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This paper summarizes the data concerning soluble defense lectins (mannan-binding lectin, M-ficolin, L-ficolin, and H-ficolin)
with the unique ability to activate complement and their associated serine proteases (MASPs) in neonates. The clinical importance
of deficiencies of these immune factors is presented in aspects of perinatal mortality, premature births, and low birthweight.
Prenatal serum concentrations of L-ficolin, H-ficolin, and MASP-2 (and probably M-ficolin) correlate with gestational age and
birthweight. The relationship of serum MBL to gestational age is controversial. The MBL2 genotypes XA/O and O/O (associated
with low-serum MBL) are associated with perinatal infections, whereas the high serum MBL-conferring A/A genotypes may be
associated with prematurity. Low-serum L-ficolin concentrations, but not low-serum H-ficolin concentrations, are also associated
with perinatal infections. Much of the literature is inconsistent, and the relationships reported so far require independent
confirmation at both gene and protein levels. Our preliminary conclusion is that these soluble defense lectins play a protective role
in the neonate, and that insufficiency of such factors contributes to the adverse consequences of prematurity and low birthweight.

1. Underdevelopment of the Neonatal
Immune System

Newborns have to adapt to their postnatal environment.
They are exposed to extrauterine conditions which are com-
pletely different from intrauterine conditions. During the
neonatal period, the most dramatic and rapid physiological
changes in human life take place. Innate immune mecha-
nisms are particularly important at that time. The high sus-
ceptibility of newborns to infection results from the imma-
turity of the immune system, despite immunoglobulins ob-
tained via the placenta or breast feeding. Innate immunity
plays an especially important role when the repertoire of ma-
ternal IgG does not include specific antibodies for the infect-
ing agent or when, due to premature delivery, immunoglob-
ulins do not achieve a sufficient level in the infant’s circula-
tion [1–3]. The neonatal inflammatory response is, however,
impaired not only due to deficient antigen-specific T and B
lymphocyte functions (reflecting the lack of exposure to

microbial agents) but also due to low activity of neutro-
phils, complement activity, production of cytokines and fi-
bronectin. The poor response of neonates to T-independent
polysaccharide antigens significantly increases susceptibility
to bacterial infections [1, 2, 4]. Low ability to produce spec-
ific antibodies to such components, often exposed on the mi-
crobial cell surface, may suggest an important role for ser-
um defense lectins in the first period of life. However, the
opsonic and bactericidal activity of neonatal serum is not
fully effective since the concentrations and activities of com-
plement factors in babies are lower than those in adults [5].
Structures of such important organs as bone marrow, spleen,
or lymph nodes are not fully developed [1, 2].

2. The Lectin Pathway of
Complement Activation

The complement system is a crucial mediator of the immune
response, interacting with other innate as well as acquired
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immunity mechanisms. It contributes significantly to cell ho-
meostasis, tissue development and repair, reproduction and
crosstalk with other endogenous cascades, like the coagula-
tion network [6–10].

Each of three major complement activation pathways
(classical, CP; alternative, AP; lectin, LP) employs its spe-
cific recognition molecules and initiating serine proteases
(Figure 1). Until recently, it was believed that only one
collectin (mannan-binding lectin, MBL) and three ficolins:
M- (-1), L- (-2), and H- (-3) were capable of activating LP.
However, it now seems the novel or non-classical collectin,
CL-11 (collectin-11, known also as collectin kidney-1 or CL-
K1) also has this property [12].

The lectin pathway of complement activation is initiated
upon binding of collectin- or ficolin-MASP complex to target
structures. Three MBL-associated serine proteases (MASP-1,
MASP-2, and MASP-3) and two nonenzymatic proteins
MAp19 (sMAP) and MAp44 (MAP-1) have been described.
MASP-2 and MAp19 are products of alternative splicing of
the MASP2 gene. Similarly, synthesis of MASP-1, -3 and
MAp44 is under control of a single MASP1/3 gene [13–18].
MASP-2 is believed to be the key enzyme, responsible for
LP activation while other proteins of the MASP family play
up- or downregulatory roles [19–24]. MASP-2 cleaves C4, re-
leasing C4a and C4b fragments. In the C4b molecule, a thio-
ester group is exposed. It may bind to hydroxyl or amide
groups on the microbial surface. Next, in the process of C2
cleavage, the C2b fragment is released, while C2a remains
bound to C4b. The C4bC2a complex is the C3 convertase
that activates C3, resulting in liberation of C3a and covalent
binding of C3b to the microbial surface via a thioester group.
The coating of microorganisms with C4b or C3b opsonins
facilitates phagocytosis. The C4b2a3b is a C5 convertase that
cleaves the C5 component. The C5a fragment is released,
while C5b may bind other C’ cascade factors (common path-
way), which allows the membrane attack complex (MAC,
C5b-9) to form and, in consequence, to lyse the microbial
cell. The liberated C4a, C3a, and C5a act as anaphylatoxins
attracting phagocytic cells [13, 25]. Moreover, MASP are be-
lieved to participate in the coagulation cascade activation
[21, 26–29].

3. Selected Factors of Complement Lectin
Pathway Activation in Neonates

In general, serum levels of mannan-binding lectin, ficolins,
and MASP-2 are lower in neonates than in older children,
teenagers or adults. They moreover often positively correlate
with gestational age and birthweight [30–32]. Average cord
sera concentrations/activities of these factors are presented
in Table 1 while their clinical associations are summarised in
Table 2.

3.1. Mannan-Binding Lectin. Mannan-binding lectin (man-
nose-binding lectin), like other collectins, possesses both a
collagen-like triple helical region and a C-type carbohydrate
recognition domain. It is a pattern-recognition molecule

Table 1: Average (median, mean) concentrations or activities
of selected complement lectin pathway factors (based on own
investigation).

Concentration/activity
References

Median Mean Range

MBL (ng/mL) 1124 1213 0–5895 [30, 35]

MASP-2 (ng/mL) 93 118 0–812 [31]

MBL-MASP-2 (LP) (mU/mL) 272 366 0–4112 [30, 35]

L-ficolin (ng/mL) 2500 2540 100–5700 [30]

H-ficolin (ng/mL) 14600 15300 0–56500 [36]

(PRM), binding with a high affinity to microbial polysaccha-
rides or glycoconjugates rich in D-mannose, N-acetyl-D-
glucosamine, or L-fucose. MBL insufficiency is believed to be
the most common human immunodeficiency, having num-
erous clinical associations [15, 33, 34].

Single-nucleotide polymorphisms (SNPs) in exon 1 of
the MBL2 gene are responsible for altered MBL serum levels
and impaired function. Individuals with the A/A wild-type
genotype generally have high MBL serum concentrations,
whereas individuals with the A/O and particularly the O/O
genotypes (where O is the collective designation of the mu-
tant dominant alleles D, B, and C corresponding to muta-
tions in codons 52, 54, and 57, respectively) show lower MBL
serum concentrations. Polymorphisms in the promoter and
the untranslated region of exon 1 (H/L, Y/X, and P/Q at pos-
itions –550, –221, and +4, respectively) influence the gene
expression level and thus the serum protein concentration
[37, 38]. O/O homo- or heterozygotes as well as LXPA/O
heterozygotes are considered to be MBL deficient.

A correlation between MBL concentrations and gesta-
tional age has been reported by Lau et al. [39], Kielgast et al.
[40], Hilgendorff et al. [41], and Sallenbach et al. [32]. How-
ever, Swierzko et al. [30, 35], in by far the largest series re-
ported of full MBL2 genotypes, MBL cord serum levels and
MBL-dependent lectin pathway activities, did not find such
a relationship. Bodamer et al. [42] suggested an association
of D MBL2 gene variant as well as O/O genotypes in general
with prematurity. In contrast, Frakking et al. [43] found no
difference in the distribution of genotypes between prema-
ture and term neonates, while Swierzko et al. [30] demon-
strated high-serum MBL-conferring A/A genotypes to be
more frequent among premature babies. Similarly, the role
of maternal genotype still remains unclear. Annells et al. [44]
postulated that codon 54 (B) variants in mothers contribute
to the shortened gestational age. Van de Geijn et al. [45],
however showed women carrying no exon 1 mutation to be
liable to suffer a preterm delivery. Thus, it remains to be elu-
cidated whether MBL-insufficient genotypes (via enhancing
the susceptibility to intrauterine infections) or high-MBL-
associated gene variants (via participation in inflammatory
processes) contribute to the shortening of pregnancy. Both
possibilities seem to be reasonable, depending on interplay
with other endogenous and environmental factors.

Numerous studies address the influence of MBL defi-
ciency on perinatal morbidity and mortality from serious
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Figure 1: The three major pathways of complement activation. These pathways differ crucially in their initiating events: the classical pathway
depends on antibody recognition and binding to C1q; the alternative pathway depends on low-level spontaneous hydrolysis of C3 being
stabilised by bacterial polysaccharides and so forth; and the lectin pathway depends on the recognition of saccharides by ficolins and certain
collectins (MBL, CL-11). The common end result is the generation of C3a and C3b from C3; the classical and lectin pathways produce C4b2a
as the C3 convertase, whereas that role is played by C3bBb in the alternative pathway. C1 inhibitor (C1inh) and C4-binding protein (C4bp)
are downregulators of both classical and lectin pathways; H factor is an inhibitor of the early phase of alternative pathway, modified from
[11].

infections such as sepsis or pneumonia, especially in prema-
ture infants [46–53]. Schlapbach et al. [54] suggested that
low MBL concentrations are a risk factor for sepsis associ-
ated with infections with Gram-positive but not Gram-ne-
gative bacteria. Moreover, Wahab Mohamed and Saeed [52]
found MBL deficiency to predict development of septic
shock. Swierzko et al. [30] found a higher incidence of per-
inatal infections in general among babies having the MBL

deficiency-associated genotypes (LXPA/O and O/O) and a
higher frequency of the D variant (codon 52 mutation)
among neonates with infections. Two MBL2 gene haplotypes,
LYPA and HYPD, were suggested to increase a risk of child-
hood neurological disorder, cerebral palsy, after perinatal ex-
posure to certain viruses (enteroviruses, herpes simplex vir-
uses 1 and 2, Epstein-Barr virus, cytomegalovirus, varicella-
zoster virus, and human herpesviruses 6, 7, 8) [55].
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Table 2: Some clinical associations of selected complement lectin pathway factors, based on own investigation.

LP factor Parameter
Clinical associations

Reference
Perinatal
infections

Preterm/premature
births1

Low birth
weight2

MBL

Low cord serum
concentration
(<150 ng/mL)

no no no [30]

Genotype (promoter &
exon 1)

XA/O and O/O A/A (prematurity) no

MASP-2

Low cord serum
concentration
(<42 ng/mL)

no yes yes [31]

Genotype (D120G
dimorphism)

no no no

MBL-MASP-2
complex activity

Low cord serum activity
(<60 mU/mL)

no yes no [30]

L-ficolin
Low cord serum
concentrations

(<1 μg/mL)
yes yes yes [30]

H-ficolin

Low cord serum
concentrations
(<8.6 μg/mL)

no yes yes [36]

Genotype (1637delC
frameshift mutation)

no no no

1
Preterm births: gestational age ≤ 37 weeks; premature births: gestational age ≤ 35 weeks.

2Low birthweight: <2500 g.

On the other hand, several reports demonstrated no asso-
ciation of mannan-binding lectin deficiency with neonatal
sepsis or viral infections. It however may reflect the specific-
ity of aethiological agents or the group studied: nosocomial
fungal invasive infections in preterm babies [56], sepsis caus-
ed by coagulase-negative staphylococci in a similar group
[57], sepsis in very low birthweight babies [58], and pre- or
perinatal infections with cytomegalovirus [59].

The MBL2 gene B variant was shown to enhance suscepti-
bility to such inflammatory disorders as bronchopulmonary
dy-splasia (BPD) and intraventricular haemorrhage (IVH)
[53, 60]. In contrast, Capoluongo et al. [61] found low MBL-
associated genotypes to be linked to a better outcome in BPD,
while Koroglu et al. [50] did not observe an influence of
MBL2 polymorphism on incidence of bronchopulmonary
dysplasia, intraventricular haemorrhage, respiratory distress
syndrome, periventricular leukomalacia or necrotizing ente-
rocolitis.

3.2. Mannan-Binding Lectin-Associated Serine Protease-2
(MASP-2) and MBL-MASP-Dependent Complement Activity.
MASP-2 has an identical domain organization to other
MASPs and the classical complement pathway serine proteas-
es, C1r and C1s. It consists of six domains (CUB1, EGF,
CUB2, CCP1, CCP2, and a serine protease domain). Several
MASP2 gene polymorphisms associated with low protein
levels have been described [62–65]. However, only one has
been demonstrated to be potentially important clinically: the
rarely occurring homozygous C359A > G mutation, resulting
in an exchange of aspartic acid for glycine at position 120
(D120G; 105th residue of the mature protein, D105G).

Current knowledge about any disease associations of MASP-
2 and other proteases of that family, especially in neonates, is
much more limited than in the case of MBL.

Swierzko et al. [31] found a correlation between serum
MASP-2 concentration and gestational age which accounted
for the relationships with early delivery and low birthweight.
This observation was further confirmed by Schlapbach et al.
[54] and Sallenbach et al. [32]. Neither low MASP-2 concen-
tration nor heterozygosity for the D120G mutation seems to
influence the susceptibility of newborns to infection in gen-
eral [31] or to sepsis [54]. Schlapbach et al. [66] however re-
ported higher MASP-2 levels in the cord sera of babies de-
veloping necrotising enterocolitis.

MBL-MASP-dependent lectin pathway complement ac-
tivity was shown to correlate with birthweight but not gesta-
tional age (however, an association between low activity and
prematurity was observed) [30].

There are few data concerning other lectin pathway ser-
ine proteases. Recently, Schlapbach et al. [54] found a cor-
relation between MASP-3 levels and gestational age as well as
birthweight and no impact of its low concentrations on the
risk of neonatal sepsis.

3.3. Ficolins. The family of human ficolins comprises three
collagen-related, oligomeric lectins: M-ficolin (ficolin-1), L-
ficolin (ficolin-2, P35), and H-ficolin (ficolin-3, Hakata anti-
gen). They recognize N-acetyl-D-glucosamine (GlcNAc) and
related structures via their fibrinogen-like domains. Ficolins
act as opsonins (L- and H-) or as a phagocytic receptor (M-
ficolin). All of them activate complement via the lectin path-
way [67, 68].
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Data concerning M-ficolin in neonates are very limited.
Its serum level was shown to increase with gestational age and
to reach a maximum during childhood (1–8 years) [32, 69].
Schlapbach et al. [69] demonstrated that low M-ficolin is as-
sociated both with increased need for mechanical ventilation
and mortality among premature infants suffering from ne-
crotising enterocolitis. Although the distribution of the cor-
responding FCN1 gene single-nucleotide polymorphisms
(including several leading to amino acid substitutions) has
been reported [70, 71], there are no data concerning their im-
portance during the neonatal period.

More than decade ago, Kilpatrick et al. [72] found lower
levels of L-ficolin in cord sera compared to adults and a cor-
relation between cord concentration and gestational age.
That was further confirmed by Swierzko et al. [30] with a
much larger cohort of neonates. In the latter report, a strik-
ing association between L-ficolin deficiency and prematur-
ity, low birthweight (independently of gestational age) and
perinatal infections was demonstrated. Cord L-ficolin con-
centration increased markedly throughout the third trimest-
er of pregnancy, reaching a plateau at term. Both premature
(at gestational age of <36 weeks) and preterm (<38 weeks)
births in general occurred more often in babies with low L-
ficolin concentrations than in the normal L-ficolin group.
Mean and median gestational ages were significantly lower
while the incidence of low birthweight (<2500 g) babies was
higher. Pre- or perinatal infections occurred with nearly
twice the frequency among L-ficolin-deficient babies compar
ed to neonates with normal cord serum levels [30]. Further
reports [32, 54] again confirmed a correlation between L-fi-
colin concentration and gestational age. No association of
this parameter with risk of neonatal sepsis was found [54]. As
in the case of FCN1, several potentially clinically important
single-nucleotide polymorphisms have been reported [70,
71, 73, 74], however no results about their disease associa-
tions from neonates have been published to date.

H-ficolin has the highest concentration in human serum
amongst complement-activating lectins. The lowest average
value occurs in preterm neonates. Like other ficolins, its ser-
um concentration increases with gestational age [32, 36].
Both preterm deliveries and low birthweight (independently
of gestational age) were shown to be significantly associated
with low H-ficolin concentrations [36]. Schlapbach et al. [54]
demonstrated an association between low H-ficolin levels
and susceptibility to neonatal sepsis (especially caused by
Gram-positive bacteria). The same group described two pre-
mature patients with necrotising enterocolitis with geneti-
cally confirmed (in one case) or assumed (in another) total
H-ficolin deficiency [75]. This rare deficiency arises from a
homozygous frameshift mutation (1637delC) of the corre-
sponding FCN3 gene [76, 77]. Another H-ficolin-deficient
(1637delC homozygote with no detectable protein) prema-
ture neonate with confirmed serious infection with Strepto-
coccus agalactiae was described by Michalski et al. [36]. This
case, however, was complicated by concomitant deficiencies
of other lectin pathway factors (MBL, L-ficolin, MASP-2) as
well as variant homozygosity for the TLR6 Ser249Pro dimor-
phism; thus it is difficult to draw a conclusion whether the
lack of active H-ficolin was decisive. Although heterozygosity

for the 1637delC mutation was shown to influence H-fico-
lin cord serum concentration significantly, no association
with prematurity, low birthweight, or perinatal infections oc-
curred [36].

4. Final Remarks

Data reviewed here suggest an important role for comple-
ment activation via the lectin pathway during the neonatal
period. Deficiency of its factors may contribute to the adverse
consequences of prematurity by enhancing susceptibility to
pre- or perinatal infections. The results published however
are not entirely consistent and require further investigation
at both gene and protein levels.
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