          |
|                    |         | 3.57±7.15c                             | 4                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 0.1     | 38.74±4.28b                            | 3.08 (- 3.29 to<br>7.48)                 |                        |                                          |                        |                                          |                        |                |                                          |
| Thymus vulgaris    | 0.5     | 61.66±7.26ab                           |                                          | 6.6                    | 16.08 (10.43-                            | 3.2                    | 19.76 (12.83–<br>52.76)                  | 3.0                    | 34.12 (0.000a) | Y = 0.350 + 0.091 *x                     |
|                    | 2       | 69.82±9.85ab                           |                                          |                        | 41.60)                                   |                        |                                          |                        |                |                                          |
|                    | 10      | 72.22±14.69ab                          | 4                                        |                        |                                          |                        |                                          |                        |                |                                          |
|                    | 20      | $100.00 \pm 0.00a$                     |                                          |                        |                                          |                        |                                          |                        |                |                                          |

| Oil name       | Conc. % | Mortality%<br>(mean±SD) | LC <sub>50</sub> (lower-<br>upper limit) | RE (LC <sub>50</sub> ) | LC <sub>90</sub> (lower-<br>upper limit) | RE (LC <sub>90</sub> ) | LC <sub>95</sub> (lower-<br>upper limit) | RE (LC <sub>95</sub> ) | Chi (Sig)      | Equation            |
|----------------|---------|-------------------------|------------------------------------------|------------------------|------------------------------------------|------------------------|------------------------------------------|------------------------|----------------|---------------------|
|                | 0       | 3.57±7.15d              |                                          |                        |                                          | 6.9                    | 8.92 (5.43–<br>37.58)                    |                        | 21.99 (0.001a) |                     |
|                | 0.1     | $50.00 \pm 10.00c$      | -                                        |                        |                                          |                        |                                          |                        |                |                     |
|                | 0.5     | 54.95±15.61c            | -                                        |                        | 7.37 (4.46–<br>29.82)                    |                        |                                          | 6.6                    |                | Y = 0.190 + 0.112*x |
| Viola odorata  | 1       | 57.50±19.20c            | 1.88 (- 1.80 to 5.29)                    |                        |                                          |                        |                                          |                        |                |                     |
|                | 2       | 65.83±13.21bc           |                                          |                        | 23102)                                   |                        | 0,000                                    |                        |                |                     |
|                | 6       | 85.05±13.62ab           | -                                        |                        |                                          |                        |                                          |                        |                |                     |
|                | 10      | $100.00 \pm 0.00a$      |                                          |                        |                                          |                        |                                          |                        |                |                     |
| Reference oils |         |                         | Salvia officinalis                       | Salvia officinalis     |                                          |                        |                                          |                        |                |                     |

### Table 6. The adulticidal effects of selected plant oils against Culex pipiens after 24 h post-treatments.

| Peak no. | R <sub>t</sub> (min.) | MW  | MF            | Area % | Probabilities of the detected compounds                                      |
|----------|-----------------------|-----|---------------|--------|------------------------------------------------------------------------------|
| 1        | 5.03                  | 40  | C3H4          | 0.14   | 1-Propyne                                                                    |
| 2        | 5.22                  | 138 | C7H10N2O      | 0.26   | 2,3,3a,4,7,7a-Hexahydro-1H-benzimidazol-2-one                                |
| 3        | 5.28                  | 348 | C19H22ClFN2O  | 1.06   | 1-Chloro-3-(3-fluorobenzoyl)-4-(2-(diethylamino)ethylamino)benzene           |
| 4        | 6.38                  | 136 | C10H16        | 0.41   | Sabinene                                                                     |
| 5        | 6.49                  | 262 | C12H23O4P     | 1.01   | Dimethyl{[2,2-dimethyl-3-(2'-methylprop-1'-cyclopropyl]methyl}phos-<br>phate |
| 6        | 7.57                  | 670 | C44H27DN4Ni   | 0.15   | (5,10,15,20-tetraphenyl[2-(2)H1]prophyrin-ato)zinx(II)                       |
| 7        | 9.17                  | 136 | C10H16        | 8.96   | Limonene                                                                     |
| 8        | 10.90                 | 152 | C10H16O       | 2.81   | 1,3,3-trimethyl Bicyclo[2.2.1]heptan-2-one                                   |
| 10       | 14.26                 | 148 | C10H12O       | 70.36  | Estragole                                                                    |
| 11       | 14.72                 | 818 | C44H28Br2N4Ti | 0.11   | Tetraphenylporphyrinatodibromotitanium (IV)                                  |
| 12       | 16.70                 | 166 | C11H18O       | 0.47   | 3,7-Dimethyl-2,6-Nonadienal                                                  |
| 13       | 17.28                 | 152 | C10H16O       | 1.41   | 2,4-Decadienal                                                               |
| 14       | 18.07                 | 194 | C14H26        | 0.17   | 1,1'-Bicycloheptyl                                                           |
| 15       | 29.40                 | 300 | C17H36O2Si    | 0.20   | Tetradecanoic acid, trimethylsilyl ester                                     |
| 16       | 32.19                 | 160 | C10H21F       | 0.15   | Fluoro decane                                                                |
| 17       | 32.36                 | 244 | C13H24O4      | 0.11   | Oxalic acid isohexylpentyl ester                                             |
| 18       | 33.14                 | 328 | C19H40O2Si    | 1.74   | Hexadecanoic acid, trimethylsilyl ester                                      |
| 19       | 33.78                 | 282 | C18H34O2      | 0.15   | (Z) 9-Octadecenoic acid                                                      |
| 20       | 34.03                 | 138 | C10H18        | 0.25   | 7-Methyl-1-nonyne                                                            |
| 21       | 34.12                 | 282 | C18H34O2      | 0.30   | (Z) 9-Octadecenoic acid                                                      |
| 22       | 34.58                 | 256 | C16H32O2      | 0.12   | Hexadecanoic acid                                                            |
| 23       | 35.57                 | 280 | C18H32O2      | 1.44   | (Z,Z) 9,12-Octadecadienoic acid                                              |
| 24       | 35.64                 | 280 | C18H32O2      | 1.03   | (Z,Z) 9,12-Octadecadienoic acid                                              |
| 25       | 35.70                 | 356 | C21H40O4      | 0.53   | 2,3-Dihydroxypropylelaidate                                                  |
| 26       | 35.76                 | 238 | C16H30O       | 1.67   | Z-7-Hexadecenal                                                              |
| 27       | 36.25                 | 280 | C18H32O2      | 0.23   | (Z,Z )9,12-Octadecadienoic acid                                              |
| 28       | 36.38                 | 266 | C18H34O       | 0.43   | 12-Octadecenal                                                               |
| 29       | 42.83                 | 142 | C9H18O        | 0.13   | Nonanal                                                                      |
| 31       | 46.93                 | 660 | C20Cl12       | 0.13   | Dodecachloroperylene                                                         |
| 32       | 48.70                 | 295 | C20H25NO      | 0.61   | (R)-1-[N-1-cyclopentylpropionylamino-1-ethyl]naphthalene                     |
| 33       | 50.05                 | 354 | C20H18O6      | 0.38   | Isosesamin                                                                   |



reasons, including the percentages of their principal components compositions that are manipulated according to the origin of plant oil, quality of oil, susceptibility of the strain used, oil storage conditions, and technical conditions<sup>35-37</sup>.

Likewise our findings, An. graveolens and F. vulgare act as larvicidal, pupicidal, and oviposition deterrent agents against M. domestica<sup>38</sup>. Moreover, Ocimum basilicum was the most effective extract tested on Cx. pipiens larvae and adults<sup>39,40</sup>.

Allium sativum showed high potency against larvae in this study. A similar finding was recorded for *Cx.* pipiens and *Culex restuans* ( $LC_{50}$ =7.5 and 2.7 ppm, respectively)<sup>41</sup>. Argania spinosa oil showed a low larvicidal effect in this study. A similar effect was recorded against *Cx. quinquefasciatus* larvae<sup>42</sup>.

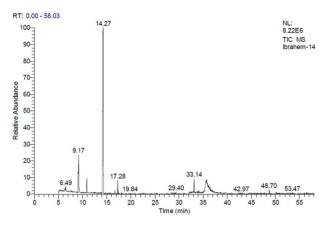



Figure 1. GC/MS analysis of the Foeniculum vulgare Mill.

| 5.21         600         C33H28011         0.69         (2S3A3'S,P)-hydroxyanhydrophlegmacin-9.10-quinone 8-O-methylether           3         7.65         290         C19H3002         0.06         2-(2*-lsopropenylde: 2* enyl)methyl-1,5-Cyclooctaliene           4         9.18         136         C10H16         17.19         1,5-Dimethyl-1,5-Cyclooctaliene           6         14.05         152         C10H16O         0.23         Di-Limonene           7         14.25         152         C10H16O         0.86         CIS-DHYDROCARVONE           8         15.44         150         C10H14O         14.62         2-Methyl-5-(1-methyletherhyl)2-Cyclohexen-1-one           9         733         C4H128C12N4V         0.07         Dichloro(5,10,1,5,20-tetra pherylporphyrinato)vanadium           10         16.71         692         C4H132G12N64         0.09         6,10,15,20-tetra pherylporphyrinato)vanadium           11         17.29         110         C8H14         0.07         otchhydro Pentalene           12         18.89         675         C4H32Cu2M64         0.08         2,248is[4[4-khoro-6(-3-ethynylphenoxyl-1,3,5-triazin-2-yl]oxylphenyl]propane           13         20.82         204         C15H24         0.10         4-Humulene           14 </th <th>Peak no.</th> <th>R<sub>t</sub> (min.)</th> <th>MW</th> <th>MF</th> <th>Area %</th> <th>Probabilities of the detected compounds</th> | Peak no. | R <sub>t</sub> (min.) | MW   | MF            | Area % | Probabilities of the detected compounds                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|------|---------------|--------|------------------------------------------------------------------------------------------------|
| 3         7.65         290         C19H3002         0.06         2-(2'-lsopropenylde:-2'-myl)methylcyclopentane-1,3-dione           4         9.18         136         C10H16         17.19         1,5-Dimethyl-1,5-Cyclooctudiene           5         9.35         136         C10H16         0.23         DrLimonene           7         14.25         152         C10H160         0.86         CIS-DIHYDROCARVONE           8         15.44         150         C10H140         14.62         2-Methyl-5-(1-methyletheryl)2-Cyclobexen-1-one           9         15.80         733         C4H323CDV4V         0.07         Dichorof,10,15.20-tertap henylopophyrinato)vanadium           10         16.71         692         C4H32CDV4V         0.07         Dichorof,10,15.20-tertap henylophyrinato)copher(1)           11         17.29         110         C8H14         0.47         octahydro Pentalene           12         18.89         675         C4H32CDN64         0.08         2.2-Bin[4[14-chloro-6(-3-ethynyhphenxyl-1,3-5-triazin-2-y1]oxy]phenyl]propane           14         21.36         686         C37H24CDN64         0.08         2.2-Bin[4[14-chloro-6(-3-ethynyhphenxyl-1,3-5-trinzin-2-y1]oxy]phenyl]propane           15         21.92         134         C10H14         0.14                                                                                                                                        | 1        | 5.14                  | 238  | C13H18O4      | 0.49   | Diethyl 3,4-bis(methylene)cyclopentane-1,1-dicarboxylate                                       |
| 9.18136C10H1617.191.5-Dimethyl-1.5-Cyclooctaline59.35136C10H160.23pt-Limonene614.05152C10H16O5.98Dihydrocarvone714.25152C10H16O0.86C15-DIHTDROCARVONE815.44150C10H14O14.622-Methyl-5-(1-methylethenyl)2-Cyclohexen-1-one915.80733C44H28C2N4V0.07Dichloro(5,10,15,20-tetra phenylporphyrinato)vanadium1016.71692C4H33FcO5P0.13Dicarbonyl(1,3-5-6-6phenyl-2-(phenylethynyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron1117.29110CRH140.47octahydro Pentialene1218.89675C4H28CuN40.09(5,10,15,20-tetra phenylporphyrinato)copper(II)1320.82204C15H240.10à-Hamulene1421.36686C37H24C12N6040.082.2-Bis[41[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y]loxylphenylpropane1520.77204C15H240.38à -Bisabolene1622.07204C15H240.38à -Bisabolene1722.16648C35H36C1N400.112.4-bis(a-chloroethyl)-6.7-bis[a-methoycarbonylethyl]-1,3,5-trimethylporphyrin1822.36640C32H6405Si40.23OTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C1H2400.183-Oxabic/qlo[3,3,1]non-6-ene2322.5122C15H26O </td <td>2</td> <td>5.21</td> <td>600</td> <td>C33H28O11</td> <td>0.69</td> <td>(2'S,3S,3'S,P)-hydroxyanhydrophlegmacin-9,10-quinone 8'-O-methylether</td>                                                                                                                                                                                                                                                      | 2        | 5.21                  | 600  | C33H28O11     | 0.69   | (2'S,3S,3'S,P)-hydroxyanhydrophlegmacin-9,10-quinone 8'-O-methylether                          |
| 9.35136C10H160.23Dt-Limonene614.05152C10H16O5.98Dibydrocarvone714.25152C10H16O0.86CIS-DIHTDROCARVONE714.25152C10H14O14.622.Methyl-5-(1-methylethenyl)2-Cyclohexen-1-one815.40153C4H28CL2N4V0.07Dichloro(5,10,15,20-etra phenylporphyrinato)vanadium1016.71692C4H133FeOSP0.13Dicarbonyl(1,3-5-ú-é-phenyl-2-(phenylethynyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron1117.29110C8H140.47octahydro Pentalene1218.89675C4H28CuN40.09(5,10,15,20-etra phenyl)2-Cyclohexen-1-noe)1421.36686C37H24Cl2N6O40.082.2-Bis/4[[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y]loxylphenylpropane1521.92134C10H140.141,2,3,4-Teramethyl-5-methylenecyclopenta-1,3-diene1622.07204C15H240.38á -Bisabolene1721.66648C33H38CLN400.112,4-bisid-hioreethyl-6,7-bisia-methoxylcarbonylethyll-1,3,5-trimethylporphyrin182.35204C15H2400.183-coabicyclo[3.1]non-6-ene2024.23222C15H26021.263a(H)-Azulenol,2,3,4,5,8,8-h:exahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,àà,8aà)]2124.57572C3H26B2070.10Dibromogomisin A2225.05222C16H14M332.134-Pyridincarbidehyde-4-propti-4-endyl-6,8-adimethyl-3-(1                                                                                                                                                                                                                                                                                                                                                                 | 3        | 7.65                  | 290  | C19H30O2      | 0.06   | 2-(2'-Isopropenyldec-2'-enyl)methylcyclopentane-1,3-dione                                      |
| 614.05152C10H16O5.98Dihydrocarvone714.25152C10H16O0.86CIS-DIHYDROCARVONE815.44150C10H14O14.262-Methyl-5-(1-methylethenyl)2-Cyclohexen-1-one915.80733C4H123C2N4V0.07Dichloro(5,10,15.20-detra phenylcorphyrinato)vanadium1016.71692C4H133ECOSP0.13Dicabros/(1,3.5-u-f-phenyl-2-(phenylethynyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron1117.29110C8H140.47octahydro Pentalene1218.89675C4H23CQ1AV0.00(5,10,15.20-tetraphenyl[-2/g]H]prophyrinato)copper(II)1320.82C3C15H240.002.2-Bis[4[(1-chloro-6-(3-ethynylphenxy)-1,3.5-triazin-2-y]oxylphenyl]propane1521.34C10H140.141,2,3.4-Tetramethyl-5-methylencyclopenta-1,3-diene1622.07214C15H240.304-Bisabolene1721.46686C37H24C20A640.112,4-bis(a-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trinathylporphyrinato)CYCLOPENTANEHEP-<br>TANOATE1823.36640C32H60Si40.312,4-bis(a-chloroethyl-6,7-bis[á-methoxycarbonylethyl]-1,3,5-triazin-2-y]oxylphenyljCYCLOPENTANEHEP-<br>TANOATE2124.57572C23H26B2O70.10OTETRAKIS(TRIMETHYLSILY),3,5-D1HYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE2124.57572C15H2AO12.00.613-Oxabicyclo[3,3,1]non-6-ene2225.6825.68C15H2AO12.0 <t< td=""><td>4</td><td>9.18</td><td>136</td><td>C10H16</td><td>17.19</td><td>1,5-Dimethyl-1,5-Cyclooctadiene</td></t<>                                                                                                                                                                                   | 4        | 9.18                  | 136  | C10H16        | 17.19  | 1,5-Dimethyl-1,5-Cyclooctadiene                                                                |
| 114.25152C10H16O0.86CIS-DIHYDROCARVONE815.44150C10H14O14.622-Methyl-5-(1-methylethenyl)2-Cyclohexen-1-one915.80733C44H23C2DX4V0.07Dichloro(5,10,15,20-tern phenylporphyrinato)vanadium1016.71692C4H133FCOSP0.13Dicabon(1,1,5-6-e-henyl-2-(phenylethymyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron11016.71692C4H128CuX4V0.09(5,10,15,20-tetra phenyl-2-(phenylethymyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron11218.89675C4H128CuX40.09(5,10,15,20-tetraphenyl/2-(2)H1)prophyrinato)copper(II)13320.82204C15H240.00 $\lambda$ -Hinmulene14421.36666C37H24Cl2N6O40.08 $\lambda$ -2-Bis[4[14-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-yl]oxylphenyl]propane15521.92134C10H140.14 $1,2,3,4$ -Tetramethyl-5-methylencyclone1,1,3-direne1722.16648C35H38Cl2N4O40.11 $2,4$ -bis(4-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin182.334208C14H24O0.183-Oxabicyclo[3,3,1]non-6-ene2124.35522C15H26O2.1263a(1H)-Axulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3a,3a,8a)]212.5.78232C15H26O2.10Dibromogomisin A2225.75252C23H205D0.00Trans-Z-a-Bisabolene2426.0114C12H18020.063-(1-HydroxyhexyHphenol                                                                                                                                                                                                                                                                                            | 5        | 9.35                  | 136  | C10H16        | 0.23   | DL-Limonene                                                                                    |
| 815.44150C10H14014.622-Methyl-5-(1-methylethenyl)2-Cyclohexen-1-one915.80733C4H128C12N4V0.07Dichloro(5,10,15,20-tetra phenylporphyrinato)vanadium1016.71692C4H133FeC5P0.13Dicabonyl(1,3-5-6-ephenyl-2-(phenylethynyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron1117.29110C8H140.07octahydro Pentalene1117.29110C4H128CNN40.09(5,10,15,20-tetraphenyl[-2(2)H1]prophyrinato)copper(II)1320.82244C15H240.082,2Bs[4[[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y][ox]phenyl]propane1421.36686C37H24C2N6040.082,2Bs[4[[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y][ox]phenyl]propane1521.92134C16H141,2,3+Tetramethyl-5-methylencyclopenta-1,3-diene1622.07646C33H38C12N400.112,4-bis(4-chloro-chyl)-6,7-bis[4-methoxycarbonylethyl]-1,3,5-trimethylporphyrin1723.44640C3H42G00.183-Coxabicyclo[3,3,1]non-6-ene1823.34208C1H12G02.163(1)H-Azulenol,2,3,4,5,8,8-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8à)]2124.57572C2H2GD70.10Dibronogomisin A2225.68238C1H2G22.99Dauco2425.8C1H2G22.90Dauco2425.8C1H2G20.063-(1-Hydroxyhcsyl)phenol2525.4238C1H2G20.06Tans-Z-a-Bisabolenepoxide                                                                                                                                                                                                                                                                                                                                              | 6        | 14.05                 | 152  | C10H16O       | 5.98   | Dihydrocarvone                                                                                 |
| 915.80733C44H28Cl2N4V0.07Dichloro(5,10,15,20-tetra phenylporphyrinato)vanadium1016.71692C4H133FeOSP0.13Dicarbonyl(1,3-5- $\ddot{u}$ -6-phenyl-2-(phenylethynyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron1117.29110C8H140.47octalydro Pentalene1218.89675C44H28CuN40.09(5,10,15,20-tetraphenyl[2-(2)H1]prophyrinato)copper(II)1320.82204C15H240.10 $\ddot{a}$ -Humulene1411.6686C37H24Cl2N6O40.082,2-Bis[4[[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y](oxylphenyl]propane1521.92134C10H140.141,2,3,4-Tetramethyl-5-methylenecyclopenta-1,3-diene1622.07204C15H240.38 $\dot{a}$ -Bisabolene1722.16648C35H36Cl2N4040.112,4-bis(a-chloroethyl)-6,7-bis[ $\dot{a}$ -methoxycarbonylethyl]-1,3,5-trimethylporphyrin182.36640C32H64OSi40.23OTETRAKISCTINIETHYLSILYLJ3,5-D1HYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H24O0.183-Oxabicydo[3.3.1]non-6-ene2024.23572C23H26Br2O70.10Dibromogomisin A2125.05222C10H14N4S32.134-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone2325.28238C15H2O0.063-(1-Hydroxyhexyl)phenol2425.01194C12H18O20.06Trans-Z-à-Bisabolencepoxide2450.1152H2AO<                                                                                                                                                                                                                                                                                                                               | 7        | 14.25                 | 152  | C10H16O       | 0.86   | CIS-DIHYDROCARVONE                                                                             |
| 1016.71692C4IH33FeOSP0.13Dicarbonyl(1,3-5-u-6-phenyl-2-(phenylethynyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron1117.29110C8H140.47octahydro Pentalene1218.89675C4H128CuN40.09(5,10,15,20-tetraphenyl[2-(2)H1]prophyrinato)copper(II)1320.82204C15H240.10 $\dot{a}$ -Humulene1421.36686C37H24Cl2N6O40.082,2-Bis[4[[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y]loxylphenyl]propane1521.92134C10H140.141,2,3,4-Tetramethyl-5-methylenccyclopenta-1,3-diene1622.07204C15H240.38 $\dot{a}$ -Bisabolene1722.16648C35H38Cl2N4040.112,4-bis(á-chloroethyl)-6,7-bis[á-methoxcarbonylethyl]-1,3,5-trimethyloprhyrin182.36640C32H64OSsi40.23CTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H2400.183-Oxabicyclo[3,3,1]non-6-ene2024.23222C15H26O21.263a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl],[3R-(3à,3aà,8aà)]2124.57572C23H26Br2O70.10Dibromogomisin A2225.05222C10H14N4S32.134-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone2325.28238C15H2AO0.063-(1-Hydroxyhexyl)phenol2426.01194C12H18O20.063-(1-Hydroxyhexyl)phenol2527.54                                                                                                                                                                                                                                                                                                                             | 8        | 15.44                 | 150  | C10H14O       | 14.62  | 2-Methyl-5-(1-methylethenyl)2-Cyclohexen-1-one                                                 |
| 1117.29110C8H140.47octahydro Pentalene1218.89675C4H128CuN40.09(5,10,15,20-tetraphenyl[2-(2)H1]prophyrinato)copper(II)1320.82204C15H240.10à-Humulene1421.36686C37H24Cl2N6040.082,2-Bis[4[(4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-yl]oxylphenyl]propane1521.92134C10H140.141,2,3,4-Tetramethyl-5-methylenccylopenta-1,3-diene1622.07204C15H240.38á -Bisabolene1722.16648C35H38Cl2N4040.112,4-bis(á-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin1822.36640C32H6405Si40.23OTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C1H2QO0.183-Oxabicyclo[3.3.1]non-6-ene2024.23222C15H2GO21.263a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3a,3aà,8aà)]2124.57572C23H26Br2O70.10Dibromogomisin A2225.05222C10H14N4S32.134-Pyridinecarbaldehyde 4- propyl-3-thiosemicarbazone2325.28238C15H26O2.39Daucol2426.01194C12H18O20.063-(1-Hydroxyhexyl)phenol2527.54220C15H24O0.06Trans-Z-à-Bisaboleneepoxide2625.412398N/A0.07YGRKKRQRQRGVYKRRLDL/527 <td< td=""><td>9</td><td>15.80</td><td>733</td><td>C44H28Cl2N4V</td><td>0.07</td><td>Dichloro(5,10,15,20-tetra phenylporphyrinato)vanadium</td></td<>                                                                                                                                                                                                                                               | 9        | 15.80                 | 733  | C44H28Cl2N4V  | 0.07   | Dichloro(5,10,15,20-tetra phenylporphyrinato)vanadium                                          |
| 1218.89675C44H28CuN40.09(5.1,5,20-tetraphenyl[2-(2)H1]prophyrinato)copper(II)1320.82204C15H240.10à-Humulene1421.36686C37H24Cl2N6O40.082,2-Bis[4][4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y]]oxylphenyl]propane1521.92134C10H140.141,2,3,4-Tetramethyl-5-methylenecyclopenta-1,3-diene1622.07204C15H240.38á -Bisabolene1722.16648C35H38Cl2N4O40.112,4-bis(á-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin182.36640C32H6A05Si40.23OTETRAKIS(TRIMETHYLSILYL)3,5-D1HYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H24O0.183-Oxabicyclo[3,3,1]non-6-ene2024.23222C15H26O21.263a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl],[3R-(3à,3à,8aà)]2124.57572C23H26Br2O70.10Dibromogomisin A2225.05222C10H14N432.134-Pyridinecarbaldehyde-4-proph-3-thiosemicarbazone2325.28238C15H26O2.39Daucol2426.01194C12H18O20.063-(1-Hydroxyhcxyl)phenol2527.54200C15H23O0.072,6-Bis(2,3,5-triphenyl-4-oxocyclopentatienyl)pyridine2633.012598N/A0.07YGRKKRRQRRGPVKRRLDL/52734.16691C5H133NO20.072,6-Bis(2,3,5-triphen                                                                                                                                                                                                                                                                                                                                                                           | 10       | 16.71                 | 692  | C41H33FeO5P   | 0.13   | Dicarbonyl(1,3-5-ü-6-phenyl-2-(phenylethynyl)cyclohept-4-ene-1,3-diyl) triphenoxyphosphaneiron |
| 1320.82204C15H240.10 $\hat{a}$ -Humulene1421.36686C37H24Cl2N6O40.082,2-Bis[4[[4-chloro-6-(3-ethynylphenoxy]-1,3,5-triazin-2-yl]oxylphenyl]propane1521.92134C10H140.141,2,3,4-Tetramethyl-5-methylenecyclopenta-1,3-diene1622.07204C15H240.38 $\hat{a}$ -Bisabolene1722.16648C35H38Cl2N4O40.112,4-bis( $\hat{a}$ -chloroethyl)-6,7-bis[ $\hat{a}$ -methoxycarbonylethyl]-1,3,5-trimethylporphyrin182.36640C32H6405Si40.23OTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H24O0.183-Oxabicyclo[3.3,1]non-6-ene2024.23222C15H26O21.263a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3 $\hat{a}$ ,3 $\hat{a}\hat{a}$ ,8 $\hat{a}$ )]2124.57572C23H26Br2O70.10Dibromogonisin A2225.05222C10H14N4S32.134-Pyridinecarbaldehyde-4-propl-3-thiosemicarbazone2325.28238C15H26O22.39Daucol2424C15H26O22.39Daucol2527.54220C15H2400.06Trans-Z-à-Bisaboleneepxide2633.012598N/A0.07YGRKKRRQRRGPVKRRLD1/52734.16691C51H33NO20.072,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine2835.47733C44H28C12N4V0.08Dichloro(5,10,15,20-tetraphenylporphyrin                                                                                                                                                                                                                                                                                                                            | 11       | 17.29                 | 110  | C8H14         | 0.47   | octahydro Pentalene                                                                            |
| 1421.36686C37H24Cl2N6040.082.2-Bis[4[[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-y]loxylphenyl]propane1521.92134C10H140.141,2,34-Tetramethyl-5-methylenecyclopenta-1,3-diene1622.07204C15H240.38á -Bisabolene1722.16648C35H38Cl2N4040.112,4-bis(á-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin182.3.34208C32H64O5Si40.23CTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H24O0.183-Oxabicyclo[3.1]non-6-ene2024.23222C15H26O21.263a(H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3à,8aà)]2124.57572C23H26B2O70.10Dibromogonisin A2225.05222C10H14N4532.134-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone2325.28238C15H26O2.39Daucol2425.05258N/A0.07YGRKKRQRRGPVKRRLDL/52533.01259N/A0.07YGRKKRQRRGPVKRRLDL/52633.01259N/A0.07YGRKKRQRRGPVKRRLDL/52734.16691C51H33NO20.072,6-Bis(2,3-5-triphenyl-4-oxocyclopentadienyl]pyridime2835.47733C44H28Cl2N4V0.80Dichloro(5,10,15,20-tetrahpulphylpinyl)andvadium2935.4814C6H10O20.133,4-Hexanedione<                                                                                                                                                                                                                                                                                                                                                                                         | 12       | 18.89                 | 675  | C44H28CuN4    | 0.09   | (5,10,15,20-tetraphenyl[2-(2)H1]prophyrinato)copper(II)                                        |
| 1521.92134C10H140.141.2.3.4-Tetramethyl-5-methylenecyclopenta-1,3-diene1622.07204C15H240.38 $á$ -Bisabolene1722.16648C35H38Cl2N4O40.112,4-bis(á-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin1822.36640C32H64O5Si40.23OTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H24O0.183-Oxabicyclo[3.3.1]non-6-ene2024.23222C15H26O21.263a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8aà)]2124.57572C23H26Br2O70.10Dibromogomisin A2225.05222C10H14N4S32.134-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone2325.28238C15H26O2.39Daucol2426.01194C12H18O20.063-(1-Hydroxyhexyl)phenol2527.5420C15H24O0.06Trans-Z-à-Bisaboleneepoxide2633.012598N/A0.07YGRKKRQRRGPVKRRLDL/52734.16691C5H33NO20.072,6-Bis(2,3-5-triphenyl-4-cxocyclopentadienyl)pyridine2835.47733C4H28Cl2N4V0.08Dichloro(5,10,1,5.20-tetraphenylporphyrinato)anadium29 $0.31$ 739C39H81N04Si40.13(3K,RL,TE_2''''''''''''''''-tetrubtyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3'''<br>dit(tertubtyldimethylsilyloxy)-2''-methylpentylina-0-one <tr< td=""><td>13</td><td>20.82</td><td>204</td><td>C15H24</td><td>0.10</td><td>à-Humulene</td></tr<>                                                                                                                                                                                                                 | 13       | 20.82                 | 204  | C15H24        | 0.10   | à-Humulene                                                                                     |
| 1622.07204C15H240.38á - Bisabolene1722.16648C35H38Cl2N4O40.112,4-bis(á-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin1822.36640C32H64O5Si40.23OTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H24O0.183-Oxabicyclo[3.3.1]non-6-ene2024.23222C15H26O21.263a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8aà)]2124.57572C23H26Br2O70.10Dibromogomisin A2225.05222C10H14N4S32.134-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone2325.28238C15H26O22.39Daucol2426.01194C12H18O20.063-(1-Hydroxyhexyl)phenol2527.54220C15H24O0.06Trans-Z-à-Bisaboleneepoxide2633.012598N/A0.07YGRKKRQRRGPVKRRLDL/52734.16691C51H33NO20.072,6-Bis(2,3,5-triphenyl-4-xoxcyclopentadienyl)pyridine2835.47733C4H428Cl2N4V0.08Dichloro(5,10,1,5,20-tetraphenylporphyrinato)vanadium2940.31739C39H81NO4Si40.13 $(35,4R,1E_2,R_3,T)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1",3"3143.48114C6H10O20.133,4-Hexanedione3250.56680C35H40O5Si50.06$                                                                                                                                                                                                                                                                                                                                                                       | 14       | 21.36                 | 686  | C37H24Cl2N6O4 | 0.08   | 2,2-Bis[4[[4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-yl]oxy]phenyl]propane                 |
| 1722.16648C35H38Cl2N4O40.112.4-bis(á-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin1822.36640C32H64O5Si40.23OTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE1923.34208C14H24O0.183-Oxabicyclo[3.3.1]non-6-ene2024.23222C15H26O21.263a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3à,8à)]2124.57572C23H26Br2O70.10Dibromogomisin A2225.05222C10H14N4S32.134-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone2325.28238C15H26O22.39Daucol2426.01194C12H18O20.063-(1-Hydroxyhexyl)phenol2527.54220C15H24O0.06Trans-Z-à-Bisaboleneepoxide2633.012598N/A0.07YGRKKRRQRRGPVKRRLDL/52734.16691C51H33NO20.072,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine2835.47733C44H28Cl2N4V0.08Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium29 $40.31$ 739C39H81NO4Si40.13(3,5,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylporp-1'-enyl)-3-(1'',3''<br>di(tertbutyldimethylsilyloxy)-2''-methylpactidin-2-one3143.48114C6H10O20.133,4-Hexanedione3250.56680C35H40O5Si50.06Pentamethylpentaphenylcyclopent                                                                                                                                                                                                                                                                                                           | 15       | 21.92                 | 134  | C10H14        | 0.14   | 1,2,3,4-Tetramethyl-5-methylenecyclopenta-1,3-diene                                            |
| 18         22.36         640         C32H64O5Si4         0.23         OTETRAKIS(TRIMETHYLSILYL)3,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEP-<br>TANOATE           19         23.34         208         C14H24O         0.18         3-Oxabicyclo[3.3.1]non-6-ene           20         24.23         222         C15H26O         21.26         3a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8aà)]           21         24.57         572         C23H26Br2O7         0.10         Dibromogomisin A           22         25.05         222         C10H14N4S         32.13         4-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone           23         25.28         238         C15H26O2         2.39         Daucol           24         26.01         194         C12H18O2         0.06         3-(1-Hydroxyhexyl)phenol           25         27.54         220         C15H24O         0.06         Trans-Z-à-Bisaboleneepoxide           26         33.01         2598         N/A         0.07         YGRKKRQRRGPVKRRLDL/5           27         34.16         691         C51H33NO2         0.07         2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine           28         35.47         733         C44H28Cl2N4V         0.08         Dichloro(5,10,                                                                                                                                  | 16       | 22.07                 | 204  | C15H24        | 0.38   | á –Bisabolene                                                                                  |
| 18       22.36       640       C32H64O5SI4       0.23       TANOATE         19       23.34       208       C14H24O       0.18       3-Oxabicyclo[3.3.1]non-6-ene         20       24.23       222       C15H26O       21.26       3a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8aà)]         21       24.57       572       C23H26Br2O7       0.10       Dibromogomisin A         22       25.05       222       C10H14N4S       32.13       4-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone         23       25.28       238       C15H26O2       2.39       Daucol         24       26.01       194       C12H18O2       0.06       3-(1-Hydroxyhexyl)phenol         25       27.54       220       C15H24O       0.06       Trans-Z-à-Bisaboleneepoxide         26       33.01       2598       N/A       0.07       YGRKKRQRRGPVKRRLDL/5         27       34.16       691       C5H33NO2       0.07       2.6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine         28       35.47       733       C44H28Cl2N4V       0.08       Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium         29       40.31       739       C39H81NO4Si4       0.13       (3s,4R,1'E,2''R,3''R)-1                                                                                                                                                                                                                    | 17       | 22.16                 | 648  | C35H38Cl2N4O4 | 0.11   | 2,4-bis(á-chloroethyl)-6,7-bis[á-methoxycarbonylethyl]-1,3,5-trimethylporphyrin                |
| 20       24.23       222       C15H26O       21.26       3a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8aà)]         21       24.57       572       C23H26Br2O7       0.10       Dibromogomisin A         22       25.05       222       C10H14N4S       32.13       4-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone         23       25.28       238       C15H26O2       2.39       Daucol         24       26.01       194       C12H18O2       0.06       3-(1-Hydroxyhexyl)phenol         25       27.54       220       C15H24O       0.06       Trans-Z-à-Bisaboleneepoxide         26       33.01       2598       N/A       0.07       YGRKKRRQRRGPVKRRLDL/5         27       34.16       691       C51H33NO2       0.07       2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine         28       35.47       733       C44H28Cl2N4V       0.08       Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium         29       40.31       739       C39H81NO4Si4       0.13       (3S,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3''         31       43.48       114       C6H10O2       0.13       3,4-Hexanedione         32       50.56                                                                                                                                                                                           | 18       | 22.36                 | 640  | C32H64O5Si4   | 0.23   |                                                                                                |
| 24.57         572         C23H26Br2O7         0.10         Dibromogomisin A           22         25.05         222         C10H14N4S         32.13         4-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone           23         25.28         238         C15H26O2         2.39         Daucol           24         26.01         194         C12H18O2         0.06         3-(1-Hydroxyhexyl)phenol           25         27.54         220         C15H24O         0.06         Trans-Z-à-Bisaboleneepoxide           26         33.01         2598         N/A         0.07         YGRKKRRQRRRGPVKRRLDL/5           27         34.16         691         C51H33NO2         0.07         2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine           28         35.47         733         C44H28Cl2N4V         0.08         Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium           29         40.31         739         C39H81NO4Si4         0.13         (3s,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3''           31         43.48         114         C6H10O2         0.13         3,4-Hexanedione           32         50.56         680         C35H4005Si5         0.06         Pentamethylpentaphenylcyclopentasiloxane                                                                                                                                       | 19       | 23.34                 | 208  | C14H24O       | 0.18   | 3-Oxabicyclo[3.3.1]non-6-ene                                                                   |
| 22         25.05         222         C10H14N4S         32.13         4-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone           23         25.28         238         C15H26O2         2.39         Daucol           24         26.01         194         C12H18O2         0.06         3-(1-Hydroxyhexyl)phenol           25         27.54         220         C15H24O         0.06         Trans-Z-à-Bisaboleneepoxide           26         33.01         2598         N/A         0.07         YGRKKRRQRRGPVKRRLDL/5           27         34.16         691         C51H33NO2         0.07         2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine           28         35.47         733         C44H28Cl2N4V         0.08         Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium           29         40.31         739         C39H81NO4Si4         0.13         (3,8,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3''           31         43.48         114         C6H10O2         0.13         3,4-Hexanedione           32         50.56         680         C35H40O5Si5         0.06         Pentamethylpentaphenylcyclopentasiloxane                                                                                                                                                                                                                             | 20       | 24.23                 | 222  | C15H26O       | 21.26  | 3a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-(1-methylethyl),[3R-(3à,3aà,8aà)]       |
| 23       25.28       238       C15H26O2       2.39       Daucol         24       26.01       194       C12H18O2       0.06       3-(1-Hydroxyhexyl)phenol         25       27.54       220       C15H24O       0.06       Trans-Z-à-Bisaboleneepoxide         26       33.01       2598       N/A       0.07       YGRKKRQQRRGPVKRRLDL/5         27       34.16       691       C51H33NO2       0.07       2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine         28       35.47       733       C44H28Cl2N4V       0.08       Dichloro(5,10,15,20-tetraphenyloprphyrinato)vanadium         29       40.31       739       C39H81NO4Si4       0.13       (3\$,4R,1'E,2"R,3"R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1",3"         31       43.48       114       C6H10O2       0.13       3,4-Hexanedione         32       50.56       680       C35H40O5Si5       0.06       Pentamethylpentylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21       | 24.57                 | 572  | C23H26Br2O7   | 0.10   | Dibromogomisin A                                                                               |
| 24         26.01         194         C12H18O2         0.06         3-(1-Hydroxyhexyl)phenol           25         27.54         220         C15H24O         0.06         Trans-Z-à-Bisaboleneepoxide           26         33.01         2598         N/A         0.07         YGRKKRQRRRGPVKRRLDL/5           27         34.16         691         C51H33NO2         0.07         2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine           28         35.47         733         C44H28Cl2N4V         0.08         Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium           29         40.31         739         C39H81NO4Si4         0.13         (3S,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3''           31         43.48         114         C6H10O2         0.13         3,4-Hexanedione           32         50.56         680         C35H40O5Si5         0.06         Pentamethylpentylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22       | 25.05                 | 222  | C10H14N4S     | 32.13  | 4-Pyridinecarbaldehyde-4-propyl-3-thiosemicarbazone                                            |
| 25         27.54         220         C15H24O         0.06         Trans-Z-à-Bisaboleneepoxide           26         33.01         2598         N/A         0.07         YGRKKRQQRRGPVKRRLDL/5           27         34.16         691         C51H33NO2         0.07         2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine           28         35.47         733         C44H28Cl2N4V         0.08         Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium           29         40.31         739         C39H81NO4Si4         0.13         (3S,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3''           31         43.48         114         C6H10O2         0.13         3,4-Hexanedione           32         50.56         680         C35H40O5Si5         0.06         Pentamethylpentaphenylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23       | 25.28                 | 238  | C15H26O2      | 2.39   | Daucol                                                                                         |
| 26         33.01         2598         N/A         0.07         YGRKKRRQRRRGPY           27         34.16         691         C51H33NO2         0.07         2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine           28         35.47         733         C44H28Cl2N4V         0.08         Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium           29         40.31         739         C39H81NO4Si4         0.13         (35,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3''           31         43.48         114         C6H1002         0.13         3,4-Hexanedione           32         50.56         680         C35H4005Si5         0.06         Pentamethylpentylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24       | 26.01                 | 194  | C12H18O2      | 0.06   | 3-(1-Hydroxyhexyl)phenol                                                                       |
| 2734.16691C51H33NO20.072,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine2835.47733C44H28Cl2N4V0.08Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium2940.31739C39H81NO4Si40.13(3S,4R,1'E,2''R,3''R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1'',3''<br>di(tertbutyldimethylsilyloxy)-2''-methylpacetidin-2-one3143.48114C6H10O20.133,4-Hexanedione3250.56680C35H40O5Si50.06Pentamethylpentaphenylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25       | 27.54                 | 220  | C15H24O       | 0.06   | Trans-Z-à-Bisaboleneepoxide                                                                    |
| 2835.47733C44H28Cl2N4V0.08Dichloro(5,10,15,20-tetraphen/porphyrinato)vanadium2940.31739C39H81NO4Si40.13(3S,4R,1'E,2"R,3"R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1",3"3143.48114C6H10O20.133,4-Hexanedione3250.56680C35H40O5Si50.06Pentamethylprophylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26       | 33.01                 | 2598 | N/A           | 0.07   | YGRKKRRQRRRGPVKRRLDL/5                                                                         |
| 2940.31739C39H81NO4Si40.13(3S,4R,1'E,2"R,3"R)-1-tertButyldimethylsilyl-4-(3'-tertbutyldimethylsilyloxy-2'-methylprop-1'-enyl)-3-(1",3"3143.48114C6H10O20.133,4-Hexanedione3250.56680C35H40O5Si50.06Pentamethylpentaphenylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27       | 34.16                 | 691  | C51H33NO2     | 0.07   | 2,6-Bis(2,3,5-triphenyl-4-oxocyclopentadienyl)pyridine                                         |
| 2540.51759C39H81NO45140.13di(tertbutyldimethylsilyloxy)-2"-methylhex-5"-yl]-3-methylazetidin-2-one3143.48114C6H10O20.133,4-Hexanedione3250.56680C35H40O5Si50.06Pentamethylpentaphenylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28       | 35.47                 | 733  | C44H28Cl2N4V  | 0.08   | Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium                                           |
| 32     50.56     680     C35H40O5Si5     0.06     Pentamethylpentaphenylcyclopentasiloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29       | 40.31                 | 739  | C39H81NO4Si4  | 0.13   |                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31       | 43.48                 | 114  | C6H10O2       | 0.13   | 3,4-Hexanedione                                                                                |
| 33 51.11 733 C44H28Cl2N4V 0.09 Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32       | 50.56                 | 680  | C35H40O5Si5   | 0.06   | Pentamethylpentaphenylcyclopentasiloxane                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33       | 51.11                 | 733  | C44H28Cl2N4V  | 0.09   | Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium                                           |

**Table 8.** GC/MS analysis of the Anethum graveolens L.

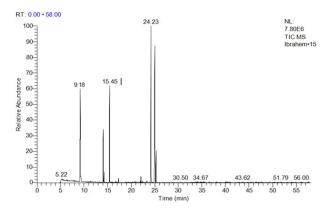
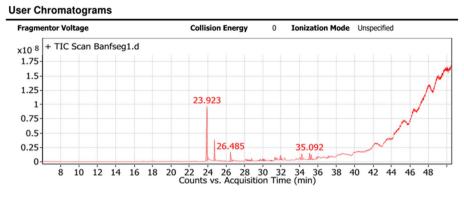
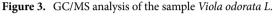



Figure 2. GC/MS analysis of the Anethum graveolens L.

| Peak no. | R <sub>t</sub> (min.) | MW  | MF       | Area % | Probabilities of the detected compounds                                                      |
|----------|-----------------------|-----|----------|--------|----------------------------------------------------------------------------------------------|
| 1        | 23.923                | 170 | C12H10O  | 42.04  | Diphenyl ether                                                                               |
| 2        | 24.735                | 192 | C13H20O  | 11.87  | .alphaIonone                                                                                 |
| 3        | 26.485                | 192 | C13H20O  | 7.73   | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)                                         |
| 4        | 28.317                | 236 | C15H24O2 | 0.61   | Limonen-6-ol, pivalate                                                                       |
| 5        | 28.58                 | 226 | C13H22O3 | 0.9    | 2-Hydroxy-1,1,10-trimethyl-6,9-epidioxydecalin                                               |
| 6        | 28.786                | 238 | C16H30O  | 1.26   | 7-Hexadecenal, (Z)-                                                                          |
| 7        | 29.599                | 236 | C16H28O  | 0.83   | 7,11-Hexadecadienal                                                                          |
| 8        | 29.713                | 296 | C20H40O  | 1.48   | Phytol                                                                                       |
| 9        | 29.959                | 242 | C16H34O  | 2.15   | 2-Hexyl-1-Decanol                                                                            |
| 10       | 30.074                | 378 | C25H46O2 | 1.09   | Undec-10-ynoic acid, tetradecyl ester                                                        |
| 11       | 30.211                | 296 | C20H40O  | 1.02   | PHYTOL ISOMER                                                                                |
| 12       | 30.881                | 266 | C16H26O3 | 0.67   | 2-Dodecen-1-yl(-)succinic anhydride                                                          |
| 13       | 31.338                | 242 | C16H34O  | 2.14   | 1-Decanol, 2-hexyl-                                                                          |
| 14       | 31.939                | 218 | C16H26   | 2.79   | hexadecahydroPyrene                                                                          |
| 15       | 32.054                | 240 | C17H36   | 0.7    | Tetradecane, 2,6,10-trimethyl                                                                |
| 16       | 34.245                | 250 | C16H26O2 | 7.22   | (Z)-5-(4-tert-Butyl-1-hydroxycyclohexyl)-3-methylpent-2-en-4-yne                             |
| 17       | 35.092                | 264 | C15H20O4 | 6.6    | 2,3,3a,4,5,5a,6,7,9a,9b-decahydro-3,5a,9-trimethyl-7,9a-peroxy Naphtho[1,2-b]<br>furan-2-one |
| 18       | 35.269                | 264 | C15H20O4 | 4.73   | 2,3,3a,4,5,5a,6,7,9a,9b-decahydro-3,5a,9-trimethyl-7,9a-peroxy Naphtho [1,2-b] furan-2-one   |
| 19       | 35.905                | 242 | C16H34O  | 2.19   | 2-hexyl-1-Decanol                                                                            |
| 20       | 37.146                | 266 | C18H34O  | 1.89   | Z,E-2,13-Octadecadien-1-ol                                                                   |
| 21       | 23.923                | 170 | C12H10O  | 0.78   | Diphenyl ether                                                                               |


Table 9. GC/MS analysis of the Viola odorata L.


*Curcuma* species was less effective in this study, but its 27 components as curcuminoids and monocarbonyl curcumin derivatives were effective larvicidal agents against *Cx. Pipiens* and *Ae. albopictus*<sup>43</sup> and hexane extraction of *Curcuma longa* showed 100% larvicidal activity against *Cx. pipiens* and *Aedes albopictus* at 1000 ppm after being treated 24 h<sup>44</sup>.

*Zingiber officinale* and *Syzygium aromaticum* were less effective. In contrast, they were effective against *Cx. pipiens* ( $LC_{50}$  = as 71.85 and 30.75, respectively)<sup>45</sup>.

*Sesamum indicum* is one of the L group in this study. In contrast, petroleum ether extract showed larvidcidal, antifeedant and repellent action against *Cx. pipiens*<sup>33</sup>. Furthermore, EOs of *N. sativa, Allium cepa*, and *S. indicum*, induced larvicidal effect and their LC<sub>50</sub> values against both field and laboratory strains of *Cx. pipiens* were 247.99 and 108.63; 32.11 and 2.87; and finally, 673.22 and 143.87 ppm, respectively. They influenced the pupation and adult emergence rates besides developmental abnormalities at sublethal concentrations<sup>46</sup>.

*Boswellia serrata* (M group) and *Brassica carinata* (L group) showed relative larvicide against *Cx. pipiens* in this study. A similar result was reported<sup>47,48</sup>. The lethal concentration values of Fenugreek (*Trigonella foenum-grecum*), earth almond (*Cyperus esculentus*), mustard (*Brassica compestris*), olibanum (*Boswellia serrata*), rocket (*Eruca sativa*), and parsley (*Carum ptroselinum*) were 32.42, 47.17, 71.37, and 83.36, 86.06, and 152.94 ppm,





respectively. Against *Cx. pipiens* larvae. Furthermore, increasing concentrations were directly proportional to the reduction of both pupation and adult emergences rates<sup>48</sup>.

Some oil-resins as *Commiphora molmol, Araucaria heterophylla, Eucalyptus camaldulensis, Pistacia lentiscus,* and *Boswellia sacra* showed larvicidal activity against *Cx pipiens* larvae. The larvicidal effect 24 and 48 h PT, respectively, were for acetone extracts, 1500 ppm, of *C. molmol* (83.3% and 100% and  $LC_{50}$  = 623.52 and 300.63 ppm) and *A. heterophylla* (75% and 95% and  $LC_{50}$  = 826.03 and 384.71 ppm). On the other hand, the aqueous extract of *A. heterophylla* induced higher moralities ( $LC_{50}$  = 2819.85 ppm and 1652.50 ppm), followed by *C. molmol*, ( $LC_{50}$  = 3178.22 and 2322.53 ppm)<sup>49</sup>.

A similar larvicidal effect was recorded for *Rosmarinus officinalis*, hexane extract (80 and 160 ppm), reduced 100% mortality against 3rd and 4th instars larvae of *Cx. pipiens* and the toxicity increased in the pupal and adult stages<sup>50</sup>.

Out of 36 essential oils, red moor besom leaf oil has strong fumigation activity against *Cx. pipiens* pallens adults<sup>51</sup>. Similar to the adulticidal effect of the applied oils in this work, some other oils have adulticidal activities against mosquitoes as *Cedrus deodara, Eucalyptus citriodora, Cymbopogon flexuous, Cymbopogon winterianus, Pinus roxburghii, S. aromaticum,* and *Tagetes minuta*<sup>52</sup>. The Leaf Oils of *Cinnamomum* species had adulticidal activities against *Ae. aegypti* and *Aedes albopictus*<sup>53</sup>. EOs have adulticidal effects against *Musca domestica*<sup>54</sup> as *A. sativum, S. aromaticum,* and *F. vulgare*<sup>55</sup>. Essential oils of *Melaleuca leucadendron* (L.) and *Callistemon citrinus* (Curtis) showed 100% adult mortality against *Aedes aegypti* (L.) and *Cx. quinquefasciatus* (Say), 24 h exposure<sup>56</sup>.

The results showed that *A. sativum*, and *S. officinalis* oils were effective against mosquito larvae, maybe due to the presence of a number of active secondary compounds such as ISOCHIAPIN B%2 < (sesquiterpene lactone) and 9-Octadecenamide, (Z)-that are anti-inflammatory activity<sup>57</sup>, also, Terpinen-4-ol and Camphor in Sage oil that these are excellent natural insecticide<sup>58</sup>, but these oils garlic and Sage did not show the required efficacy against adult mosquitoes.

The phytochemical analysis of this study revealed the major activated compounds of the analyzed oils. Green tea oil is a highly effective larvicide in this study contains a high amount of polyphenols that have antioxidant activity. A similar finding was reported<sup>59</sup>. Our data indicated that green tea oil also contains polyphenols as Gallic acid, Catechin, Methyl gallate, Coffeic acid, Coumaric acid, Naringenin, and Kaempferol which might aid in its insecticidal effect.

This study indicated that *F. vulgare* contains Estragole (70.36%) and Limonene (8.96%). Similarly, Limonene as a cyclic monoterpene has a viable insecticidal effect<sup>60</sup>. Besides, Estragole induced toxicity to adult fruit flies, *Ceratitis capitata*<sup>61</sup>. Moreover, *An. graveolens* contains thiosemicarbazone (32.13%) in this study. Likewise, thiosemicarbazide is a major component *An. graveolens* with insecticidal effect<sup>62</sup>. Also, Dauco and carotol are essential oils documented for *An. graveolens* in this work have repellent activity against adult *Ae. aegypti, Ae. albopictus*, and *Anopheles quadrimaculatus* Say<sup>63</sup>. Furthermore, *V. odorata* in the present analysis contains alphaionone, which revealed anti-inflammatory and analgesic effects<sup>64</sup>. *Thymus vulgaris* showed good alpha-pinene and pyridine derivatives that play an important role as larvicidal and adulticidal effects against *Ae. aegypti* and growth regulator, respectively<sup>65,66</sup>. In addition, the combination of all constituents may promote their individual larvicidal effects.

The biochemical compositions showed that *T. vulgaris* oil affected the energy reserves with a marked effect on proteins and lipids<sup>30</sup>. The differences between our findings and those of the others could be attributed to the biological activities and the chemical composition for EOs, which could vary between plant age, tissues, geo-graphical origin, the part used in the distillation process, distillation type, and the species. Therefore, types and levels of active constituents in each oil may be responsible for the variability in their potential against pests<sup>16</sup>.

#### Conclusions

Diseases transmitted by mosquitoes represent global concerns. Our findings demonstrate the potential of *F. vulgare* and *C. sinensis* as the most potent larvicides and *N. sativa, V. odorata,* and *An. graveolens* as the most effective adulticides as they contain good command of different essential oils. EOs could be used for integrated mosquito control programs as larvicides or synergists for enhancing the efficacy of current adulticides<sup>31</sup>. Further

| Peak no. | R <sub>t</sub> (min.) | MW         | MF                    | Area % | Probabilities of the detected compounds                                          |
|----------|-----------------------|------------|-----------------------|--------|----------------------------------------------------------------------------------|
| 1        | 5.1                   | 208        | C13H20O2              | 0.86   | TRANS-á-IONON-5,6-EPOXIDE                                                        |
| 2        | 5.23                  | 122        | C8H15B                | 0.79   | 1-Borabicyclo[4.3.0]nonane                                                       |
| 3        | 6.46                  | 136        | C10H16                | 1.85   | Tricyclene                                                                       |
| 4        | 6.86                  | 136        | C10H16                | 0.69   | Camphene                                                                         |
| 5        | 7.64                  | 136        | C10H16                | 8.92   | 2-á-pinene                                                                       |
| 6        | 9.07                  | 119        | C7H5NO                | 12.37  | 2-Ethynyl-3-hydroxypyridine                                                      |
| 7        | 11.32                 | 196        | C12H20O2              | 0.68   | Linalyl acetate                                                                  |
| 8        | 12.50                 | 152        | C10H16O               | 1.27   | (1S) Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl                                 |
| 9        | 13.39                 | 156        | C10H20O               | 0.78   | 1-Methyl-4-(1-methylethyl)Cyclohexanol                                           |
| 10       | 13.51                 | 154        | C10H18O               | 4.73   | 4-Methyl-1-(1-methylethyl)-3-Cyclohexen-1-ol                                     |
| 11       | 13.91                 | 154        | C10H18O               | 1.13   | à,à,4-trimethyl (S) 3-Cyclohexene-1-methanol                                     |
| 12       | 15.67                 | 182        | C11H18O2              | 0.63   | linalyl formate                                                                  |
| 13       | 16.48                 | 196        | C12H20O2              | 1.76   | EXOBORNYL ACETATE                                                                |
| 14       | 18.17                 | 196        | C12H20O2              | 5.00   | à-terpinyl acetate                                                               |
| 15       | 20.52                 | 142        | C9H18O                | 0.56   | 3-Ethylheptanal                                                                  |
| 16       | 21.94                 | 268        | C19H40                | 0.58   | Nonadecane                                                                       |
| 17       | 22.84                 | 199        | C9H13NO4              | 1.87   | 2S,7S Methyl-2-Hydroxy-3-oxotetrahydro-1-Hpyrrolizine-7a-(5H)-<br>carboxylate    |
| 18       | 22.97                 | 226        | C16H34                | 0.92   | Pentadecane-5-methyl                                                             |
| 19       | 23.10                 | 212        | C15H32                | 0.72   | 3-ethyl Tridecane                                                                |
| 20       | 23.22                 | 348        | C19H40O3S             | 0.75   | hexyltridecyl ester Sulfurous acid                                               |
| 20       | 23.39                 | 226        | C16H34                | 1.09   | 3-methyl Pentadecane                                                             |
| 21       | 23.39                 | 168        | C101134<br>C8H12N2O2  | 1.52   | 1,6-diisocyanato Hexane                                                          |
| 22       | 24.00                 | 298        | C20H42O               | 2.36   | · · · ·                                                                          |
| 23       | 24.24                 | 298        | C20H42O<br>C20H42     | 0.81   | 1,1'-oxybis Decane,<br>Eicosane                                                  |
| 24       | 24.40                 | 334        | C18H38O3S             | 0.81   | Sulfurous acid, butyltetradecyl ester                                            |
| 25       | 24.03                 | 282        | C1811380555<br>C20H42 | 4.12   | 10-Methylnonadecane                                                              |
| 20       | 25.24                 | 262        | C19H40                | 1.00   | 7-hexyl Tridecane                                                                |
| 28       | 25.37                 | 334        | C191140<br>C18H38O3S  | 1.10   | 6-Tetradecanesulfonic acid, butyl ester                                          |
| 29       | 25.49                 | 334        | C18H38O3S             | 1.10   | 6-Tetradecanesulfonic acid, butyl ester                                          |
| 31       | 25.68                 | 250        | C16H26O2              | 4.54   | 3-(6,6-Dimethyl-5-oxohept-2-enyl)-cycloheptanone                                 |
| 32       | 25.98                 | 230        | C13H18O3              | 7.70   | 2,5-Dipropoxybenzaldehyde                                                        |
| 33       | 26.30                 | 352        | C25H52                | 1.33   | Pentacosane                                                                      |
| 34       | 26.44                 | 282        | C20H42                | 3.55   | 9-methyl, Nonadecane                                                             |
| 35       | 26.62                 | 202        | C16H32                | 1.08   | 1-Hexadecene                                                                     |
| 36       | 26.84                 | 224        | C16H28O               | 2.14   | 7,11-Hexadecadienal                                                              |
| 37       | 27.25                 | 230        | C11H12N4O2            | 5.05   | 5-Amino-8-cyano-7-methoxy-3,4-dihydro-3-methy-l1,6-naphthyri-                    |
| 38       | 27.32                 | 232        | C15H20O2              | 2.01   | din-2(1H)-one<br>(2R,3R)-3-(2-Methoxy-4-methylphenyl)-2,3-dimethylcyclopentanone |
| 38       | 27.32<br>27.42        | 232        | C15H20O2<br>C20H42    | 0.87   | 2,6-dimethyl Octadecane                                                          |
| 39<br>40 | 27.42                 | 310        | C20H42<br>C22H46      | 0.87   | 8-heptyl Pentadecane                                                             |
| 40       |                       | 376        | C221140<br>C21H44O3S  |        | Sulfurous acid, hexyl pentadecyl ester                                           |
| 41 42    | 27.65                 |            |                       | 0.61   |                                                                                  |
| 42       | 27.82                 | 226        | C16H34                | 0.88   | Hexadecane<br>1-Bromo-2-methyl-3-Buten-2-ol                                      |
| 43       | 28.42<br>28.54        | 164<br>242 | C5H9BrO<br>C16H34O    | 0.62   | 2-Hexyl-1-decanol                                                                |
| 44       |                       | 111        |                       | 1.25   |                                                                                  |
|          | 28.69                 |            | C7H13N                | 1.08   | 1-isocyano Hexane<br>2-ethyl 1-Pentanol                                          |
| 46       | 29.32                 | 116        | C7H16O                | 1.94   | ·                                                                                |
| 47       | 30.70                 | 200        | C13H28O               | 0.82   | 2-Propyldecan-1-ol                                                               |
| 48       | 31.33                 | 197        | C11H19NO2             | 0.98   | 2-Ethylhexyl cyanoacetate                                                        |
| 49       | 33.27                 | 592        | C41H84O               | 0.70   | 1-Hentetracontanol                                                               |
| 50       | 36.28                 | 324        | C23H48                | 0.57   | 9-hexyl Heptadecane                                                              |
| 51       | 37.92                 | 366        | C26H54                | 0.58   | 5,14-dibutyl Octadecane                                                          |

**Table 10.** GC/MS analysis of *Thymus vulgaris L*.

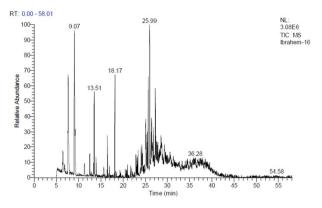
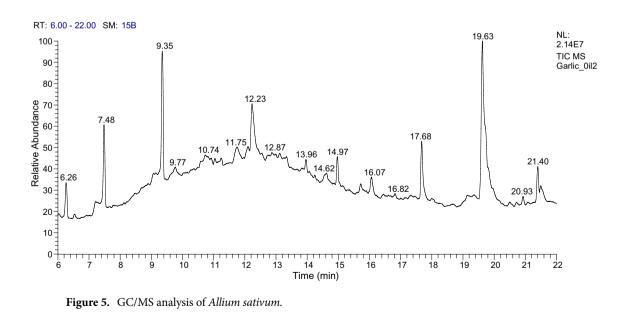




Figure 4. GC/MS analysis of *Thymus vulgaris L*.

| Peak no. | R <sub>t</sub> (min.) | MW  | MF         | Area % | Probabilities of the detected compounds         |
|----------|-----------------------|-----|------------|--------|-------------------------------------------------|
| 1        | 6.27                  | 146 | C6H10S2    | 4.54   | Diallyl disulphide                              |
| 2        | 7.49                  | 152 | C4H8S3     | 9.68   | Trisulfide, methyl 2-propenyl                   |
| 3        | 9.35                  | 178 | C6H10S3    | 14.86  | Trisulfide, di-2-propenyl                       |
| 4        | 12.22                 | 350 | C19H26O6   | 8.63   | ISOCHIAPIN B %2 <                               |
| 5        | 14.97                 | 334 | C20H30O4   | 3.54   | 1,2-Benzenedicarboxylic acid, butyl octyl ester |
| 6        | 16.05                 | 346 | C19H22O6   | 3.11   | ISOCHIAPIN B                                    |
| 7        | 17.67                 | 387 | C17H37N7O3 | 7.84   | 9-OCTADECENAMIDE                                |
| 8        | 19.61                 | 281 | C18H35NO   | 29.07  | 9-Octadecenamide, (Z)-                          |
| 10       | 21.40                 | 208 | C11H12O2S  | 4.25   | 3-(Benzylthio)acrylic acid, methyl ester        |
| 11       | 23.27                 | 300 | C19H24O3   | 5.86   | 3,17-DIOXO-11-à-HYDROXYANDROSTANE-1,4-DIENE     |
| 12       | 23.54                 | 436 | C26H44O5   | 1.82   | 3 Ethyl iso-allocholate                         |
| 13       | 23.62                 | 490 | C34H50O2   | 6.81   | CHOLEST-5-EN-3-YL BENZOATE                      |

**Table 11.** GC/MS analysis of the Allium sativum. 9-Octadecenamide, (Z)- (29.07), Trisulfide, di-2-propenyl(14.86), and ISOCHIAPIN B %2 < (8.63).</td>



| Peak no. | R <sub>t</sub> (min.) | MW  | MF       | Area % | Probabilities of the detected compounds    |  |
|----------|-----------------------|-----|----------|--------|--------------------------------------------|--|
| 1        | 10.22                 | 152 | C10H16O  | 16.08  | Camphor                                    |  |
| 2        | 10.90                 | 156 | C10H20O  | 5.24   | Cyclohexanol, 1-methyl-4-(1-methylethyl)-  |  |
| 3        | 11.47                 | 154 | C10H18O  | 17.35  | Terpinen-4-ol                              |  |
| 4        | 13.86                 | 254 | C13H24O2 | 2.47   | Tridecanedial                              |  |
| 5        | 14.50                 | 280 | C18H32O2 | 3.43   | 17-Octadecynoic acid                       |  |
| 6        | 15.70                 | 400 | C28H48O  | 0.90   | Cholestan-3-ol, 2-methylene-, (3á,5à)-     |  |
| 7        | 16.68                 | 268 | C17H32O2 | 1.80   | 7-Methyl-Z-tetradecen-1-ol acetate         |  |
| 8        | 17.50                 | 280 | C19H36O  | 1.63   | 12-Methyl-E,E-2,13-octadecadien-1-ol       |  |
| 10       | 17.99                 | 288 | C21H36   | 2.03   | 14-á-H-PREGNA                              |  |
| 11       | 19.18                 | 288 | C18H37Cl | 5.13   | 1-CHLOROOCTADECANE                         |  |
| 12       | 19.51                 | 288 | C21H36   | 1.77   | 14-á-H-PREGNA                              |  |
| 13       | 19.86                 | 450 | C32H66   | 4.33   | DOTRIACONTANE                              |  |
| 14       | 20.18                 | 536 | C37H76O  | 1.41   | 1-Heptatriacotanol                         |  |
| 15       | 20.32                 | 268 | C16H28O3 | 1.15   | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate |  |
| 16       | 20.55                 | 258 | C16H34S  | 1.58   | tert-Hexadecanethiol                       |  |
| 17       | 20.80                 | 312 | C20H40O2 | 3.17   | Ethanol, 2-(9-octadecenyloxy)-, (Z)-       |  |
| 18       | 20.90                 | 288 | C21H36   | 2.18   | 14-á-H-PREGNA                              |  |
| 19       | 21.26                 | 350 | C19H26O6 | 0.73   | ISOCHIAPIN B %2<                           |  |
| 20       | 21.61                 | 288 | C18H37Cl | 6.82   | 1-CHLOROOCTADECANE                         |  |
| 21       | 21.84                 | 294 | C21H36   | 3.7    | 14-á-H-PREGNA                              |  |
| 22       | 22.39                 | 288 | C21H36   | 0.82   | 1-Heptatriacotanol                         |  |
| 23       | 22.47                 | 346 | C19H22O6 | 2.74   | ISOCHIAPIN B                               |  |
| 24       | 22.73                 | 288 | C21H36   | 9.25   | 14-á-H-PREGNA                              |  |
| 25       | 23.09                 | 280 | C19H36O  | 2.20   | 12-Methyl-E,E-2,13-octadecadien-1-ol       |  |
| 26       | 23.23                 | 350 | C19H26O6 | 2.05   | ISOCHIAPIN B %2 <                          |  |

Table 12. GC/MS analysis of the Salvia officinalis.

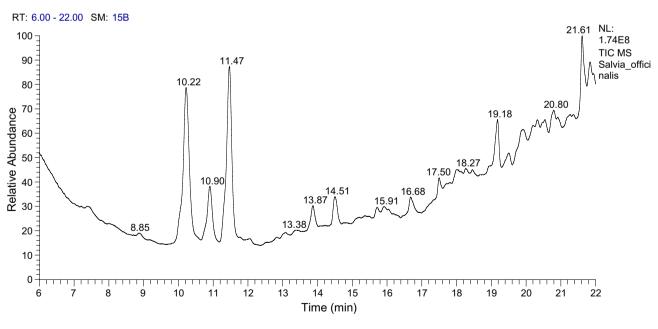



Figure 6. GC/MS analysis of Salvia officinalis.

| Standard         |                        |                        | Sample green tea |         |                                |  |
|------------------|------------------------|------------------------|------------------|---------|--------------------------------|--|
| St. compound     | Conc. (µg/ml)          | Area                   | Compound         | Area    | Conc. ( $\mu g/ml = \mu g/g$ ) |  |
| allic acid       | 16.8                   | 179.72                 | Gallic acid      | 895.77  | 1674.71                        |  |
| Chlorogenic acid | 28                     | 335.23                 | Chlorogenic acid | 75.30   | 125.79                         |  |
| Catechin         | 67.5                   | 584.16 Catechin        |                  | 182.42  | 421.56                         |  |
| Methyl gallate   | 10.2                   | 789.05 Methyl gallate  |                  | 4163.86 | 1076.52                        |  |
| Coffeic acid     | 18 469.51 Coffeic acid |                        | Coffeic acid     | 895.98  | 687.01                         |  |
| Syringic acid    | 17.2                   | 389.86                 | Syringic acid    | 30.41   | 26.83                          |  |
| Pyro catechol    | 29.2                   | 2 451.95 Pyro catechol |                  | 0.00    | 0.00                           |  |
| Rutin            | 61                     | 457.55                 | Rutin            | 71.83   | 191.53                         |  |
| Ellagic acid     | 34.3                   | 495.60                 | Ellagic acid     | 37.52   | 51.93                          |  |
| Coumaric acid    | 13.2                   | 729.56                 | Coumaric acid    | 1566.70 | 566.93                         |  |
| Vanillin         | 12.9                   | 543.81                 | Vanillin         | 0.00    | 0.00                           |  |
| Ferulic acid     | 12.4                   | 353.45                 | Ferulic acid     | 71.09   | 49.88                          |  |
| Naringenin       | 15                     | 266.56                 | Naringenin       | 158.25  | 178.11                         |  |
| Taxifolin        | 13.2                   | 189.35                 | Taxifolin        | 16.08   | 22.42                          |  |
| Cinnamic acid    | 5.8                    | 573.08                 | Cinnamic acid    | 0.00    | 0.00                           |  |
| Kaempferol       | 12                     | 289.35                 | Kaempferol       | 263.99  | 218.97                         |  |

 Table 13.
 HPLC analysis for Camellia sinensis.

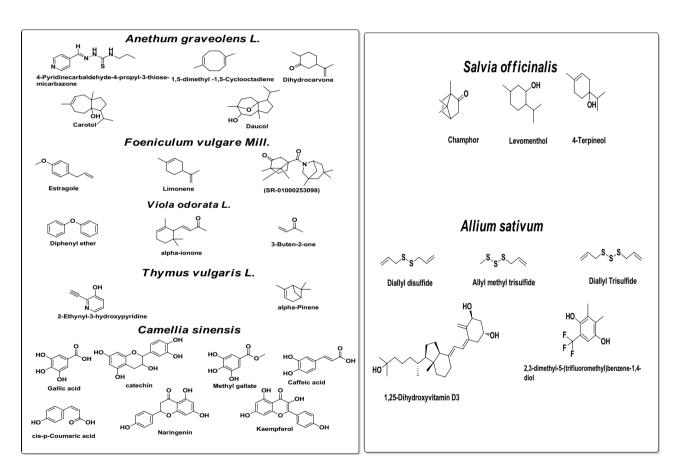



Figure 7. Essential oils and their most active ingredients.

studies are needed to develop nanoformulations that improve the efficacy and minimize applications after revealing their ecotoxicological side views.

Received: 23 September 2021; Accepted: 24 February 2022 Published online: 15 March 2022

#### References

- 1. Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. Vol. 376 (The Royal Society, 2021).
- 2. Abdel-Shafi, I. R. *et al.* Mosquito identification and molecular xenomonitoring of lymphatic filariasis in selected endemic areas in Giza and Qualioubiya Governorates, Egypt. *J. Egypt. Soc. Parasitol.* **46**, 93–100 (2016).
- Selim, A., Radwan, A., Arnaout, F. & Khater, H. The recent update of the situation of west nile fever among equids in Egypt after three decades of missing information. *Pakistan Veterinary J.* 40 (2020).
- Selim, A., Megahed, A., Kandeel, S., Alouffi, A. & Almutairi, M. M. West Nile virus seroprevalence and associated risk factors among horses in Egypt. Sci. Rep. 11, 1–9 (2021).
- Selim, A. & Radwan, A. Seroprevalence and molecular characterization of West Nile Virus in Egypt. Compar. Immunol. Microbiol. Infectious Diseases. 71, 101473 (2020).
- 6. Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. (The Royal Society, 2021).
- 7. Selim, A., Manaa, E., Abdelhady, A., Ben Said, M. & Sazmand, A. Serological and molecular surveys of Anaplasma spp. in Egyptian cattle reveal high A. marginale infection prevalence.
- 8. Selim, A. et al. Seroprevalence and risk factors associated with Canine Leishmaniasis in Egypt. Veterinary Sci. 8, 236 (2021).
- Selim, A., Megahed, A. A., Kandeel, S. & Abdelhady, A. Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Compar. Immunol. Microbiol. Infectious Diseases. 72, 101517 (2020).
   Selim, A. & Abdelhady, A. The first detection of earth Water Wile virus earth edvine demonstration provide the detection of earth Water Water
- Selim, A. & Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. *Trop. Anim. Health* Prod. 52, 3147–3151 (2020).
- 11. Selim, A., Abdelhady, A. & Alahadeb, J. Prevalence and first molecular characterization of Ehrlichia canis in Egyptian dogs. *Pak. Vet. J.* (2020).
- 12. Khater, H. F. et al. Malaria (IntechOpen, 2019).
- 13. Baz, M. M. Strategies for mosquito control. PhD thesis, faculty of Science, Benha University, Egypt (2013).
- 14. Khater, H. F. Prospects of botanical biopesticides in insect pest management. Pharmacologia 3, 641-656 (2012).
- Khater, H. F. Bioactivity of essential oils as green biopesticides: Recent global scenario. *Recent Progress Med. Plants* 37, 151–218 (2013).
- 16. Khan, N. & Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 19, 6141-6147 (2013).
- Govindarajan, M., Rajeswary, M., Hoti, S., Bhattacharyya, A. & Benelli, G. Eugenol, α-pinene and β-caryophyllene from *Plectranthus barbatus* essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. *Parasitol. Res.* 115, 807–815 (2016).
- Khater, H. & Geden, C. Potential of essential oils to prevent fly strike by *Lucilia sericata*, and effects of oils on longevity of adult flies. J. Vector Ecol. 43, 261–270 (2018).
- 19. Noutcha, M. A., Edwin-Wosu, N. I., Ogali, R. E. & Okiwelu, S. N. The role of plant essential oils in mosquito (Diptera: Culicidae) control. Annu. Res. Rev. Biol. 1–9 (2016).
- 20. WHO. Larval source management: A supplementary malaria vector control measure: An operational manual. (2013).
- Vatandoost, H. et al. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three imagicides. J. Arthropod. Borne Dis. 13, 17 (2019).
- Shafaie, F., Aramideh, S., Valizadegan, O., Safaralizadeh, M. H. & Pesyan, N. N. GC/MS analysis of the essential oils of *Cupressus arizonica* Greene, *Juniperus communis* L. and *Mentha longifolia* L. Bull. Chem. Soc. Ethiopia. 33, 389–400 (2019).
- 23. Modise, S. A. & Ashafa, A. O. T. Larvicidal, pupicidal and insecticidal activities of *Cosmos bipinnatus, Foeniculum vulgare* and *Tagetes minuta* against *Culex quinquefasciatus* mosquitoes. *Trop. J. Pharm. Res.* **15**, 965–972 (2016).
- Pavela, R., Žabka, M., Bednář, J., Ťříska, J. & Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (*Foeniculum vulgare Mill.*). Ind. Crops Products. 83, 275–282 (2016).
- Rocha, D. K. et al. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat. Product Commun. 10, 1934578X1501000438 (2015).
- Hassan, M. I., Atwa, W. A., Moselhy, W. A. & Mahmoud, D. A. Efficacy of the green tea, *Camellia sinensis* leaves extract on some biological activities of *Culex pipiens* and the detection of its phytochemical constituents. *Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control.* 12, 59–70 (2020).
- Muema, J. M., Bargul, J. L., Nyanjom, S. G., Mutunga, J. M. & Njeru, S. N. Potential of *Camellia sinensis* proanthocyanidins-rich fraction for controlling malaria mosquito populations through disruption of larval development. *Parasit. Vectors* 9, 1–10 (2016).
- Pavela, R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind. Crops Prod. 30, 311–315 (2009).
- de Oliveira, A. A. et al. Larvicidal, adulticidal and repellent activities against Aedes aegypti L. of two commonly used spices, Origanum vulgare L. and Thymus vulgaris L. S. Afr. J. Bot. 140, 17–24 (2021).
- Bouguerra, N., Tine-Djebbar, F. & Soltani, N. Effect of *Thymus vulgaris* L. (Lamiales: Lamiaceae) essential oil on energy reserves and biomarkers in *Culex pipiens* L. (Diptera: Culicidae) from Tebessa (Algeria). J. Essential Oil Bearing Plants. 21, 1082–1095 (2018).
- 31. Sheng, Z. et al. Screening of larvicidal activity of 53 essential oils and their synergistic effect for the improvement of deltamethrin efficacy against Aedes albopictus. Ind. Crops Products. 145, 112131 (2020).
- Alkenani, N. A. et al. Molecular identification and bio-control of mosquitoes using black seeds extract in Jeddah. Pak. Vet. J. https:// doi.org/10.29261/pakvetj/2021.025 (2021).
- Farag, M. Larvicidal and repellent potential of Sesamum indicum hull peels extracts against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fisheries. 25, 995–1011 (2021).
- Abd El Meguid, A. D., Mahmoud, S. H. & Baz, M. M. Toxicological activity of four plant oils against Aedes caspius and Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res 6, 86–94 (2019).
- 35. El Ouali Lalami, A., El-Akhal, F., Ez Zoubi, Y. & Taghzouti, K. Study of phytochemical screening and larvicidal efficacy of ehtanolic extract of *Salvia officinalis* (Lamiaceae) from North Center of Morocco against *Culex pipiens* (Diptera: Culicidae) vector of serious human diseases. *Int. J. Pharmacog. Phytochem. Res.* 8, 1663–1668 (2016).
- Hayouni, E. A. et al. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 125, 242–251 (2008).
- Nabti, I. & Bounechada, M. Larvicidal activities of essential oils extracted from five Algerian medicinal plants against *Culiseta longiareolata* Macquart. Larvae (Diptera: Culicidae). *Eur. J. Biol.* 78, 133–138 (2019).
- Chantawee, A. & Soonwera, M. Larvicidal, pupicidal and oviposition deterrent activities of essential oils from Umbelliferae plants against house fly Musca domestica. Asian Pac. J. Trop. Med. 11, 621 (2018).
- 39. Belong, P., Ntonga, P. A., Fils, E., Dadji, G. A. F. & Tamesse, J. L. Chemical composition and residue activities of *Ocimum canum* Sims and *Ocimum basilicum* L. essential oils on adult female *Anopheles funestus. J. Anim. Plant Sci.* **19**, 2854–2863 (2013).
- 40. El Zayyat, E. A., Soliman, M. I., Elleboudy, N. A. & Ofaa, S. E. Bioefficacy of some Egyptian aromatic plants on *Culex pipiens* (Diptera: Culicidae) adults and larvae. *J. Arthropod. Borne Dis.* **11**, 147 (2017).
- Muturi, E. J., Ramirez, J. L., Zilkowski, B., Flor-Weiler, L. B. & Rooney, A. P. Ovicidal and larvicidal effects of garlic and asafoetida essential oils against West Nile virus vectors. J. Insect Sci. 18, 43 (2018).

- 42. Alerwi, S. T. *et al.* Molecular identification and bio-control of *Culex quinquefasciatus* from Yanbu region. *J. Entomol. Zool. Stud.* 7, 1081–1086 (2019).
- 43. Matiadis, D. *et al.* Curcumin derivatives as potential mosquito larvicidal agents against two mosquito vectors, *Culex pipiens* and *Aedes albopictus. Int. J. Mol. Sci.* 22, 8915 (2021).
- Prak, J.-W., Yoo, D.-H., Kim, H. K., Koo, H.-N. & Kim, G.-H. in 2014 Larvicidal and repellent activities of 33 plant extracts against two mosquitoes as *Culex pipiens* and *Aedes albopictus*. 181–181.
- 45. Jabbar, A., Tariq, M., Gulzar, A., Mukhtar, T. & Zainab, T. Lethal and sub lethal effects of plant extracts and green silver nanoparticles against *Culex pipiens*. (2021).
- 46. Khater, H. F. Biocontrol of Some Insects (Benha University, 2003).
- Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, *Culex pipiens* Say (Diptera: Culicidae). *Pak. Vet. J.* https://doi.org/10.29261/pakvetj (2021).
- Khater, H. F. & Shalaby, A.A.-S. Potential of biologically active plant oils to control mosquito larvae (*Culex pipiens*, Diptera: Culicidae) from an Egyptian locality. *Rev. Inst. Med. Trop. Sao Paulo* 50, 107–112 (2008).
- Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, *Culex pipiens* Say (Diptera: Culicidae). *Pak. Vet. J.* 41, 191–196 (2021).
- Shalaby, A. & Khater, H. Toxicity of certain solvent extracts of Rosmarinus officinalis against *Culex pipiens* larvae. J. Egypt. German Soc. Zool. E. 48, 69–80 (2005).
- Chen, W., Wu, H., Ma, Z., Feng, J. & Zhang, X. Evaluation of fumigation activity of thirty-six essential oils against *Culex pipiens* pallens (Diptera: Culicidae). Acta Entomol. Sin. 61, 86–93 (2018).
- 52. Makhaik, M., Naik, S. N. & Tewary, D. K. Evaluation of anti-mosquito properties of essential oils. (2005).
- Jantan, I. B., Yalvema, M. F., Ahmad, N. W. & Jamal, J. A. Insecticidal activities of the leaf oils of eight cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm. Biol. 43, 526–532 (2005).
- Khater, H. F. & Geden, C. J. Efficacy and repellency of some essential oils and their blends against larval and adult house flies, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 44, 256–263 (2019).
- Levchenko, M. A., Silivanova, E. A., Khodakov, P. E. & Gholizadeh, S. Insecticidal efficacy of some essential oils against adults of Musca domestica L. (Diptera: Muscidae). Int. J. Trop. Insect Sci. 1–9 (2021).
- Pushpalatha, E. & Viswan, K. A. Adulticidal and repellent activities of Melaleuca leucadendron (L.) and Callistemon citrinus (Curtis) against filarial and dengue vectors. Assoc. Advancement Entomol. 38, 149–154 (2013).
- Sahi, N. M. Evaluation of insecticidal activity of bioactive compounds from *Eucalyptus citriodora* against *Tribolium castaneum*. Int. J. Pharm. Phytochem. Res. 8, 1256–1270 (2016).
- Fu, J. et al. Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora Siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). J. Insect Sci. 15, 129 (2015).
- Zulhussnain, M. et al. Insecticidal and Genotoxic effects of some indigenous plant extracts in Culex quinquefasciatus Say Mosquitoes. Sci. Rep. 10, 1–13 (2020).
- Sutthanont, N. et al. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroidsusceptible and-resistant strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 35, 106–115 (2010).
- Ling Chang, C., Kyu Cho, I. & Li, Q. X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 102, 203–209 (2009).
- 62. da Silva, J. B. P. et al. Thiosemicarbazones as Aedes aegypti larvicidal. Eur. J. Med. Chem. 100, 162–175 (2015).
- Ali, A., Radwan, M. M., Wanas, A. S. & Khan, I. A. Repellent activity of carrot seed essential oil and its pure compound, carotol, against mosquitoes. J. Am. Mosq. Control Assoc. 34, 272–280 (2018).
- Branquinho, L. S. *et al.* Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 198, 372–378 (2017).
- Sarma, R., Adhikari, K., Mahanta, S. & Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against *Aedes aegypti* (Diptera: Culicidae). Sci. Rep. 9, 1–12 (2019).
- 66. Gad, M., Aref, S., Abdelhamid, A., Elwassimy, M. & Abdel-Raheem, S. Biologically active organic compounds as insect growth regulators (IGRs): Introduction, mode of action, and some synthetic methods. *Curr. Chem. Lett.* **10**, 393–412 (2021).

#### Acknowledgements

This work was funded by the Science, Technology, Innovation Funding Authority, Egypt, entitled: "Lumpy Skin Disease in Cattle and Development of Sustainable Pest Management Tools", Project ID: 37024.

#### Author contributions

Conceptualization, A.A., A.M. and M.B.; methodology, H.K., M.B., I.R.; validation, M.B., I.R. and A.A.; formal analysis, A.A. and H.K.; resources, A.A.; writing—original draft preparation, M.B., I.R., H.K. and A.A.; writing—review and editing, H.K., A.A., A.M. and A.S.; supervision, H.K.; project administration, A.S.; funding acquisition, A.S. All authors have read and agreed to the published version of the manuscript.

#### **Competing interests**

The authors declare no competing interests.

#### Additional information

Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022