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Objectives: A subset of non-functioning pituitary macroadenomas (NFMAs) may exhibit
early progression/recurrence (P/R) after tumor resection. The purpose of this study was to
apply deep learning (DL) algorithms for prediction of P/R in NFMAs.

Methods: From June 2009 to December 2019, 78 patients diagnosed with pathologically
confirmed NFMAs, and who had undergone complete preoperative MRI and
postoperative MRI follow-up for more than one year, were included. DL classifiers
including multi-layer perceptron (MLP) and convolutional neural network (CNN) were
used to build predictive models. Categorical and continuous clinical data were fed into the
MLP model, and images of preoperative MRI (T2WI and contrast enhanced T1WI) were
analyzed by the CNN model. MLP, CNN and multimodal CNN-MLP architectures were
performed to predict P/R in NFMAs.

Results: Forty-two (42/78, 53.8%) patients exhibited P/R after surgery. The median
follow-up time was 42 months, and the median time to P/R was 25 months. As compared
with CNN using MRI (accuracy 83%, precision 87%, and AUC 0.84) or MLP using clinical
data (accuracy 73%, precision 73%, and AUC 0.73) alone, the multimodal CNN-MLP
model using both clinical and MRI features showed the best performance for prediction of
P/R in NFMAs, with accuracy 83%, precision 90%, and AUC 0.85.
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Conclusions: DL architecture incorporating clinical and MRI features performs well to
predict P/R in NFMAs. Pending more studies to support the findings, the results of this
study may provide valuable information for NFMAs treatment planning.
Keywords: deep learning, pituitary, macroadenoma, progression, recurrence, MRI, MLP, CNN
INTRODUCTION

Pituitary adenomas constitute up to 15% of all intracranial
tumors (1) , and the majority of these tumors are
nonfunctioning adenomas (2, 3). Nonfunctioning pituitary
macroadenomas (NFMAs), defined as a tumor larger than 10
mm in diameter, are the most common presentation among
pituitary tumors (2, 3). Clinically, NFMAs often cause
bitemporal hemianopia due to compression of the optic
chiasm. Endocrine dysfunction such as hypopituitarism is
found in some patients because of tumor compression of the
normal pituitary gland. According to 2017 WHO classification
system, pituitary tumors are classified as adenoma, carcinoma, or
blastoma (4). Although most NFMAs are diagnosed as benign
adenomas, up to 52.7% of these tumors may undergo early
progression/recurrence (P/R) after surgical resection (5). The
trans-sphenoidal approach (TSA) is the optimal surgery for
NFMAs in current clinical practice. However, gross total
resection (GTR) is often difficult to achieve for large solid
NFMAs with extrasellar extension (6). Although postoperative
adjuvant radiotherapy (RT) can be used to reduce P/R in NFMAs
after surgery, this method may result in irreversible pituitary
insufficiency and other long-term complications (7).

Conventional MRI features such as cavernous sinus invasion,
extrasellar extension, and absence of tumor apoplexy have been
reported as significant imaging parameters related to P/R in
NFMAs (8–11). However, most of these parameters are
qualitative and subjective with inter-observer variation.
Currently, machine learning (ML) algorithms have become a
popular tool in cancer prognosis and prediction because it offers
quantitative and objective information (12). Integration of mixed
data such as clinical data and diagnostic imaging is an obvious
trend toward personalized medicine (13). Imaging-based ML
algorithms include two popular methods: handcrafted feature-
based and automatic feature-learning based models (14). For
automatic feature-learning based models, deep learning (DL) is
a powerful method for building predictive models for cancer
diagnosis (15). Both multilayer perceptron (MLP) and
convolutional neural network (CNN) are popular DL models
and can be used for image classification. As compared with
MLP that takes vector as input, CNN takes tensor as input and
better understands spatial relations between pixels of images.
Thus, CNN performs better than MLP for complicated images
and videos classification (16). CNN had attracted attention
when large-scale CNN for image classification successfully
outperformed all other techniques in the ImageNet 2012
competition (17). CNN is designed to learn spatial hierarchies of
features automatically and adaptively through backpropagation by
using three building blocks: convolution layers, pooling layers, and
2

fully connected layers. Recently, several studies have reported that
deep CNN-based approaches can achieve state-of-the-art
performance in lesion detection and cancer diagnosis (18–21).

Regarding clinical applications in the management of
pituitary adenomas, DL models such as MLP or CNN have
been used to evaluate tumor secreting function (22), tumor
consistency (23, 24), detection of pituitary adenoma (25, 26),
classification of sellar tumor types (27), and predicting the extent
of surgery (28). U-Net and derived DL models are currently
considered as optimal for image segmentation (29). Recently, DL
showed high accuracy in predicting suboptimal postoperative
outcomes in functional pituitary adenomas (30). However, the
DL gmodels for predicting tumor recurrence in NFMAs have not
yet been reported. The purpose of this study was to investigate
the roles of DL in predicting P/R in NFMAs, using the
combination of clinical and MRI features in MLP and
CNN architectures.
MATERIALS AND METHODS

Ethics Statement
The study was approved by the Institutional Review Board (IRB
no. 10902-009) of our center. Signed informed consent was
waived because the retrospective nature of this study does not
affect the healthcare of the included patients. All patients’
medical records and imaging data were de-identified
before analysis.

Patient Selection
The inclusion criteria of this study were patients diagnosed with
benign NFMAs by brainMRI (diameter > 10 mm) and pathological
confirmation. All included patients must have undergone complete
preoperative brain MRI, at least one postoperative MRI performed
at 3 to 6 months after surgery, and serial postoperative brain MRI
follow-up for more than 1 year. Patients with evidence of hormone
hypersecretion in clinical, biochemical, and histopathological
examinations were excluded. Based on data of previous studies (8,
31), prolactinoma is considered unlikely if the prolactin levels are
below 100 ng/mL, and this diagnosis was thereafter excluded by
immunocytochemical tests. Patients who received adjuvant RT
before P/R were also excluded. From June 2009 to December
2019, 78 patients (49 men, 29 women, age 18 - 80 years; median
age, 53.5 years) were included in this study according to above-
mentioned inclusion and exclusion criteria. Total 42 P/R patients
and 36 non-P/R patients were included. Seventy-six patients
underwent surgery performed by TSA, and 2 patients received
TSA and craniotomy due to large size tumors (tumor diameters of
6.5 cm and 6.1cm). The mean follow-up time for all patients was 42
April 2022 | Volume 12 | Article 813806
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months (range, 12 to 115 months). In 42 patients with P/R, the
mean time to P/R was 25 months (range, 6 to 68 months).

Image Acquisition
The MR images were acquired using a 1.5-T (Siemens,
MAGNETOM Avanto) (n = 39), 1.5-T (GE Healthcare, Signa
HDxt) (n = 23), or a 3-T (GE Healthcare, Discovery MR750)
(n = 16) MR scanner equipped with 8-channel head coils in each
machine. The analyzed MR images included coronal T2-weighted
image (T2WI) and coronal contrast-enhanced (CE) T1-weighted
image (T1WI). CE T1WI images were obtained with intravenous
administration of 0.1 mmol/kg of body weight of gadobutrol
(Gadovist) or gadoterate meglumine (Dotarem). Detailed MR
imaging parameters were described in Supplementary File 1.

Clinical and Radiological Variables
The clinical data were obtained from patients’medical records. A
neuroradiologist (C.C.K, with 11 years of experience in
radiology) and a neurosurgeon (S.W.L, with 15 years of
experience in neurosurgery) evaluated preoperative clinical and
radiological features on the Picture Archiving and
Communication System (PACS) (INFINITT Healthcare, Seoul,
Korea) workstations (summarized in Table 1). For equivocal
cases, judgment was made by consensus. Evaluation of cavernous
sinus invasion (Knosp classification) (32) and extrasellar
extension (Hardy’s classification) (33) were determined on
Frontiers in Oncology | www.frontiersin.org 3
preoperative coronal T2WI and CE T1WI. Quantitative MRI
features were measured on coronal CE T1WI.

Definitions of Extent of Resection (EOR)
and Progression/Recurrence (P/R)
The extent of resection (EOR) was determined by review of
preoperative and postoperative MRIs by a neuroradiologist
(C.C.K) and a neurosurgeon (S.W.L). According to previously
published studies (10, 34, 35), GTR was defined as NFMAs with
a residual tumor volume of less than 10% as compared with its
original tumor size. In contrast, subtotal resection (STR) was
defined as the presence of residual tumor more than 10% of its
original volume. For determining P/R in NFMAs, preoperative and
serial postoperative MRIs were evaluated by a neuroradiologist
(C.C.K) and a neurosurgeon (S.W.L), both of whom were blinded
to the clinical outcomes of the studied patients. P/R was defined as
progression (enlargement) of the residual tumor after STR or tumor
recurrence (regrowth) after GTR observed on serial postoperative
MRI (CE T1WI) as compared with the MRI performed at 3 to 6
months after surgery. The threshold of P/R in NFMAs was defined
as a more than 2mm increase of residual tumor size in at least one
dimension when compared with postoperative serial MRIs on CE
T1WI (8, 10, 11, 35). For the determination of P/R, the inter-
observer reliability with Cohen k value of 0.9 was obtained.
Judgment was made by consensus in equivocal cases. Several
studies showed the median time to early P/R in NFMAs was
TABLE 1 | The clinical data and MR features of nonfunctioning pituitary macroadenomas (NFMAs) with and without progression/recurrence (P/R).

P/R Non-P/R p

Number of patients 42 36
Sex 0.089
Male 30 (71.4%) 19 (52.8%)
Female 12 (28.6%) 17 (47.2%)
Age (y) 56 (46, 66) 49 (33.5, 64.5) 0.166
Body mass index (BMI) 24.8 (23.3, 26.3) 24.5 (22, 27) 0.452
Clinical symptoms
Visual disturbance 39 (92.9%) 20 (55.6%) <0.001*
Headache 12 (28.6%) 17 (47.2%) 0.089
Decreased libido, sexual dysfunction, and/or amenorrhea/oligomenorrhea 5 (11.9%) 2 (5.6%) 0.442
Incidental 2 (4.8%) 7 (19.4%) 0.073
Hypopituitarism 0.033*
No 22 (52.4%) 29 (80.6%)
Single 11 (26.2%) 4 (11.1%)
Multiple 9 (21.4%) 3 (8.3%)
Hyperprolactinemia 12 (28.6%) 9 (25%) 0.723
Extent of surgical resection <0.001*
Gross-total resection (GTR) 3 (7.1%) 16 (44.4%)
Gross-total resection (STR) 39 (92.9%) 20 (55.6%)
Successful chiasmatic decompression 16 (38.1%) 25 (69.4%) 0.006*
Cavernous sinus invasion (Knosp classification Grade 3-4) 13 (31%) 4 (11.1%) 0.034*
Extrasellar extension (Hardy’s classification Grade 3-4) 15 (35.7%) 4 (11.1%) 0.012*
Compression of optic chiasm 39 (92.9%) 26 (72.2%) 0.015*
Compression of the 3rd ventricle 29 (69%) 13 (36.1%) 0.004*
Hydrocephalus 3 (7.1%) 1 (2.8%) 0.620
Giant (> 40 mm) 12 (28.6%) 2 (5.6%) 0.008*
Maximum tumor height (mm) 33 (24, 42) 19 (13.5, 24.5) <0.001*
Tumor volume (cm3) 11.9 (4.6, 19.2) 2.7 (1.5, 6) <0.001*
Follow-up time (months) 49.7 (40.4, 59.1) 32 (25, 39.1) 0.005*
April 2022 | Volume 12 | Article
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within 30 months (10, 36, 37), and the median follow-up time in the
present study (both P/R and non-P/R groups) was longer than
this interval.

Image Pre-Processing
Two MRI sequences, coronal T2WI and coronal CE T1WI, were
used for analysis (Figure 1). Image pre-processing was
performed for all MRI images in the training and validation
datasets. Python image-processing package (pydicom) (38) was
applied to MRI dicom files to obtain pixel data. Rescaling grey
scale between 0 to 255 was performed. To fully exploit the
information of tumor tissues, an experienced neuroradiologist
(C.C.K) selected one coronal CE T1WI slice showing the largest
tumor height as the input image. To allow the neural network
model to focus on analyzing the tumor tissue without too much
noise, the tumor tissue was moved to the center of the image and
the outer region of the tumor image was removed. For each
selected image, a cropping region with width/length of one third
of the original image size is created. Then, the tumor tissue is
placed at the center of this cropping region. The dataset was split
into 5 folds for cross-validation. Data augmentations, including
random flip, random rotate, random scale, and random shift,
were applied to each MR image to enhance the training
Frontiers in Oncology | www.frontiersin.org 4
effectiveness and prevent overfitting (27). Some samples of
processed images are shown in the Figure 1.

Architectures of CNN, MLP,
and multimodal CNN-MLP
Because of the small amount of data in this study, modern CNN-
based architectures such as AlexNet (17) and GoogleNet (39)
cannot be directly applied to train accurate models. Therefore, we
proposed to build a relatively light model based on two classical
CNN architectures: LeNet (40) and VGG16 (41) (Figure 2). For
imaging analysis in CNN, our model takes MR images as input,
and different imaging sequences (T2WI and CE T1WI) were
stacked on the channel axis. This setting gave our model a
chance to discover local image features from different MRI
sequences. The two convolution layers in LeNet are replaced by
convolution blocks from VGG16 (i.e., Convolution 1 and
Convolution 2), which are formed by three 3 x 3 convolution
layers (Figure 2). Then, the extracted image feature from second
pooling layer (Pooling 2) is fed to three fully connected (FC) layers
(FC1, FC2, and FC3) to predict the P/R. The idea of combining
two such CNN models improves the predictive effectiveness. The
reason is twofold. First, the original VGG16 is a complex and
heavy model that suffers from the lack of data; thus, we set the
FIGURE 1 | Samples of nonfunctioning pituitary macroadenomas (NFMAs) on coronal contrast-enhanced (CE) T1WI analyzed in CNN models.
April 2022 | Volume 12 | Article 813806
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basic CNN model as LeNet. Second, the convolution block of
VGG16 can capture much more multi-scale image features than
the original convolution block of LeNet. In this study, the designed
architecture improved the predictive effectiveness as compared
with applying LeNet or VGG16 individually.

To provide clinical variables (summarized in Table 1) to the
model, a MLP network that takes clinical factors as input was
added before the second fully connected layer (FC2). MLP is a
class of neural network, which is good at learning relationships
from categorical features. The multimodal CNN-MLP model
captures both image and numerical clinical features. The
following clinical variables were included in the MLP model:
sex, age, body mass index (BMI), clinical symptoms,
hypopituitarism, hyperprolactinemia, EOR, chiasmatic
decompression, Knosp and Hardy classifications, compression
of optic chiasm and 3rd ventricle, hydrocephalus, tumor
diameter, and tumor volume (Table 1). Details of the
multimodal CNN-MLP architecture is shown in Figure 2.
Another multimodal CNN_v2-MLP model were described in
Supplementary File 2.

Training Process
All experiments were trained on one NVIDIA GTX1080ti
graphic card with TensorFlow 2.1. We train each model from
scratch with the following setting and hyperparameters. All
Frontiers in Oncology | www.frontiersin.org 5
variables were initialized with Glorot uniform (or called Xavier
uniform), and Adam optimizer was used. Learning rate
initialized at 0.0001 and started decade after 20 epochs. Binary
cross entropy was used as the loss function since the final
prediction is only progression or recurrence. Each experiment
was conducted with 5-fold cross validation to observe the
stability and reliability of our model. All P/R and non-P/R case
were separated evenly into 5 folds in order to prevent data
imbalance. Each fold contained 8 to 9 P/R cases and 6 to 7 non-
P/R cases. Hyperparameters were tuned to find the most robust
models according to area under curve (AUC) values. Then, the
best model was selected, and final performance results were
obtained by repeated cross-validation. Training with a small
dataset usually encounters overfitting. Therefore, random
dropout layers were applied to each layer during the training
process (42). Moreover, L1 and L2 regularizations were applied
to fully connected layers with L1 penalty weight 1e-4 and L2
penalty weight 3e-5. The dataset is divided into training and
validation sets according to 5-fold cross-validation. That is, each
evaluation includes 80% data for training and 20% data
for validation.

Statistical Analysis
Statistical analyses were performed using the statistical package
SPSS (V.25.0, IBM, Chicago, IL, USA). For the evaluation of
FIGURE 2 | Multimodal CNN_v1-MLP architecture for prediction of progression/recurrence (P/R) in NFMAs.
April 2022 | Volume 12 | Article 813806
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clinical and radiological data, Chi-square (or Fisher’s exact test)
and Mann-Whitney U tests were performed for categorical and
continuous data respectively. For the evaluation of performance
in DL models, the accuracy, precision, positive predictive value
(PPV), negative predictive value (NPV), recall, F1 score, loss and
AUC of the different prediction models were calculated. DeLong
test by MedCalc statistical software (version 20.027) was used for
comparison of receiver operating characteristic (ROC) curves in
different DL models. Binary cross-entropy method was used for
loss calculation (43). The cross-entropy loss can be calculated
using the following equation:

Binary Cross Entropy

= � 1
No

N
i=1y1 · log (pi) + (1 − y1) · log (1 − pi)

where N is the batch size, pi represents the predictive
probability (result of the classifier) and yi represents the
expected output. For all statistical analyses, p-values < 0.05
were considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 6
RESULTS

Clinical and Radiological Features
The clinical and radiological features are summarized in Table 1.
P/R was diagnosed in forty-two (42/78, 53.8%) patients. Among
sex, age, and BMI, male sex is the most important clinical
covariate in the predictive model. Significant differences (p <
0.05) were observed in visual disturbance, hypopituitarism, EOR,
successful chiasmatic decompression, cavernous sinus/extrasellar
extension, compression of the optic chiasm/3rd ventricle, and
tumor height/volume between patients with and without P/R
(Figures 3, 4). Although significant difference in follow-up
duration existed between P/R and non-P/R groups, the follow-
up time in both groups (49.7 and 32 months) was more than
mean time to P/R (25 months).

Performance of CNN, MLP, and
Multimodal CNN-MLP Architectures
Total 62 training cases and 16 validation cases from real patients
were included. The data were extended to 6,240 training samples
FIGURE 3 | NFPA with P/R. A 45-year-old female patient with blurred vision, headache, and pathologically confirmed NFMA. (A, B) Coronal T2WI (A) and CE T1WI
(B) show a NFMA (white arrows) with upward suprasellar extension, causing compression of the optic chiasm and the third ventricle (open arrow). (C) Subtotal
tumor resection via transsphenoidal approach (TSA) was performed, and the residual tumor (arrowheads) was observed. (D, E) Progression of the residual tumor
(open arrowheads) was observed in 27 months (D) and 43 months (E) after surgery.
April 2022 | Volume 12 | Article 813806
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and 1,560 validation samples for ML. The evaluation metrics
included accuracy, precision, PPV, NPV, recall, F1 score, and
AUC in training and validation sets. The performance of
different predictive models in the validation set are
summarized in Table 2. All metrics were averaged using 5-fold
Frontiers in Oncology | www.frontiersin.org 7
cross validation. Among different combinations of input and
model architectures, the multimodal light-weighted CNN_v1
model (using CE T1WI and T2WI) combined with 3-layer
MLP (using clinical features) showed the best performance for
prediction of P/R, with AUC up to 0.85 (Figure 5). Metrics of
FIGURE 4 | NFPA without P/R. A 20-year-old male patient with blurred vision and pathologically confirmed NFMA. (A, B) Coronal T2WI (A) and CE T1WI (B) show
a NFMA (white arrows) with upward suprasellar extension, causing compression of the optic chiasm and the third ventricle (open arrow). (C) Subtotal tumor
resection via TSA was performed, and the residual tumor (arrowheads) was observed. (D) No progression of the residual tumor (arrowheads) was observed 48
months after surgery.
TABLE 2 | Performance of CNN, MLP, and multimodal CNN-MLP architectures for prediction of P/R in validation set of NFMAs.

5-fold cross validation Models Accuracy Precision PPV NPV Recall F1 Score AUC

Average over 3 trials CNN_v1(CE T1WI) 0.76 0.74 0.74 0.80 0.86 0.80 0.80
CNN_v2(CE T1WI) 0.74 0.75 0.73 0.78 0.85 0.80 0.77
CNN_v1(T2WI/CE T1WI) 0.83 0.87 0.86 0.79 0.81 0.84 0.84
2-layer MLP (clinical features) 0.73 0.72 0.69 0.81 0.89 0.79 0.73
3-layer MLP (clinical features) 0.73 0.73 0.70 0.79 0.87 0.79 0.73
CNN_v2(CE T1WI) + 2-layer MLP 0.75 0.79 0.76 0.73 0.76 0.78 0.77
CNN_v1(T2WI/CE T1WI) + 2-layer MLP 0.81 0.88 0.86 0.77 0.77 0.82 0.84
CNN_v1(T2WI/CE T1WI) + 3-layer MLP 0.83 0.90 0.89 0.78 0.78 0.84 0.85
April 2
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training and validation sets over epochs in this best predictive
model are shown in Figure 6. In this predictive model, accuracy
of 83%, precision of 90%, PPV of 89%, NPV of 78%, recall of
78%, F1 score of 0.84, and AUC of 0.85 were obtained in the
validation set (Figure 6). Table 3 showed comparison of ROC
curves in different DL models. Although CNN_v1 model (CE
T1WI and T2WI) + 3-layer MLP (clinical features) showed the
best predictive performance, no statistical significance exists in
AUC values between the three best predictive models: CNN_v1
(T2WI/CE T1WI) + 3-layer MLP, CNN_v1 (T2WI/CE T1WI) +
2-layer MLP, and CNN_v1 (T2WI/CE T1WI).
DISCUSSION

The present study explored the effectiveness of DL for prediction of
tumor progression and recurrence in NFMAs. Both clinical and
MRI data were used in different DL models to compare the
performance between models. Several DL architectures, including
CNN models using T2WI and CE T1WI data, MLP models using
Frontiers in Oncology | www.frontiersin.org 8
clinical data, and multimodal CNN-MLP models using both data
were developed. Among these architectures, the multimodal CNN-
MLP models using combination of clinical and MRI data showed
the best performance.

Althoughmost NFMAs (> 90%) are benign adenomas according
to the 2017 WHO classification system (4), up to half of patients
(25% - 55%) may exhibit early tumor P/R within 5 years after
surgery (5). The Ki-67 index and cell mitosis in histopathology with
tumor invasion on imaging are all associated with aggressive clinical
behavior in NFMAs (4). However, the invasive growth of NFMAs is
not clearly defined in the WHO criteria, and it is usually dependent
on corresponding MRI study (5). For functioning pituitary
adenomas, postoperative hormone concentration serves as a
biomarker to detect tumor recurrence; in contrast, no specific
factor is used as a marker for NFMAs (5). Conventional qualitative
MR imaging features such as cavernous sinus invasion and solid
tumor consistency have been reported as impact parameters
associated with P/R in NFMAs (6, 8–11). Recently, low apparent
diffusion coefficient (ADC) value, indicating a high cellular density,
is reported to be associated with P/R in NFMAs (10, 44).
A B C

D E

G H

F

FIGURE 5 | ROC curves (red: average, blue: 5 folds for cross-validation, gray: 95% confidence interval) and AUC values in (A) CNN_v1 (CE T1WI), (B) CNN_v2
(CE T1WI), (C) CNN_v1 (T2WI/CE T1WI), (D) 2-layer MLP (clinical features), (E) 3-layer MLP (clinical features), (F) multimodal CNN_v2 (CE T1WI) + 2-layer MLP,
(G) multimodal CNN_v1 (T2WI/CE T1WI) + 2-layer MLP, and (H) multimodal CNN_v1 (T2WI/CE T1WI) + 3-layer MLP architectures for prediction of P/R in NFMAs.
April 2022 | Volume 12 | Article 813806
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However, the ADC values are often affected by susceptibility imaging
artifacts from blood products due to apoplexy or necrosis in NFMAs;
therefore, they can only be measured for solid tumor without
hemorrhage or cystic changes (6, 10, 45). The major imaging-based
ML algorithms include DL and radiomics approaches (46). As
compared with conventional handcrafted radiomics, the present DL
models obtain discriminative features automatically from images (47).
For prediction of recurrence in NFMAs, Zhang et al. (35) first
reported an accuracy of 82% and AUC of 0.78 in radiomics
Frontiers in Oncology | www.frontiersin.org 9
analysis, and superior predictive performance in DL models was
obtained in the present study.

The results of clinical evaluation in NFMAs byMRI-based CNN
models are excellent, and most studies report accuracy up to 90%
and AUC up to 0.80 (22–30). Compared with the previously
reported studies, the application of DL for predicting clinical
outcomes in NFMAs have not yet been reported, and no similar
studies can be compared. In our results, adding T2WI improves the
predictive excellence as compared with CNN models using CE
A B

D E

C

FIGURE 6 | The (A) accuracy, (B) precision, (C) recall, (D) loss, and (E) AUC over epochs of the training (red) and validation (green) sets in the best multimodal
CNN-MLP model for prediction of P/R in NFMAs.
TABLE 3 | Comparison between ROC curves of CNN and MLP architectures for prediction of P/R in NFMAs.

Models CNN_v2 (CE T1WI) CNN_v1
(T2WI/CE
T1WI)

2-layer MLP
(clinical)

3-layer
MLP

(clinical)

CNN_v2 (CE T1WI)
+ 2-layer MLP

CNN_v1 (T2WI/CE
T1WI) + 2-layer MLP

CNN_v1 (T2WI/CE
T1WI) + 3-layer MLP

CNN_v1 (CE T1WI) 95% CI: (-0.025,
0.028) p value: 0.91

(0.040, 0.097)
< 0.001*

(-0.004, 0.06)
0.078

(0.015,
0.087)
0.005*

(-0.016, 0.038)
0.433

(0.029, 0.085) < 0.001* (0.026 to 0.086) <
0.001*

CNN_v2 (CE T1WI) (0.039, 0.100)
< 0.001*

(-0.007,
0.066) 0.119

(0.013,
0.087)
0.008*

(-0.019, 0.038)
0.522

(0.029, 0.088) < 0.001* (0.030, 0.085) < 0.001*

CNN_v1 (T2WI/CE
T1WI)

(0.066 to
0.132) <
0.001*

(0.084,
0.155) <
0.001*

(0.046, 0.112) <
0.001*

(-0.007, 0.030) 0.223 (-0.010, 0.0346) 0.272

2-layer MLP (clinical) (-0.014,
0.055) 0.241

(-0.015, 0.054)
0.259

(0.053, 0.122) < 0.001* (0.050, 0.123) < 0.001*

3-layer MLP (clinical) (0.002, 0.079)
0.038*

(0.073, 0.143) < 0.001* (0.069, 0.146) < 0.001*

CNN_v2 (CE T1WI) +
2-layer MLP

(0.036 to 0.100) <
0.001*

(0.033, 0.100) < 0.001*

CNN_v1 (T2WI/CE
T1WI) + 2-layer MLP

(-0.020, 0.022) 0.920
April 2022 | Volu
CI, confidence interval.
*Statistical difference (p < 0.05).
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T1WI only, with AUCs of 0.84 and 0.80 respectively. For clinical
features analyzed in MLP models, AUC of 0.73 in prediction of P/R
can be obtained. The best performance (AUC of 0.85) can be
achieved using a combination of clinical and MRI features in a
multimodal CNN-MLP architecture. Herein, we have introduced
this new concept concerning DL algorithms for prediction of P/R in
NFMAs, although the architectures must be validated in future
studies with larger sample size.

The extent of surgical resection is known to be a significant
determining factor affecting tumor recurrence rates in NFMAs (8),
and the present study has shown similar results. However, a
significant association between the number of surgical resections
and complication rates in NFMAs has been observed (48). Diabetes
insipidus and anterior pituitary insufficiency are the most
commonly encountered surgical complications in NFMAs, with
occurrence rates of 18% and 19%, respectively (48). On the other
hand, although postoperative adjuvant RT offers excellent tumor
control rate in NFMAs, it may increase risks of long-term
complications such as hypopituitarism, cerebrovascular accident,
visual deterioration, and dementia (49, 50). Because adjuvant RT
may affect the independent predictive value of the preoperative
MRI-based DL analysis for P/R, patients who have received
adjuvant RT before P/R were excluded from the present study.
Since most NFMAs are benign tumors, preoperative prediction of
tumor recurrence offers clinically valuable information for
treatment options. For patients at high risks of tumor recurrence,
aggressive surgical resection with adjuvant RT and close MR
imaging follow-up should be considered. In contrast, for patients
at lower risks of P/R, the aim of surgical treatment would be to
relieve clinical symptoms by decreasing tumor mass effect. On the
other hand, follow-up time is an important factor for detection of
P/R in NFMAs, and it should be noticed that more recurrence may
occur in patients with longer follow-up time even if the predictive
model shows low risk at first. Avoiding potential surgical
complications while maintaining a good treatment outcome
represents optimal surgical planning for low-risk patients.

Although this is the first DL study combined clinical and MRI
data for investigating tumor behavior in NFMAs, the study has
several limitations. First, the retrospective study design and the
limited sample size may lead to selection bias. Second, as in most
imaging-based ML studies of pituitary tumors (51), the present
study lacked external validation due to few available data. The MR
images were acquired at a single medical center with a single
protocol. Further testing withmulti-institutional data and different
pulse sequence protocols is necessary to determine whether the
predictive model is generalizable. The inconsistency of scanning
machine, magnetic field strength, and contrast agent type may
affect the MR image feature. The variation in follow-up time
existed between P/R and non-P/R groups due to the retrospective
nature. The two-dimensional information on MR images may
offer limited information to the trained model as compared with
using three-dimensional convolution. Finally, when larger
populations become available from more institutions, the
modern CNN-based architectures such as AlexNet and
GoogleNet may capture more image features, which can further
improve model performance.
Frontiers in Oncology | www.frontiersin.org 10
CONCLUSIONS

The present study explored the effectiveness of DL in predicting P/
R of the NFMAs. Even with a limited training data set, the results
showed novel DL architecture incorporating clinical and MRI
features provides a high level of accuracy and reliability for
predicting recurrence in NFMAs. Better predictive performance
was observed in a multimodal CNN-MLP model incorporating
both clinical and MRI data as compared with classifiers using
either clinical or MRI data alone. The results offer valuable
information for preoperative and postoperative planning in
NFMAs management, including the extent of surgical resection,
implementation of adjuvant RT, and the time interval of MRI
follow-up. Nevertheless, the DL architectures still require
validation using larger-scale datasets from multiple institutions.
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