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Abstract
The devising of efficient concerted rotation moves that modify only selected local portions of

chain molecules is a long studied problem. Possible applications range from speeding the

uncorrelated sampling of polymeric dense systems to loop reconstruction and structure re-

finement in protein modeling. Here, we propose and validate, on a few pedagogical exam-

ples, a novel numerical strategy that generalizes the notion of concerted rotation. The

usage of the Denavit-Hartenberg parameters for chain description allows all possible

choices for the subset of degrees of freedom to be modified in the move. They can be arbi-

trarily distributed along the chain and can be distanced between consecutive monomers as

well. The efficiency of the methodology capitalizes on the inherent geometrical structure of

the manifold defined by all chain configurations compatible with the fixed degrees of free-

dom. The chain portion to be moved is first opened along a direction chosen in the tangent

space to the manifold, and then closed in the orthogonal space. As a consequence, in

Monte Carlo simulations detailed balance is easily enforced without the need of using Jaco-

bian reweighting. Moreover, the relative fluctuations of the degrees of freedom involved in

the move can be easily tuned. We show different applications: the manifold of possible con-

figurations is explored in a very efficient way for a protein fragment and for a cyclic molecule;

the “local backbone volume”, related to the volume spanned by the manifold, reproduces

the mobility profile of all-α helical proteins; the refinement of small protein fragments with dif-

ferent secondary structures is addressed. The presented results suggest our methodology

as a valuable exploration and sampling tool in the context of bio-molecular simulations.

Introduction
We consider the problem of the local movements of a chain molecule where a small subset of
degrees of freedom, e.g. dihedral angles, bonds angles or bond lengths, are concertedly modi-
fied inside a specific portion of the chain, in such a way that only the atoms in that region are
moved while all the others are kept fixed. We do not place any constraints on the degrees of
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freedom that are modified: they can be chosen everywhere along the part of the chain we want
to move without the necessity of belonging to atoms/bonds which are consecutive along the
polymer. The issue of local movements is related to the loop closure problem, i.e. finding con-
formations of a segment of consecutive atoms in a chain molecule that are geometrically con-
sistent with the rest of the chain structure. These questions arise in the context of the control of
robotic manipulators made up of serially connected joints, where in many common applica-
tions one end is fixed and the other must be positioned at a specific location and with a given
orientation [1], but they are also topics of paramount importance in structural chemistry and
in computational biology. For instance, effective loop closure tools can enhance the perfor-
mances of homology modeling where segments of insertion or deletion have to be predicted
while the rest of the protein structure is reasonably well known from structures of homologous
proteins. The ability of moving efficiently a chain may as well have useful applications in the
Monte Carlo dynamics for large scale simulations of dense polymeric systems [2]. In such situ-
ation, the efficiency of Monte Carlo simulations relies heavily on the kinetic algorithm used to
sample the various possible conformational states of the molecule and the introduction of a
concerted move which restricts itself to modifying atom locations only in limited positions of
the molecule might play a key role to boost performances, by reducing the hindering effect due
to excluded volume constraint. Even the theoretical study of conformational flexibility can ben-
efit from the use of local collective movements that, at variance with Cartesian moves, avoid
geometric distorsions of the chain giving the possibility to explore all the possible local arrange-
ments of the flexible molecule.

In the biological context, the problem was often reduced to modify dihedral angles that are
the only soft degrees of freedom of the system. A first analysis was due to Go and Scheraga [3]
with an analytical approach and with the developing of equations for determining the allowed
dihedral angles when all the rotating bonds are connected and when a subset is separated by
rigid bonds in the trans conformation. This approach was further extended by Theodoru and
coworkers [4] to take into account the necessary requirements to ensure Boltzmann distributed
sampling for Monte Carlo simulations and by Dinner [5] to generalize the formalism to allow
fixed dihedral angles that sequentially interrupt the rotating bonds to be non-planar. Another
refinement was later proposed with methods [6–9] in which the inclusion of bond angle varia-
tions and of local constraints improved the efficiency of the algorithm. Different formalisms
were proposed by Hoffmann and Knapp [10] to derive equations for dihedral angles and to
apply these moves to study a protein-like model that had the topology of polyalanine with rigid
peptide planes and by Coutsias et al. [11, 12] with a robotics inspired approach. The latter ap-
proach was succesfully incorporated in state-of-art protein modeling tools, allowing sub-ang-
strom accuracy in loop reconstruction [13, 14]. More recently, an efficient numerical method
to solve the analytical solution of the classic chain closure problem was introduced with the
specific purpose of optimizing Monte Carlo performances for dense molecular systems [15].

Broadly speaking, all these methods are proposing efficient solutions, while violating the
general rules of the problem: either by imposing restrictive conditions on the degrees of free-
dom that can be used (e.g. moving only specific angles) or by relaxing the boundary constraints
(e.g. not keeping completely fixed all the other degrees of freedom).

On the contrary, in this paper we develope a numerical strategy that, exploiting the knowl-
edge of an initial configuration of the chain, allows for an exhaustive exploration of all the pos-
sible configurations that can be obtained by modifying only n> 6 degrees of freedom, and that
perfectly adapts to the frozen part of the chain. The choice of the degrees of freedom them-
selves is completely free and any combination of bond and dihedral angles and of bond lengths
can be selected, resulting in a very rapid and efficient search algorithm.
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Starting from a geometrical description of the chain inspired by robotic language [16], simi-
lar in spirit to the one introduced by Go and Scheraga [3], we derive six numerical equations,
as a function of the n free variables, which have to be fulfilled to satisfy the boundary condi-
tions. Therefore, if there is no degeneracy, the solutions that have to be found lie on a manifold
with dimension n − 6. The novel idea we here present consists in an extremely powerful strate-
gy to explore these manifolds, based on moving slightly out along their tangent space and on
coming back along the orthogonal space towards a new configuration which satisfies all the
equations and constraints. This is viable by means of an appropriate double change of coordi-
nates and by employing mathematical algorithms to optimize the computational time. More-
over, the algorithm is designed in such a way that the detailed balance is quite easily satisfied
for a very general choice of the modified degrees of freedom.

The efficiency of the approach is remarkable and it makes possible, for instance, to estimate
the volume of the manifold which corresponds to the number of possible conformations that
are compatible with the constraints, in the simplest n = 7 case. While at this stage the method
is presented for an ideal chain, without taking into account excluded volume or other energy
functions, such features can be introduced in a straightforward manner.

Although the method is completely general and can be applied to any sort of linear object, it
is intriguing to think about its applications to protein chains. In such context bond angles and
bond lengths can be considered constant and the ψ and ϕ dihedral angles (Ramachandran’s an-
gles) are the natural degrees of freedom to be modified: the algorithm we propose thus becomes
a generalized crankshaft move involving a portion of the chain of desired length. Some possible
applications on proteins are shown, such as the estimation of their backbone mobilities and
local structure refinement.

Materials and Methods

Denavit-Hartenberg paramaters for chain description
In this section we introduce the parametric representation of a linear chain used to derive the
equations at the core of our algorithm. We consider a linear chain composed of N + 1 atoms
linked serially in which each of the N bonds can be labeled with numbers from 1 to N. We de-
scribe the chain by using the Denavit-Hartenberg (DH) notation [17]. According to DH a local
reference systemOi can be built on each bond composing the chain: the ẑi axis lies on the bond
while x̂i is oriented as ẑi−1 × ẑi. The ŷi axis is given, as usual, by the right-hand rule. The origin
oi of each reference frame is always located along ẑi: in case ẑi is co-planar to ẑi−1, it lies on the
first atom defining the bond; otherwise it lies on the common normal to ẑi and ẑi−1.

A vector~aj in the reference frameOj can be expressed relative toOj−1 as

~aj�1 ¼ Rj�1
j �~aj þ~Sj�1

j ; ð1Þ

whereRj�1
j is a 3 × 3 orthogonal matrix that expresses the orientation ofOj relative toOj−1 and

~Sj�1
j is a vector describing the position of the origin oj with respect toOj−1. The matrixRj�1

j and

the vector~Sj�1
j can be completely described by using four parameters named link offset, link

twist, link length and joint angle. These are defined by the following rules:

• the link offset di is the distance along x̂i from oi to the intersection of the x̂i and the ẑi−1 axes
(i.e. the minimum distance between ẑi−1 and ẑi axis);

• the link twist αi is the angle between ẑi−1 and ẑi measured about x̂i;

• the link length ri is the distance along ẑi−1 from oi−1 to the intersection of the x̂i and the ẑi−1
axes and
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• the joint angle θi is the angle between x̂i−1 and x̂i measured about ẑi−1.

Fig. 1 shows how the DH parameters are defined for the general disconnected case (i.e. link
offset di > 0). This is actually a typical case, when the structure of a protein backbone chain
with all its heavy atoms is considered, since the ω torsional angle around the peptide bond is a
hard degree of freedom with a well defined typical value. If ω is then kept strictly fixed, the DH
convention allows to “spare” that degree of freedom, defining a disconnected chain as shown
in Fig. 1. In the simplest case, when all bonds included in the DH description are connected
with each other (i.e. all link offsets di = 0), the DH variables have a well defined physical mean-
ing. Link lengths are bond lengths, link twists are supplementary of bond angles, and joint an-
gles are torsional angles. The DH formalism is in this case equivalent to the one routinely used
by software programs that reconstruct biomolecular structures subject to experimental re-
straints [18, 19] and that employ efficient internal dynamics algorithms that update only the
values of torsional angles [20].

By using the DH definitions the matrixRj�1
j and the vector~Sj�1

j can be explicitly expressed

as

Rj�1
j ¼

cos ðyjÞ �sin ðyjÞ cos ðajÞ sin ðyjÞ sin ðajÞ

sin ðyjÞ cos ðyjÞ cos ðajÞ �cos ðyjÞsin ðajÞ

0 sin ðajÞ cos ðajÞ

0
BBB@

1
CCCA ð2aÞ

~Sj�1
j ¼ djcos ðyjÞ; dj sin ðyjÞ; rj

� �T

: ð2bÞ

With a more compact notation we rewrite Eq. (1) with the following

aj�1 ¼ Tj�1

j aj; ð3Þ

where Tj�1
j is a 4 × 4 matrix given by

Tj�1

j ¼ Rj�1
j

~Sj�1
j

0 1

 !
ð4Þ

and a is the vector a¼ð~a; 1ÞT . With this notation it is easier to relate anyOj with any otherOi

(j> i); indeed the following equation holds:

ai ¼ Ti
ja

j ¼ Ti
iþ1T

iþ1

iþ2 � � � Tj�1

j aj: ð5Þ
It should be now clear that the chain can be described by the whole set {ri, αi, di, θi}i = 1,� � �,N.

For simplicity we denote {ri}i = 1,� � �,N with r, {αi}i = 1,� � �,N with α, {di}i = 1,� � �,N with d and
{θi}i = 1,� � �,N with θ; the chain configuration is then given by the set {r, α, d, θ}.

Performing the concerted local move
It is possible to deform an initial configuration {r0, α0, d0, θ0} by changing at least one of the pa-
rameters describing it.

Consider n DH parameters ~xμ, with μ = 1, � � �, n and the nb bonds to which the n parameters
are related. The number of bonds to be considered is always smaller or equal to the number
of DH parameters because in principle two or more parameters could be related to the
same bond. As already stated we consider the general case in which these bonds can be
non-consecutive. There are two particularly interesting bonds among the nb: the first and the
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last i.e. the one with the lowest label and the one with the highest one. These two bonds delimit

the region of the chain we are interested in modifying with an opportune change of ~x, leaving
the atoms outside this region unmodified (see Fig. 2). Such a change can be highly non-trivial
and could not always be obtained: we will see later a condition that ensures us that this change
can be performed.

For convenience, we re-label the bonds we are interested in with numbers from 1 to nb + 1,
where the latter is the first bond that remains fixed subsequent to the moved portion of the

Fig 1. General graphical representation of a chain according to the Denavit-Hartenberg convention, as discussed in the text. Thick lines represent
the physical bonds and spheres the atoms. α, θ, r and d are the DH parameters describing the chain and o is the origin of each local frameO. The structure of
a portion of a protein backbone chain with all its heavy atoms is shown superimposed.

doi:10.1371/journal.pone.0118342.g001

Fig 2. Schematic representation of the portion of a linear chain involved in a local modification. Bonds (1) and (nb + 1) are colored in blue while all the
others are in red. The degrees of freedom which are varied (ξ1, . . ., ξn) are arbitrarily distributed inside the region. When they are concertedly changed to new
values ðx01; . . . ; x0

nÞ, the new pink configuration is obtained while all the bonds outside the region (in black) remain fixed in space.

doi:10.1371/journal.pone.0118342.g002
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chain. The condition that needs to be imposed in order to ensure the locality of the change {r0,
α0, d0, θ0}! {r, α, d, θ} is

T1

nbþ1ðr; a; d; yÞ ¼ T1

nbþ1ðr0; a0; d0; y0Þ; ð6Þ

that is requiring that the local reference frameOnb+1 does not move with respect to the first

one. In order to explicit the variables ~x inside the relation in Eq. (6) we define, with abuse of
notation,

T1

nbþ1ð~xÞ � T1

nbþ1ðr; a; d; yÞ � T1

nbþ1ðr0; a0; d0; y0Þ ð7Þ

in such a way that Eq. (6) can be rewritten as

T1

nbþ1ð~xÞ ¼ 0: ð8Þ

Given the form of Tj
i (described in Eq. (4)), the 16 equations that are implicit in Eq. (8) can be

reduced to 6 equations in the n variables ~x. Three equations are needed in order to set the
translational part of Tj

i and other three for the rotational part. We choose, for instance,

f1ð~xÞ � T1

nbþ1ð~xÞ
h i

01

f2ð~xÞ � T1

nbþ1ð~xÞ
h i

02

f3ð~xÞ � T1

nbþ1ð~xÞ
h i

12

f4ð~xÞ � T1

nbþ1ð~xÞ
h i

03

f5ð~xÞ � T1

nbþ1ð~xÞ
h i

13

f6ð~xÞ � T1

nbþ1ð~xÞ
h i

23

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

or, in a more compact form, fð~xÞ ¼ 0. If n is greater than 6 and if the system of equation de-
scribed in Eq. (9) is non degenerate then the solutions lie on a manifold with dimension n − 6.
If, on the contrary, the system is degenerate the solutions lie on a manifold with dimension
greater than n − 6.

Before to proceed it is important to notice that since the degrees of freedom ~x can describe
both spatial or angular quantities the space defined by these variables is in general dimensional-
ly non-homogeneous. For this reason we introduce a set of n scalar multipliers λi chosen in

such a way that every ξi = λi~xi is dimensionless. The space defined by the rescaled variables ξi is
now homogeneous and an appropriate metric can be defined in it by means of the usual scalar
product. In the case that a set of homogeneous variables are chosen as system variables
(e.g. all dihedral angles) the introduction of the scalar multipliers is unnecessary but
nonetheless it turns out to be useful (see Section “Tuning of fluctuations by rescaling
variables”).

The problem of finding a new configuration ξ starting from an existing ξ0 in such a way that
Eq. (8) is satisfied can now be visualized as the problem ofmoving on an (n − 6)-dimensional
manifold embedded in an n-dimensional space. The most intuitive way to perform this
non-trivial task is that of generating an intermediate configuration ξ0 that may not lie on
the manifold but that it is not far from it. This first step is called by other authors pre-rotation

Local Concerted Movements of a Chain Molecule

PLOS ONE | DOI:10.1371/journal.pone.0118342 March 31, 2015 6 / 27



[15, 21], and we will adapt to this nomenclature. Starting from ξ0 it is then possible to
compute a true solution with numerical methods, e.g. root finding algorithms, or analytical
ones [12].

In order to simplify the description of the pre-rotation step we introduce two new quantities
nm and nv that are respectively the dimension of the tangent spaceM to the manifold at ξ0 and
the dimension of the orthogonal space V to the manifold at ξ0. Obviously nm + nv = n and
nv = 6 if the system Eq. (9) is non-degenerate. In general nv is the number of linearly indepen-
dent functions in (9). The procedure we use to find a basis of the tangent space to the
manifold takes advantage of the implicit function theorem in order to compute the derivatives
@xi
@xj
. Indeed we consider nm among the n variables as independent and we denote them with the

subscript x. The other nv are labeled with a subscript y and will be written as a function of ξx.
With this notation we can write a set of nm n-dimensional vectors that span the tangent
space as

ex;i ¼
@x
@xx;i

 !
; ð10Þ

where the derivative @x
@xx;i

� �
can be performed by computing separately the contribute of the de-

pendent variables ξy and that of the independent ones ξx. The former (in the form of an nv-di-

mensional vector
@xy
@xx;i

) can be easily computed by applying the implicit function theorem

@xy

@xx;i
¼ � @fð~x0Þ

@xy

 !�1

� @fð
~x0Þ

@xx;i
ð11Þ

while the latter is given by the nm relations
@xx;j
@xx;i

¼ di;j. In the cases in which the matrix @fð~x0Þ
@xy

� �
is not invertible it is sufficient to choose a different set of ξx as independent variables. Vectors
ex,i can be orthonormalized to compute a basis {êx,i}i for the tangent space. The intermediate

configuration ξ0 can finally be computed by simply summing an arbitrary linear combination
of êx,i to the initial configuration ξ0.

The intermediate configuration is an open configuration in which the position and
orientation of the last reference frame do not correspond to the target ones. We therefore ad-
just the coordinates on the orthogonal space V by using a root-finding algorithm to
obtain the final configuration. Fig. 3 depicts an example move in case the manifold is
one-dimensional (the full example is addressed in the Section “Workout example”). The
solution manifold (blue) and the initial configuration are represented. The pre-rotation step
corresponds to the first update (thick red arrow) while the second step along the dotted
line allows to converge back to the manifold by means of a root-finding algorithm. This is in
general possible only for small enough pre-rotation steps. The brown arrows show the case
when a too big pre-rotation step does not allow the procedure to converge back to
the manifold.

A basis for V can be efficiently computed starting from the knowledge of a basis forM and
by using ad-hoc algorithms (e.g. QR-decomposition algorithm). With this strategy the chain
closure step usually takes few iterations of the Broyden’s root finding algorithm. Notice that it
is in principle possible to use a root-finding algorithm that takes advantage of the easy-to-

compute gradient @fðxÞ
@x to boost the search for the solution. However our tests have shown that

the time saved by the root-finding algorithm usually does not compensate for the time neces-
sary for computing the gradient.
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The full algorithm can be summarized in the following steps:

1. Compute a basis for the tangent spaceM at ξ0, as well as a basis for the orthogonal
space V;

2. Choose an arbitrary direction Ẑ inM and an arbitrary step length ds;
3. Generate an intermediate configuration x0 ¼ x0 þ ds � Ẑ;
4. Use a root-finding algorithm in order to converge to a solution of Eq. (9) by moving

on V;

Detailed balance
In this section we will denote the three-dimensional configuration of an N-atom chain at time t

with the 3N-dimensional vector Rt ¼ frt1; rt2; � � � rtNg, where each rtk ¼ xtk; y
t
k; z

t
k

� �T
represents

the three-dimensional position of atom k at time t.

Fig 3. Graphical sketch of the updating of the conformations in the n-dimensional space of the degrees of freedomwhich are changed. The blue
line represents the manifold of the solutions of Eq. (23), as discussed in the Section “Workout example” within “Material and Methods”. The manifold is plotted
within the (θ, ρ) plane, with the independent variable being ξx = ρ and the dependent variable ξy = θ.M and V are respectively the tangent and the orthogonal
space to the manifold in the starting conformation ξ0. The degrees of freedom are first changed alongM (red continuous arrow) and a new conformation
satisfying Eq. (9) is reached by moving along V (dashed red arrow). If the pre-rotation step alongM is too large (brown continuous arrow), the post-rotation
closure step along V (dashed brown arrow) fails to fall back to the manifold.

doi:10.1371/journal.pone.0118342.g003
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In order to demonstrate that the scheme we proposed for changing the backbone configura-
tion satisfies the detailed balance condition

PðRtÞPðRt ! RtþDtÞ ¼ PðRtþDtÞPðRtþDt ! Rtg ð12Þ

we will show separately that (1) with an appropriate change of variables, it is possible to uni-
formly sample the whole configurational space of the system without changes to the algorithm
and (2) the probability of moving from Rt to Rt+Δt can be chosen in such a way that
P(Rt! Rt+Δt) =P(Rt+Δt ! Rt).

We start by showing that point (1) is true. If the DH’s variables α, θ, r are used for describing
the chain, the volume element in the configurational space

dVt ¼
YN
k¼1

dVt
k ¼

YN
k¼1

dxtkdy
t
kdz

t
k ð13Þ

can be rewritten as

dVt ¼
YN
k¼1

Jtkda
t
kdy

t
kdr

t
k; ð14Þ

where Jtk ¼ sinðatkÞ rtk
� �2

. Since the determinant Js ¼QN
k¼1 J

s
k of the change of variables Rt ! {α,

θ, r} is not constant, a uniform sampling of the space of the DH’s variables does not result in a
uniform sampling of the configurational space. In this case uniformity can be achieved by ac-

cepting the configuration change {α, θ, r}1 ! {α, θ, r}2 with probability p ¼ min 1; J
tþDt

Jt

� �
. Such

essential choice compromises efficiency both by increasing the number of calculations per time
step and by reducing the probability of obtaining a new configuration. With our approach the
problem is overcome without performing any additional time-consuming calculation. Indeed
it is easy to notice that the algorithm proposed in the previous section does not rely on the par-

ticular form of ξ or fð~xÞ but rather on the possibility of computing fð~xÞ and its derivatives. For
this reason every differentiable, invertible function of ~x, whose inverse is differentiable, can be
used as degree of freedom of the system without jeopardizing the efficiency of the full scheme.

If, for instance, c ¼ gð~xÞ is used as degree of freedom, the following trivial relations holds:

fðcÞ ¼ fðg ~x
� �

Þ ð15aÞ

@fðcÞ
@~x

¼ @fðcÞ
@c

@gð ~xÞ
@~x

: ð15bÞ

If DH’s parameters can be interpreted as bond lengths, bond angles and torsional angles (θ is
always a torsional angle, α is a bond angle for bonds connected to the previous one, r is a bond
length for bonds connected to both the previous and the subsequent one) it is sufficient to use

the variables ~xa ¼ cosðaÞ and ~xr ¼ r3

3
as new degrees of freedom in order to guarantee the de-

terminant of the Jacobian of the change of variables to be constant: this implies that the new
configuration can always be accepted. This result relies only on the fact that the Jacobian does
not depend on ξ; we derived it independently from the values of the rescaling factors.

Notice that even if the inverse of the cosine function is not differentiable in 0 and π, these
points are at the boundary of the domain in which the bond angle α is defined. Hence the anal-

ysis is valid in the open domain (0, π) but not in its closure. The same is true for r3

3
, whose in-

verse is not differentiable in r = 0. Of course these drawbacks are not relevant for most
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applications, since α = 0, π and r = 0 are far from physical values. Therefore a uniform sampling

of the space of the new variables ~xa;
~xr; y

n o
is sufficient to ensure a uniform sampling of the

configurational space.
In order to ensure the detailed balance condition to be valid it is now necessary to check

whether the step size ds that has been used in the forward update ξ1 ! ξ2 is the same that
would be necessary for the reverse transformation ξ2 ! ξ1. Indeed the step size is typically cho-
sen from a fixed probability distribution and therefore if the backward step size ds0 is different
from the forward one, it is necessary to take into account the different probability of proposing
such a step. The backward step can be easily computed as the norm of the projection of ξ2 − ξ1
onto the tangent space to the manifold at ξ2. If the step size is chosen from a normal distribu-
tion with zero average and variance σ2 it is sufficient to accept the update with probability

P ¼min 1;exp
ds2 � ds02

2s2

� �� �
ð16Þ

to ensure the equivalence between forward and backward probability. In many practical cases
ds0
ds
is close to one and, as a consequence, the probability of rejecting a Monte Carlo move is neg-

ligible. This calculation can be done for whatever choice of the factors λi. The detailed balance
can therefore be satisfied independently from the choice of each λi.

Tuning fluctuations by rescaling variables
The role of rescaling factors λi previously introduced can be further exploited. As already brief-
ly discussed, their introduction has been necessary to map the original non-homogeneous

space of the variables ~x in the homogeneous one of the variables x ¼ l � ~x where a metric can
be defined. But on top of that they can be used in order to tune the fluctuations of the corre-
sponding degrees of freedom.

Given a starting configuration ~x0 suppose that some of the ~x0;i are hard degrees of freedom

(~x0;H) while the others are soft (~x0;S). We can use two different values of λi, depending on the

class of the corresponding degrees of freedom, thus mapping

~x0 ¼ ð~x0;S;
~x0;HÞT ! ðlS � ~x0;S; lH � ~x0;HÞT ¼ x0; ð17Þ

where λH> λS. As described in previous sections the algorithm is applied to the initial confor-
mation in the homogeneous, deformed space. For simplicity we consider in the following dis-
cussion the particular case in which the soft degrees of freedom correspond to the independent
variables, in such a way that the new configuration ξ can be written as a function of the varia-
tion vectors ΔξS and ΔξH =rξS ξH � ΔξS as

x ¼ x0 þ Dx ¼ lS � ~x0;S þ DxS; lH � ~x0;H þ DxH
� �T

; ð18Þ

whererξS ξH is the matrix of the derivatives of the hard degrees of freedom with respect to the
soft ones.

It is possible to express the norm of the variation vector for independent variables D~xS as a
function of the size of the actual move performed in our algorithm, the step size ds in the tan-

gent space: ds ¼ l2

S jj D~xS j j2 þ l2H jj D~xH j j2
� �1

2

. The previous equation allows to define the

function gls ;lH
~xS;

~xH

� �
through jj D~xS jj¼

gls ;lH
~xS ;~xHð Þ

lS
ds. The function gls ;lH

~xS;
~xH

� �
describes

the reduction of the variation of the soft independent variables, for a fixed step size ds, due to
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the orientation of the tangent space with respect to the space of independent variables. It de-
pends, in general, both on the position of the initial point in the manifold and on the chosen
rescaling factors.

Each point of the deformed manifold can be remapped to the original manifold with the in-

verse transformation ~x ¼ 1
li
x. Therefore the new configuration found in Eq. (18) corresponds

to a final configuration in the original space equal to

~x ¼ ~x0;S þ
1

lS

gls ;lH
~xS;

~xH

� �
ds

h i
^D~x S;

~x0;H þ 1

lH
gls ;lH

~xS;
~xH

� �
ds

h i
rxS

xH � ^D~x S

� �T

; ð19Þ

where D~x S is a normalized vector.
The previous equation holds also in the λS = λH = 1 case, when no rescaling occurs. The re-

scaling factor KS for the variation of the independent variables ~xS as a consequence of the intro-
duction of λS, λH 6¼ 1 is then easily computed:

KSð~xS;
~xHÞ ¼

1

lS

gls ;lH
~xS;

~xH

� �
g1;1 ~xS;

~xH

� � ð20Þ

while the rescaling factor KH for the variation of the hard degrees of freedom ~xH reads

KHð~xS;
~xHÞ ¼

lS
lH

KSð~xS;
~xHÞ

jj rxS
xH � ^D~x S jj

jj r~xS
~xH � ^D~x S jj

: ð21Þ

This is the central equation of this section, as it shows to what extent the variation vector
for hard degrees of freedom is modified differently than for soft degrees of freedom, due to the

rescaling of the original variables. Besides the global tuning factor lS
lH
a second factor

jjrxS
xH �D x̂S jj

jjrxS
xH �D x̂S jj

appears, related to the local geometrical properties of the considered manifold.

For one-dimensional manifolds, it is easy to see thatrxS
xH ¼ lH

lS
rxS

xH , so that

KSðxS; xHÞ ¼ KHðxS; xHÞ; the variations of both the hard and the soft degrees of freedom are re-
scaled in the same way, as if a new effective step size dsðxS; xHÞ ¼ KSðxS; xHÞ ds were used.

For manifold of higher dimension, ifrxS
xH 6¼ lH

lS
rxS

xH then KSðxS; xHÞ 6¼ KHðxS; xHÞ and
the λ factors can effectively be used in order to tune the amplitude of the fluctuations of hard
degrees of freedom with respect to the soft ones. It is obviously not easy to quantify ‘a priori’

the local geometric factor
jjrxS

xH �D x̂S jj
jjrxS

xH �D xS jj
.

In the most general case, with no restriction on the soft degrees of freedom being either in-
dependent or dependent variables, we expect to find qualitatively similar results both for high-
dimensional and one-dimensional manifolds.

Workout example
In order to better explain each step of the algorithm we provide a simple example that can be
solved exactly. Beyond the context of concerted local movements in chain molecules, the sim-
plest possible case for our algorithm corresponds to the motion along a one-dimensional mani-
fold defined by a single constraint within a two-dimensional space. In this spirit, we consider a
physical system in which a single particle is constrained to move within the (x, y) plane on the
right branch (x� 1) of a hyperbola of equation

x2 � y2 � 1 ¼ 0: ð22Þ
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We introduce new polar coordinates r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; y ¼ atan y

x

� �� �
that, in this example, will

have the same role the DH parameters have for the description of a chain molecule. Notice that
~y is defined in the open interval ð� p

4
; p
4
Þ. We also introduce two scalar quantities λρ and λθ de-

fined in such a way that ρ = λρ ~r and θ = λθ ~y are both dimensionless quantities. Constraints
are defined by the analogous of Eq. (9)

f1ð~r; ~yÞ : ~r2cos ð2~yÞ � 1 ¼ 0 ð23Þ

that, as a function of the rescaled variables becomes

f1ðr; yÞ :
r2

l2r
cos 2

y
ly

� �
� 1 ¼ 0: ð24Þ

The tangent spaceM and the orthogonal space V in the initial configuration (ρ0, θ0) can be eas-
ily computed starting from the expression of the derivatives of f1(ρ, θ)

@f1ðr; yÞ
@r

¼ 2
r
l2r
cos 2

y
ly

� �

@f1ðr; yÞ
@y

¼ �2
r2

l2rly

sin 2
y
ly

� �
8>>>><
>>>>:

ð25Þ

by means of the implicit function theorem. Indeed, if the initial configuration is such that
@f1ðr;yÞ

@y 6¼ 0 (i.e.θ 6¼ 0) it is possible to choose ρ as independent variable and to compute the de-

rivative @y
@r ¼ ly

r cotan 2 y
ly

� �
. The tangent spaceM is therefore generated by the vector

Zðr; yÞ ¼ 1; @y
@r

� �T

and any intermediate configuration can be selected as

ðr0; y0Þ ¼ ðr0; y0Þ þ ds � Ẑðr0; y0Þ, where ds is an arbitrary step-size and Ẑis normalized. Once
η is computed, the QR algorithm is used in order to generate a basis for the orthogonal space
V. In this simple example V is one-dimensional and the generating vector can be computed ex-

plicitly as Z?ðr; yÞ ¼ � @y
@r ; 1

� �T

. A root finding algorithm is finally used in order to find a so-

lution to the equation f1(ρ, θ) = 0 with ðr; yÞ ¼ ðr0; y0Þ þ k � Ẑ? and with varying k. In case θ =
0, it is not possible to use ρ as the independent variable, and θ has to be chosen instead. Notice
that in order to ensure numerical stability it is safer to use θ as independent variable in a suit-
able interval centered in θ = 0. Also, the existence of a solution is in general ensured only for
small enough step sizes, as depicted in Fig. 3.

We now consider within this example the effect of introducing the rescaling factors λρ and

λθ, as discussed in the previous section. We assume ~y 6¼ 0, so that ρ can be used as the indepen-
dent variable. In this case we see that

@y
@r

¼ ly
lr

@~y
@~r

ð26Þ

and therefore any rescaling induced for dρ is applied to dθ as well, as expected for a one-dimen-
sional manifold. The relation between the step size ds tangent to the manifold and the variation

d~r of the independent unrescaled variable is ds ¼ d r l2

r þ l2y
@ y
@ r

� �2
	 
1

2

, that allows to recover

the function glr ;ly r; yð Þ ¼ lr
ds=d r ¼ 1þ l2y

l2r

cotan2 2 yð Þ
r2

h i�1
2

. We finally obtain the rescaling function
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from Eq. (20) as

Kð~r; ~yÞ ¼ 1

lr

1þ 1

~r2
cotan 2 2~y

� �	 
12

1þ l2y
l2

r~r2
cotan 2 2~y

� �" #1
2

:

Results
In this section we present some applications of our method for the study of polypetide molecu-
lar systems, preceded by a test of detailed balance and of how the fluctuations of different de-
grees of freedom can be tuned by using rescaled variables. In polypeptide chains the rules of
quantum chemistry constrain bond lengths and bond angles to fluctuate slightly around
known values and double bonds to be approximately planar. The flexibility of the chain is
therefore mainly due to the variation of ϕ, ψ Ramachandran’s angles. In order to mimic this be-
havior, hard degrees of freedom are typically strongly constrained by using stiff quadratic po-
tentials. This is not necessary with our approach because the hard degrees of freedom can be
kept frozen in their minimum energy value thus reducing the number of degrees of freedom.

For this reason, in all applications discussed below we consider only the Ramachandran’s ϕ
and ψ torsional angles as degrees of freedom of the system; since ω is kept fixed, the set of
bonds considered in the DH description is disconnected, as shown in Fig. 1. In practice, in our
simulations the system Eq. (9) is always not degenerate, in such a way that the solution mani-
fold has co-dimension 6.

Detailed balance
In order to verify that the detailed balance is satisfied we performed a Monte Carlo simulation
on a 63-residue long protein fragment (pdb code 1CTF) by using our algorithm. We allowed
only the Ramachandran’s ϕ and ψ angles to vary during the simulation; these modifications
were obtained by randomly selecting either a Pivot move around a randomly selected bond or
our locally concerted move on a set of randomly selected angles. The introduction of the Pivot
move was necessary to move the last bond of the chain and thus ensure simulation ergodicity.
Fig. 4 shows the distribution of the values of different torsional angles of a protein chain that
has been simulated using the proposed schema. As expected when detailed balance holds, the
distribution is flat, within natural stochastic fluctuations.

Fluctuation tuning by rigidity rescaling
We also studied how the dynamics of the exploration of the solution manifold is affected by the
rigidity factors λi used to rescale the original variables (see Materials and Methods). This has
been done by comparing the distribution of the fluctuations Δθ of two different torsional angles
upon changing the rigidity of one of the two. The data have been obtained by performing short
simulations with fixed step-size ds = 0.01 along a randomly chosen direction onto the tangent
space to the manifold. First a nine degrees of freedom fragment, corresponding to a three-di-
mensional manifold, was explored for different values of λ1. Fig. 5 shows the distribution of the
fluctuations of the corresponding torsional angle θ1 and of another torsional angle (θ3) used as
negative control. A rescaling of λ1 by a factor of 3 does not globally affect the distribution of
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Δθ3, but rescales the corresponding distribution of Δθ1 by a factor roughly 3. This shows that
the main role in Eq. (19) is played by the global rescaling factor 1/λ, wheres the role of local
manifold geometry is in practice less relevant, at least in the considered example. On the other

Fig 4. Distribution of the values of torsional angles of a 67 residues long protein (1CTF) during a 3.5 � 105 time-stepsMonte-Carlo simulation. Each
of the stacked barchart is relative to a different torsional angle. At each simulation step the structure is deformed by applying our algorithm to a randomly
chosen portion of the chain (with probability 0.7) or by a pivot move (with probability 0.3). In the former case the step size ds is chosen from a normal
distribution with mean 0 rad and variance 0.08 rad2. In the latter case a randomly chosen ϕ or ψ angle is perturbed by adding to it a quantity that is chosen
from a normal distribution with mean 0 rad and variance 0.4 rad2.

doi:10.1371/journal.pone.0118342.g004

Fig 5. Distribution of variability of θ1 and θ3 angles for different values of λ1 for a 9 degrees of freedom chain. The distribution of θ3 is largely not
affected by the change of λ1 while the distribution of θ1 is rescaled according to Eq. (19).

doi:10.1371/journal.pone.0118342.g005
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hand, the effect of local manifold geometry may explain some reshaping that can be appreci-
ated in the plotted distributions apart from the global rescaling.

Similarly, Fig. 6 shows the distribution of the fluctuations of the angles θ1 and θ3 obtained
while exploring the solution manifold of a seven degrees of freedom fragment with a fixed
step-size ds for different values of λ1. In this case the solution manifold is one-dimensional and
therefore the fluctuations of θ1 and θ3 are always related. Indeed, after the rigidity λ1 is in-
creased, both distributions are globally rescaled by the same quantity. The dynamics on the de-
formed manifold corresponds, in this case, to a dynamics on the original manifold with a
rescaled step size. For the one-dimensional example as well, some reshaping can be seen in the
plotted distributions apart from the global rescaling. Again, this observation may be explained
as an effect of local manifold geometry, consistently with Eq. (19).

Exploring the conformational space
The first application we describe is the exploration of the whole conformational space of a
small portion of a polypeptide, i.e. finding all configurations of that fragment that are compati-
ble with the locality constraints. The problem can be resolved by finding a method to compute
all the solutions of Eq. (9). This is not a simple task when the number of degrees of freedom is
large but, on the contrary, if the number of variables is 7 the exploration of the manifold is sim-
ple. In this case the manifold has dimension 1 and so it is sufficient to move on the manifold al-
ways along the same direction. This can be done by choosing at each step k an initial direction
Z^k in such a way that Z^k�1 � Z^k > 0. In practice, we choose Z^k to be parallel to the projection of
Z^k�1 onto the tangent space to the manifold in the actual configuration.

Fig. 7 shows a three-dimensional projection of a one-dimensional manifold obtained by
changing 7 consecutive ϕ and ψ Ramachandran’s angles of a portion of a protein. Some config-
urations of the polypeptide that have been generated during the exploration are also plotted.
There are no other configurations of the selected region that are compatible with the con-
straints imposed by the locality requirement and that can be generated with a continuous mod-
ification of the original configuration.

Higher dimensional manifolds can be explored as well but, in these cases, there is not a general
strategy that allows an efficient exploration of the whole space. This exploration can be achieved
with a Monte-Carlo simulation or with ad hoc procedure as in the next example. As a proof of
concept, with the only purpose of showing the viability of the method in higher dimensions, we
consider a small cyclic molecule (cyclooctatetraene) and we assume that all its 8 torsional angles
are soft degrees of freedom that can be modified. Fig. 8 shows four conformations of cyclooctate-
traene obtained with our procedure and Fig. 9 shows the whole bidimensional solution manifold.

We highlight the efficiency of the method. The full exploration of cyclooctatetraene configu-
rational space has been performed in about 5 minutes on a single core 2.0 Ghz computer, col-
lecting more than 105 different structures with a sample-step of 10−2 radians.

Protein backbone mobility
In this section we describe how it is possible to estimate themobility of a portion of protein
backbone (local backbone mobility) by using a simple schema based on the algorithm proposed
in this paper. The hypothesis we use is that the local mobility is proportional to the number of
configurations that can be explored locally without modifying the rest of the chain, the local
backbone volume. In principle, the number of configurations taken into account in this count-
ing could be reduced by eliminating those conformations that exhibit steric clashes. Also, it
would be possible to introduce a pair-wise potential in order to consider interaction effects.
Here we limit the study of the mobility to non-interacting chains.
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Consider the 3N-dimensional configurational space describing the position of each atom
composing the system. In analogy with the usual definition of entropy, we define the local back-
bone entropy as the logarithm of the local backbone volume, that is the volume of the solution
manifold measured in the 3N-dimensional configurational space. This volume can be

Fig 6. Distribution of variability of θ1 and θ3 angles for different values of λ1 for a 7 degrees of freedom chain. In this case it is not possible to change a
single dof without altering the others: as a consequence a rescaling of λ1 affects the distributions of θ1 as well as of the other angles (shown: θ3). In this case
the effect of changing the rigidity of one or more parameters is the same as rescaling the step size used during the simulation.

doi:10.1371/journal.pone.0118342.g006

Fig 7. Three-dimensional projection of the solutionmanifold. The whole manifold lies in a seven-dimensional space. Some configurations are
highlighted: the starting configuration is emphasized with a red circle while two other possible solutions are emphasized in green. The red part of the structure
is the portion which has been modified with our moves.

doi:10.1371/journal.pone.0118342.g007
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computed by integrating the Gramian of the transformation {α, θ, r}! Rt on the solution
manifold in the DH’s variable space. The Gramian function specifies how the (n − 6)-dimen-
sional volume element of the manifold in the space of DH parameters is mapped into the 3N-
dimensional configurational space. If s are the coordinates on the manifold, determined within
an orthonormal system of basis vectors in the tangent space, the Jacobian of the transformation
can be written asrs R

t, and the Gramian is computed as

GðsÞ ¼ fdet ðrsR
tÞT rs;R

t
� �g12; ð27Þ

(see [23, 24]).

Fig 8. Four conformations of the ciclic molecule cyclooctatetraene obtained while exploring its whole conformational space by changing the 8
torsional angles degrees of freedom. Bond length and bond angles are kept fixed. This is a toy model to illustrate the efficiency of the method: the
molecule alternates double and single bonds and therefore half of the torsional angles are constrained and only four are completely free. Images of molecular
structures have been generated with PyMol [22].

doi:10.1371/journal.pone.0118342.g008
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Values of entropy can be assigned to different protein fragments, i.e. to different subsets of
degrees of freedom, by considering the corresponding manifolds defined by their concerted
variations. We first estimate the entropy S(i) associated to a single residue i as the sum of
the entropies computed for all the different fragments comprising that residue. For
simplicity, we restrict our calculation to fragments that comprise seven consecutive ϕ and ψ
Ramachandran’s angles. We then call the map i 7! A × exp(S(i)) themobility profile of the
structure. The factor A is a proportionality constant which has the dimension of an Angstrom
squared.

In Fig. 10, we compare themobility profile with the corresponding experimental data, i.e.
the variance of the positions of the α carbon atoms in different NMR models of the same struc-
ture. Note that the predicted mobility profile is matched to the experimental one by fitting A,
so that only the ratio between the mobilities of different regions of the same protein structure
can be considered as a real prediction of our model.

Remarkably, the mobility of 1YGM, an all-α structure, is described with a good degree of ac-
curacy by the theoretical estimations. This fact, confirmed by similar analysis on other all-α
structures (data not shown) suggests that the local geometrical constraints of the protein back-
bone taken into account by our method are enough to predict the relative mobility of helical
and non helical regions. The surprising conclusion is that the presence of both steric and ener-
getic effects reduces the available phase space, and hence the mobility, by the same amount for
both regions. On the contrary, β-sheet mobility is not captured at all, probably because we do
not consider in our analysis the non-local inter-strand interactions that are crucial for
their stability.

Fig 9. A three-dimensional projection of the solutionmanifold for our model of cyclooctotetraenemolecule (B) and a schematics of how the
manifold has been explored (A). First a set of seven angles are chosen and the relative one-dimensional manifold is visited (red line). Then the one-
dimensional manifold relative to a different choice of degrees of freedom is explored using each of the generated structure as a starting point (green dots).

doi:10.1371/journal.pone.0118342.g009
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Structure refinement
The ability of exploring completely the conformation space of a limited fragment of a protein
can be exploited for reconstructing or refining a small portion of a polypeptide structure. Let
us suppose to have a putative fragment of a protein which has been roughly reconstructed by
experimental methods: the hard degrees of freedom (bond angles and bond lengths) of this
portion have correct values, whereas some of the torsional angles may not all be consistent
with the allowed values of the Ramachandran’s plot. Given such initial configuration Γ0, our
approach allows to modify exhaustively the soft degrees of freedom and to check if it is feasible
to obtain a solution which is compatible with the standard Ramachandran’s plot.

To test this possibility, we first partition the Ramachandran’s plot in a grid of squares with
size 2° × 2°. By analyzing the databank Top500 formed by a non-redundant, specially refined
set of 500 high resolution X-ray crystallographic structures of globular proteins [25], we con-
sider as good, those bins which have a fractional occupancy higher than 0.04. We investigate if
the condition of having good Ramachandran’s angles in a small fragment of a protein is a con-
dition sufficient to reconstruct/refine the protein backbone. Therefore we randomly explored
the conformational space of different portions of a protein. For each portion we store only the
acceptable configurations, i.e. those configurations with good Ramachandran’s angles.

Different 5 residues long fragments were analyzed, from α, β, or coil structures (that are nei-
ther in α nor in β). Fig.s 11 and 12 show all the acceptable configurations that have been gener-
ated during the exploration of an α-helix and a β-strand portion, respectively. Each subplot

Fig 10. Comparison between the experimental mobility and the theoreticalmobility profile of different structures. Data in (A) are relative to an all-α
protein (1YGM) while (B) shows the mobility of mixed β and α protein (2ITH). The experimental profile has been computed as the variance in the position of α-
carbons in differentNMRmodels of the same protein. Red lines represent theoretical calculations, black lines experimental values. Boxes below the
horizontal axis locate the position of secondary structures along the chain: red for α-helices and yellow for β-sheet. The matching between the theorethical
and experimental profiles has been obtained by optimizing the proportionality constant A with a least square fit. In (A) the fit has been computed over the
whole length of the chain, while in (B) the fit concerned only the α regions.

doi:10.1371/journal.pone.0118342.g010
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shows the values sampled by a different pair of Ramachandran’s angles within the considered
fragment. From Fig. 11, we can notice that all acceptable solutions generated from an α-helix
structure lie in a very narrow region of the Ramachandran’s plot. The exploration of different
α-helix regions confirms this finding and shows that usually about the 90% of the configura-
tions that are compatible with the imposed constraints are acceptable, and hence shown in
Fig. 11.

Going back to the original problem of refining a rough initial estimation of a protein por-
tion, our results imply that, for an α-helix, it is easy to reconstruct a solution that is essentially
unique, within very small changes of Ramachandran’s angles. Results are different in the case
of β-structure; in such situation the algorithm works smoothly to find solutions but most of
them are not in good regions of the Ramachandran’s plot (more than 90%) and those satisfying
such constraints, the ones shown in Fig. 12, are more widely distributed in the good region.
Therefore, a reconstruction starting by a β-like structure is feasible within our approach, but
produces a broader range of possible solutions with respect to α-helical fragments. For both the
α and the β fragments, in order to evaluate how exhaustive is our exploration strategy, the
stored configurations were analyzed with a sophisticated cluster algorithm [26], checking that
the conformational clusters found in each half of the search trajectories do not change.

Repeating the same analysis for coil fragments, it is found that only a very low percentage
(usually below 1%) of configurations have good Ramachandran’s angles, whereas the accept-
able configurations span all possible allowed values (data not shown). Under such circum-
stances, an exhaustive search of all possible acceptable solutions can be quite time consuming.

Discussion
We introduced a novel technique that can be used to locally deform linear or cyclic polymer
chain structures. Different kinds of degrees of freedom (torsional angles, bond lengths, bond
angles or any arbitrary combination of these) can be used. There are no general requirements
on the choice of the degrees of freedom: in the case of protein chains they can belong to the
same residue as well as to residues that are far away from each other. In the general case, for
the algorithm to work, it is necessary that at least seven different degrees of freedom are used.

The three-dimensional configuration of a linear chain is commonly described by using the
cartesian coordinates of each monomer with respect to the same fixed frame of reference. In-
stead, in our algorithm we use the Denavit-Hartenberg (DH) convention [16, 17], that is very
popular in robotics and has already been used by different authors [3, 11, 27–29] in order to de-
scribe a polypeptide chain. One advantage of the DH convention is its ability to readily describe
a general disconnected subset of the bonds of the physical chain. This is useful if one is interest-
ed in varying in a concerted way degrees of freedom from disconnected chain segments, while
keeping fixed the degrees of freedom in between. This occurs, for instance, when consecutive ϕ,
ψ Ramachandran’s angles are chosen to be varied, whereas the torsional angle ω around the
peptide bond is kept fixed [5]; in this case it is not necessary to include the peptide bond in the
DH description (see Fig. 1).

In the simplest case, when all bonds included in the DH description are connected with
each other, the DH variables have a well defined physical meaning. Since two consecutive
bonds always share an atom, link offsets d are zero, and therefore we can interpret link lengths
r as bond lengths, link twists π − α as bond angles, and joint angles θ as torsional angles. In the
general case, some physical bonds may not be considered so that two consecutive bonds includ-
ed in the DH description do not share an atom. When a disconnected bond is added, the link
offset is different from zero, the link length and the link twist do not have a physical interpreta-
tion anymore, whereas the joint angle can still be interpreted as a torsional angle, albeit with an
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offset in its definition. As a consequence, torsional angles can always be included within the
DH description as such, bond angles only if the previous bond in the DH description is not dis-
connected, and bond lengths if both the previous and the subsequent bond are
not disconnected.

In general, the change of a single DH parameter is responsible for a global modification of
the structure, i.e. a modification that, on average, affects a number of atoms proportional to the
number of atoms of the chain. For instance the change θi ! θi + Δθi is responsible for a rota-
tion around ẑi−1 of all the atoms of the chain that belong to the bonds labeled with j> i; this
configuration change is known as a pivot move. In order to locally update a configuration {r0,
α0, d0, θ0} it is necessary to simultaneously change more than one DH parameter with the cost-
raint that the remaining part of the chain is kept fixed. By using the DH description we were
able to write a set of equations (see Eq. (9)) that describe the constraints and whose solutions
correspond to the locally deformed configurations we want to compute. This set of equations is
the central mathematical framework on which several other methods are based on [3, 11,
27–29]. The solutions derived by existing approaches are however limited to considering only
torsional angles. Moreover, in order to compute a solution of the equations, existing techniques
usually restrict their application to the study of particular geometries, such as the ideal

Fig 11. All acceptable Ramachandran angles obtained during the exploration of the solutionmanifold of a 5-residue-long α fragment. All points
form a unique cluster, meaning that there is only one acceptable conformation of the helix that is compatible with the initial configuration. Thus, having fixed
the first and the last bond, there is only one possible way to reconstruct the missing helix.

doi:10.1371/journal.pone.0118342.g011
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Pauling-Corey geometry, or need to slightly modify a number of other degrees of freedom of
the chain.

Our method generalizes existing algorithms by proposing a strategy that allows for a con-
certed modification of any arbitrary set of degrees of freedom of the chain while keeping all the
other strictly fixed. The only requirement is that the number of selected degrees of freedom is
greater than the number of linearly independent equations that define the constraints in
Eq. (9), i.e. is greater than 6 in the non degenerate case.

All algorithms performing concerted local structural changes for a polymer chain roughly
follow the same general strategy. First, a pre-rotation step is proposed, that is an update of a se-
lected subset of driver pre-rotation angles among all the ones that will be eventually involved in
the local move. If actually performed, the pre-rotation would generate an intermediate configu-
ration ξ0 corresponding to a global structural change. Then, the post-rotation step is performed,
by explicitly finding the remaining post-rotation angles that satisfy the locality constraints.

The algorithm here proposed introduces a novel way to perform the pre-rotation step (see
Fig. 3). Indeed, while other methods arbitrarily selects the driver angles and then generate the
intermediate configuration ξ0 by randomly perturbing them, our algorithm generates ξ0 by
moving from the initial configuration along a random direction in the tangent space to the
manifold of the configurations compatible with the locality constraints. Thus, the pre-rotation

Fig 12. All acceptable Ramachandran angles obtained during the exploration of the solutionmanifold of a 5-residue-long β fragment. Points form
different clusters, meaning that there are different acceptable conformations of the strand that are compatible with the initial configuration. It is not possible to
safely reconstruct or refine a β fragment by only requiring the final configuration to have acceptable Ramachandran’s angles.

doi:10.1371/journal.pone.0118342.g012

Local Concerted Movements of a Chain Molecule

PLOS ONE | DOI:10.1371/journal.pone.0118342 March 31, 2015 22 / 27



step is already a change of all the degrees of freedom involved in the local move concerted in a
way that is intrinsically driven by the geometrical properties of the manifold of
explorable configurations.

The post-rotation step is then performed by using a root-finding algorithm to converge
again to the manifold of correct configurations. Despite its simplicity, the root-finding ap-
proach is effective since it takes advantage of the fact that the intermediate configuration ξ0 is
already a good approximation to the correct solution as well as of the fact we can restrict the
root-finding algorithm to search for a solution by moving within the space orthogonal to the
manifold at the initial configuration. The orthogonal space can be efficiently computed based
on the knowledge of the tangent space already needed in the pre-rotation step. Restricting the
search of the solution within the orthogonal space also ensures that the solution searched for in
the post-rotation step is unique, for small enough pre-rotation moves, providing at the same
time a simple way to compute the probability of the backward transition and thus to enforce
detailed balance in a Monte Carlo simulation.

The possibility to numerically compute the derivatives as in Eq. (11) is not only useful to de-
termine the basis vectors for the tangent space to the manifold of chain configurations compat-
ible with the locality constraints, but also to obtain any directional derivative on it of scalar
functions that depend on chain configuration such as, for instance, potential energy functions.
Notably, 300–400 concerted moves per second can be performed on a single core 2.0 Ghz pro-
cessor in the present implementation. This makes the efficiency of our general numerical meth-
odology not so distant from the one reported in [13], 2000 loop closure solutions per second,
with an analytic-based strategy that relies on a specific choice of the torsional angles to
be modified.

Importantly, once the difference between forward and backward probabilities is taken into
account, the usage of orthonormal basis vectors in both the tangent and orthogonal spaces en-
sures that the space of DH parameters involved in the local move is sampled uniformly in a
Monte Carlo simulation, if no other reweighting is employed in the acceptance/rejection test.
This is shown in Fig. 4 for the simple case of DH parameters that correspond to torsional an-
gles, that are indeed expected to display a uniform distribution at equilibrium in the absence of
any interaction. Thus, at variance with existing algorithms, we do not need to perform, for fur-
ther reweighting, the time-consuming calculation of the Jacobian factor due to the solution of
the post-rotation step [7].

For DH parameters that correspond to bond lengths and bond angles, that are not expected
to have uniform distributions at equilibrium, no reweighting is again needed, provided that the
locality constraints and the corresponding manifold of possible chain configurations are de-
fined in terms of simply modified variables that are instead expected to be uniformly sampled.

Moreover, a simple rescaling of uniformly sampled variables used in the local move main-
tains their sampling properties while allowing to tune the relative fluctuations of the non re-
scaled variables. This could be useful in dealing with polypeptide chains, when variables
originally related to bond lengths and bond angles are expected to fluctuate much less than tor-
sional angles. The need of further reweigthing is again avoided due to the proper exploitation
of the intrinsic geometrical properties of the manifold of correct configurations, as defined in
terms of the rescaled variables. However, as shown in Fig. 5, the tuning of relative fluctuations
by means of variable rescaling is possible only for manifolds with dimension at least two. More-
over, Fig. 5 shows that the effect the rescaling of one variable induces on the other variables,
through the coupling with local manifold geometry, is in practice negligible. As a consequence,
we may expect that the number of variables whose fluctuations can be independently tuned by
rescaling is given by the manifold dimension minus one. Consistently, as shown in Fig. 6, for
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unidimensional manifolds the relative fluctuations of the different variables involved in the
local move are in itself dictated by manifold geometry and are not affected by rescaling.

Instead, if DH parameters that do not have a physical interpretation are involved in the
local move, it is not possible to go simply back to the case of uniform sampling. It would be
necessary to take into account the expected non uniform sampling of all bond lengths and
bond angles related to the unphysical DH parameters by proper reweighting factors.

We showed different possible applications of the technique that we introduced.
A first application is an efficient scheme to explore the whole configurational space of small

fragments of a polypeptide backbone or of other chain structures that are compatible with lo-
cality constraints. We demonstrated the concept, first, in the simplest case of a protein frag-
ment where the degrees of freedom involved in the local move are 7 consecutive ϕ, ψ
Ramachandran’s angles along the polypeptide backbone. In that case, all possible configura-
tions to be explored lie on a one-dimensional manifold embedded in a periodic 7-dimensional
space, whose projection in a 3-dimensional space is shown in Fig. 7. Since our technique relies
on the computation of the tangent space to the manifold, in order to define the pre-rotation
step, it is both straightforward and efficient to stride along the manifold following the same di-
rection until the starting configuration is revisited.

For higher-dimensional manifolds the systematic exploration of all possible configurations
is a difficult task. We employed the cyclo-octotetraene cyclic molecule as a toy model, by con-
sidering all its 8 torsional angles as degrees of freedom. The manifold of possible configurations
(in the special case of a cyclic closed chain these are all possible configurations) is a bidimen-
sional one in an 8-dimensional space. We used the strategy of dividing the exploration in sepa-
rate one-dimensional trajectories that are tracked along the same direction until the initial
configuration is recovered, as in the previous case. The whole manifold can be recovered in this
way, by changing the initial configuration and the subset of 7 torsional angles to be varied
along a given one-dimensional trajectory. The resulting manifold is shown as a projection in a
3-dimensional space in Fig. 9 and some representative conformations are shown in Fig. 8. For
higher-dimensional manifolds, the usage of more sophisticated sampling techniques, such as
generalized ensemble Monte Carlo methods [30] or metadynamics [31], may well be
more efficient.

It is important to observe that our technique relies on the previous knowledge of a configu-
ration already compatible with the locality constraints, and the loop closure problem is solved
only at a local level, in the post-rotation stage (see Fig. 3). In the classic loop closure problem,
instead, one is given the task of reconstructing ‘ab initio’ a missing portion of a linear chain. It
is then easy to do it by using ‘wrong’ values for, say, one bond length and one bond angle. The
hard problem of finding a configuration with the ‘right’ values, then, could be in principle re-
cast, within the framework of our technique, as the problem of the searching for a subset of
configurations with the ‘right’ values within a manifold suitably chosen where the bond length
and the bond angle to be fixed are among the degrees of freedom that are allowed to change.
While the actual implementation of the above sketched strategy is beyond the scope of the
present paper, it provides a context where the exploration efficiency demonstrated by our tech-
nique could prove extremely useful.

The other applications of our technique that we investigated are more directly related to the
local distortion properties of protein chain structures, when only backbone heavy atoms
are considered.

First, we introduced the notion of local backbone volume, as the volume spanned in the 3N-
dimensional Cartesian space by all configurations that can be adopted by a protein segment,
compatibly with the locality constraints, as the degrees of freedom involved are changed on the
corresponding manifold. As a consequence, the local backbone volume may strongly depend
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on the choices made for both the constraints and the degrees of freedom. Locality constraints
can differ a lot depending, for example, on the secondary structure content of the considered
protein chain segment.

It is natural to relate the volume at disposal for local concerted movements to the mobility
of residues, so that the higher the local volume the more mobile the residues. Indeed, the local
backbone volume computed for different protein chains, in the simplest case of 7 consecutive
ϕ, ψ Ramachandran’s angles, allows to easily recognize α-helices as the most locally rigid por-
tions of proteins. In the case of an all-α helical protein, a quantitatively good matching can be
performed between the local volume profile and the residue mobility profile resulting by differ-
ent NMR structural models of the same protein (see Fig. 10). This is a non trivial result, since
the local backbone volume is a geometrical feature that does not take into account any interac-
tion or excluded volume effect. Consistently, β-strands are not identified as locally rigid seg-
ments in our approach (see Fig. 10), since, at variance with α-helices, they need to be stabilized
by hydrogen bonding to a nearby strand.

Second, we tried to assess the following point: How many realistic protein structures do
exist that are compatible with a given locality constraint? This is a central issue in structure re-
finement, when the task is often to improve over an existing non realistic configuration of a
protein segment. In practice, we start from a real protein segment configuration and we simply
use our technique to perform a thorough exploration of the manifold of possible solutions
compatible with the locality constraints. We look for standard values of the Ramachandran’s
angles ϕ and ψ to filter realistic structures. Again, the locality constraint, and thus the answer
to the raised question, crucially depend on the secondary structure of the chosen
protein segment.

We use a state-of-the-art cluster analysis to make sure that the exploration of the manifold
was completed, when no new clusters are observed. Consistently with the local backbone vol-
ume analysis, we observe that if the initial segment has an α-helical structure, most of generated
configurations are realistic, the latter are all α-helical ones and span a very narrow region in the
Ramachandran’s plot (see Fig. 11). If the initial segment has a β-strand structure, the fraction
of generated configurations decreases, whereas all realistic configurations found are in the β-
strand region of the Ramachandran’s plot, spanning a wider region (see Fig. 12). If the initial
segment has no secondary structure, the generated configurations essentially span the whole
Ramachandran’s plot and the fraction of realistic conformations is very small. Based on pure
geometrical properties, a helical structure is quite easily refined, a strand segment is less easily
refined, a loop coil region is not quite easily refined.

Our aim here is to show how the efficiency of our local exploration technique can be easily
employed in the context of protein structure refinement; systematic results could be obtained
by testing, within the same approach, initial segments as helix or strand ends, or hairpin turns.
More importantly, a bias can be easily incorporated in the sampling of the manifold of possible
solutions, according to a potential energy function, or to a general scoring function, or to a
measure of consistency with known experimental data, such as electron density maps for X-
rays diffraction experiment on protein crystals.
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