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The effect of carbon fertilization on naturally
regenerated and planted US forests

Eric C. Davis 1 , Brent Sohngen 2 & David J. Lewis 3

Over the last half century in the United States, the per-hectare volume of wood
in trees has increased, but it is not clear whether this increase has been driven
by forest management, forest recovery from past land uses, such as agri-
culture, or other environmental factors such as elevated carbon dioxide,
nitrogen deposition, or climate change. This paper uses empirical analysis to
estimate the effect of elevated carbon dioxide on aboveground wood volume
in temperate forests of the United States. To accomplish this, we employ
matching techniques that allow us to disentangle the effects of elevated car-
bon dioxide from other environmental factors affecting wood volume and to
estimate the effects separately for planted and natural stands. We show that
elevated carbon dioxide has had a strong and consistently positive effect on
wood volumewhile other environmental factors yielded amix of both positive
and negative effects. This study, by enabling a better understanding of how
elevated carbon dioxide and other anthropogenic factors are influencing
forest stocks, can help policymakers andother stakeholders better account for
the role of forests in Nationally Determined Contributions and global mitiga-
tion pathways to achieve a 1.5 degree Celsius target.

In theUnited States, over the last twodecades, a large forest C-sink has
sequestered 700–800 million tons of CO2 per year, which is roughly
10–11% of US gross CO2 emissions1–3. In addition, the per-hectare
volume of trees has increased over the last 50 years4. Among the ten
forest groups in this study, all except Aspen-Birch have increased their
per-hectare wood volume from 1997 to 2017 (Fig. 1)5,6.

It is not clear, however, whether the tree-volume and C-sink
increase have been driven by forest recovery frompast land uses, such
as agriculture7, or other environmental factors such as elevated CO2, N
deposition, or climate change8. Even less well understood is the role of
forest management through planting, harvesting of secondary and
old-growth forests, and forest management that is certified with sus-
tainability criteria, even though these approaches are employed on an
increasingly large shareof theworld’s forests9. As policymakers look to
the future, where forests are expected to play a large role in Nationally
Determined Contributions (NDCs) and global mitigation pathways to
achieve a 1.5 °C target10–13, it is important to better understand how

anthropogenic factors like elevated CO2 may influence current forest
stocks and the outcomes of forest-expansion (e.g., afforestation) and
conservation policies (e.g., avoided deforestation).

This analysis builds on the experimental and modeling literature
that has examined the role of elevated CO2, like the FACE studies that
controlled CO2 levels on plots within the same location and found that
elevated CO2 increased net primary productivity (NPP)14,15. The effects
these studies observed, however, might not scale up across ecosys-
tems and over time with disturbances and other processes at play.

Tree ring studies16,17 offer the potential to observe the effects of
elevated CO2, but with limited observations and controls, they could
not identify the effects of elevated CO2 separately from other factors,
such as weather. Other research has shown that tree heights in Poland
increased over time, although the role of CO2 concentration was not
identified18, and that CO2 exposure generates smaller effects on tree-
volume in settings that are colder and have more water stress19. A
recent meta-analysis of experimental results estimated that each
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100-ppm increase in CO2 increases aboveground volume in ecosys-
tems by 8.2%20. These experimental results underpin many dynamic
global vegetation models (DGVMs), but they have not been replicated
with observations from plots drawn randomly within ecosystems. This
study addresses that gap by using quasi-experimental techniques21 and
data drawn from tens of thousands of plots in the United States to
identify, specifically and differentially, the role of elevated CO2 from
other factors that also influence wood volume in forest stands.

We show that there has been a positive response in wood volume
to elevated CO2 in ten temperate forest groups in the United States.
Moreover, our estimated response in ecosystems is larger than that
predicted by experimental results. Those estimates, however, included
non-forested ecosystems, which do not appear to respond as strongly
as forests to elevated CO2. For the forest groups in our study with both
planted and naturally regenerated observations, we find that the pro-
portional impact of elevated CO2 on planted stands is roughly equiva-
lent to the impact in natural stands, but the results in cubic meters per
hectare aremostly larger for planted stands because planted stands, on
average, have more volume than naturally regenerated stands.

Results
This study estimates the impact of elevated CO2 on wood volume in
the central stems of trees by comparing growing-stock volume on
recently observed timber plots with matched plots observed decades
prior using historical data from the US Forest Service (USFS) Forest
Inventory and Analysis Program (FIA)22. A key challenge in under-
standing howelevatedCO2 affects thewood volumeobserved in forest
plots is that CO2 concentrations change only temporally but not spa-
tially. That means that all forests are exposed to the same CO2 con-
centration each year. Our research design overcomes this challenge by
utilizing the fact that forests embed the historical CO2 concentrations
to which they have been exposed. Thus, two plots of the same age and
type of forest observed at two different time periods have effectively
received two different CO2-exposure profiles. This is also true when
two plots of the same type of forest are observed at the same time
period, but their ages differ.

Since other factors such as climate, technology, pests, and tree
stocking also affect the volume and vary over time, we use modern
econometric techniques that combine matching with post-matching

regression analysis, which includes time-fixed effects, to isolate the
effects of elevated CO2 from other time-varying and time-invariant
covariates that might also affect tree volumes23. These matching
methods24 systematically construct treatment and control groups of
timber plots that are similar in observable characteristics, but that vary
in their exposure to CO2 due to the observations having been taken in
different decades.

Forests provide several advantages to facilitate empirical identi-
fication of the impact of elevated CO2 on tree wood volume. First,
volume and management decisions on US forests have been system-
atically monitored and measured for many decades through the plot-
level FIA database. Second, the FIA data indicate whether forest plots
were regenerated naturally or through active planting.While the wood
volume of several species of commercially planted conifers have been
affected by changing seed technology over the last few decades,
naturally regenerated forests—including most hardwoods—have not
been influenced by such technological changes that would confound
the identification of the impact of elevated CO2.

We examine ten temperate forest-type groups in theUnited States
whose range in the FIA database is shown in Fig. 2. First, we focus only
on observations of naturally regenerated (unmanaged) forest plots
because natural stands arguably have not been affected by the
advances in tree planting and seed selection that have improved
thequality of planted standsover the same timeperiod. To address the
potential for bias in our data, we follow recent advances in quasi-
experimental econometrics and “trim” the data using matching
methods23 to create a dataset of one-to-onematches between a control
group comprised of observations taken by the USFS during the pre-
1990 (low CO2) period and a treatment group whose observations
were made in the post-2000 (high CO2) period, while controlling for
multiple salient covariates that are correlated with time and/or could
affect yield, such as age and stocking conditions (Supplementary
Tables 1–6 and Supplementary Data 1, 2). A variety of alternative
functional forms are tested (Supplementary Data 3–10), with results
robust across specifications. The effect of elevated CO2 is identified by
the natural log of lifetime CO2, which is the logged sum of the annual
CO2 concentrations experienced by each stand-up to its age class at
the time the plot is measured. Climate-related effects onwood volume
are captured with seasonal temperature and precipitation variables.
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Fig. 1 | Wood volume per hectare in 1997 and 2017 separated by forest group. Source: USFS 1997 and 2017 RPAs5,6.
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Fig. 2 | Geographic range of forest groups based on observations taken by
USFS.Note: Thisfigure for each forest group details (in green) all counties in which
the US Forest Service Forest Inventory and Analysis (USFS-FIA) database has

recorded the forest group’s presence between 1968 and 2018. This is based on its
annual resource inventories and is limited to observations of stands between 1 and
100 years of age.
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To strengthen the identification of elevated CO2, other environ-
mental factors correlatedwith time, suchasnitrogendeposition, large-
scale disturbances associated with invasive species (e.g., Emerald Ash
Borer, Agrilus planipennis Fairmaire), and widespread phenomena like
Sudden AspenDeath, are captured by including time-dummyvariables
(fixed effects). For Table 1, the dummy variable is designed to capture
changes between the pre-1990 and the post-2000 periods that are not
tied to the gradually increasing CO2 trendline (e.g., the impact of
nitrogen deposition). The approach is detailed in Model (1) of Sup-
plementary Data 11 and the multivariate-regression results are pre-
sented as Model (1) in Supplementary Data 12–22. In six of the ten
forest groups, two-sided t-tests indicate that the time-dummy coeffi-
cients are significant with two forest groups positively impacted and
four negatively (Table 1). Aspen/Birch appears to have experienced the
largest decline over time (−18.0%; P <0.01; 99%CI from −30.8 to −5.2%;
t = −3.62;df = 16,416), a result potentially due to aspendecline25–28. Elm/
Ash/Cottonwood also decreases (−11.8%; P <0.01; 99% CI from −23.1 to
−0.6%; t = −2.7; df = 7562), a result that might be the result of the
Emerald Ash Borer that has plagued Ash trees in the Eastern US from
2002 to the present29,30. White/Red/Jack pine shows the largest
increase (21.2%; P <0.01; 99% CI from 0.1 to 42.2%; t = 2.6; df = 12,458)
while Spruce/Fir experienced a 19.2% increase (P < 0.10; 90%CI from1.1
to 37.2%; t = 1.8; df= 4926), a result most likely due to recovery from
spruce budworm (Choristoneura fumiferana) outbreaks in the 1970s
and early 1980s4,31. Overall, across all forests, these large-scale changes
from episodic phenomena have reduced wood volume by an average
of 8.9% (P <0.01; 99% CI from −10.7 to −7.0; t = −12.4; df = 123,145).

As for elevated CO2, results indicate that for each of the ten forest
groups, it has had a positive and significant effect (P <0.01) on
growing-stock volume. In SupplementaryData 12–21:Models (1–4), the
parameters for logged cumulative lifetime CO2 exposure range from
0.92 to 1.42, with an average across all species and models of 1.15. The
magnitude of this CO2 exposure parameter indicates that each 1%
increase in lifetime CO2 exposure, which is an additional 3.2–3.3 ppm
CO2

32–34 or 2.2–3.4 years’worth of net global emissions over the period
from 1984 to 2010 (the midpoints of our control and treatment
groups), leads to a 1.15% increase in wood volume.

When examining the cumulative impact of elevated CO2 and
analyzing the impact by forest group by age, we estimate that between
1970 and 2015, there has been a significant increase in the wood
volume of trees (Table 1). For example, at 75 years of age, the magni-
tude of the increase is smallest for Maple/Beech/Birch at 9.9%
(+15.6m3 ha−1; P <0.01; 99% CI from 5.3 to 14.6%; t = 5.0; df = 12,458)
and largest for White/Red/Jack pine at 14.4% (+26.3m3 ha−1; P <0.01;
99% CI from 0.4 to 28.3%; t = 2.4; df= 2307). Overall, the change in
volume is significant atP <0.01 across all ages and for all forest groups,
except Spruce/Fir. For Spruce/Fir, the estimated change is significant
(P < 0.01;df = 4926) for 25-year-old stands at 17.4% (+5.8m3 ha−1; 99%CI
from 5.0 to 29.9%; t = 3.3) and for 50-year-old stands at 13.2%
(+9.0m3 ha−1; 99% CI from 0.8 to 25.7%; t = 2.5) but slightly less sig-
nificant (P < 0.05) for 75-year-old stands at 10.6% (+10.0m3 ha−1; 95%CI
from 1.8 to 19.4%; t = 2.0). This likely reflects the fact that the propor-
tional increase in volume due to elevated CO2 is greatest for younger
stands in Table 1 because younger stands experienced a larger pro-
portional change in CO2 exposure from 1970 to 2015. For instance,
between 1970 and 2015, cumulative lifetimeCO2 increased 11.1% for 75-
year-old stands, whereas for 25-year-old stands, it increased 18.9%32–34.

Next, we combine all the matched data for naturally regenerated
stands, add forest-type controls to account for the heterogeneity
across the forest groups, and estimate the exponential volume func-
tion, an approach shown as Model (2) of Supplementary Data 11.
Results (Supplementary Data 22) show that the average impact of
elevated CO2 on the volume of 75-year-old trees across all ten forest
groups from 1970 to 2015 is +12.3% (+23.0m3 ha−1; P < 0.01; 99% CI
from 7.9 to 16.7%; t = 6.5) (Table 1).

Given that the Western US faces different threats and dis-
turbances than the Eastern US, we repeat the process used to create
Table 1withonly plots from the 33 states theUSFS considerspart of the
East. Specifically, this comprises all states fully east of the 100th mer-
idian plus Texas and Oklahoma. Balance statistics are provided in
Supplementary Data 23. Supplementary Data 11 details the models
used for each forest group individually (Model 3) and the combined
sample (Model 4). Regression results are presented in Supplementary
Data 24, 25. To enable ease of comparison with Table 1, a revised
version for the Eastern US is also included (Supplementary Table 7).
Results for the four forest groups whose original match results had no
observations from theWestern US, of course, are identical. Among the
remaining six, there are slight changes in the impact of elevated CO2.
At age 75, Elm/Ash/Cottonwood increases from 10.0% (16.0m3 ha−1) for
all observations to 11.0% (18.0m3 ha−1; P < 0.01; 99% CI from 4.7 to
17.2%; t = 4.1; df = 6724) for observations in the Eastern US. Oak/Pine
increases from 12.6% (25.1m3 ha−1) to 13.1% (26.7m3 ha−1; P <0.01; 99%
CI from7.4 to 18.7%; t = 5.4; df = 9814), and Aspen/Birch increases from
12.1% (17.6m3 ha−1) to 12.4% (18.1m3 ha−1; P <0.01; 99% CI from 8.0 to
16.8%; t = 6.6; df= 16,349). Maple/Beech/Birch increases from 9.9%
(15.6m3 ha−1) to 10.0% (15.8m3 ha−1; P <0.01; 99% CI from 5.4 to 14.7%;
t = 5.0; df= 12,360). Spruce/Fir decreases from 10.6% (10.0m3 ha−1) to
10.5% (9.8m3 ha−1; P < 0.05; 95% CI from 1.9 to 19.0%; t = 2.0; df= 4930)
and Oak/Hickory remains the same at 11.5% (19.6m3 ha−1; P <0.01; 99%
CI from 9.0 to 14.1%; t = 10.6; df = 38,726). As to the coefficients cap-
turing episodic phenomena, they keep the same sign and differences
in effect size are modest.

For a final robustness check, we test an alternative volume func-
tion and nonlinear least squares regression approach, detailed in
Supplementary Data 11 (Models 5–6), that uses the same matched
samples as Table 1. Results from these regressions are presented in
Supplementary Data 26, 27 and the impacts are similar in sign and
magnitude to those shown in Table 1 (Supplementary Tables 8, 9).

We next examine the impact of elevated CO2 separately for
naturally regenerated and planted stands for the three forest groups
where sufficient dataof both types is available (SupplementaryData 11:
Model 7). Sincemany replanted stands are harvested in relatively short
timber rotations, meaning there are few stands older than age 50, we
limit the data for both to ages less than or equal to 50 years to better
compare the different stands35–40. Because of this change in age clas-
ses, we create newmatches for both naturally regenerated andplanted
stands (Supplementary Data 28–30) and then run new post-matching
regressions (Supplementary Data 31–33). Results indicate that ele-
vated CO2 has positive effects (P <0.01) on wood volume for each
forest type examined on both natural and planted stands. Based on
these regressions, the predicted change in volumedue to elevatedCO2

at 25 years of age for planted stands in 1970 versus 2015 (Table 2) for
Slash/Longleaf pine is +15.5m3 ha−1 (+21.7%; P < 0.05; 95% CI from +1.8
to +29.3m3 ha−1; t = 1.9; df = 859). For Loblolly/Shortleaf pine, the
change is +34.6m3 ha−1 (+27.4%; P <0.05; 95% CI from +17.4 to
+51.8m3 ha−1; t = 3.9; df = 2757), and for White/Red/Jack pine, the
change is +16.0m3 ha−1 (+42.8%; P <0.05; 95% CI from +2.1 to
+29.8m3 ha−1; t = 2.3; df = 671). For naturally regenerated stands, the
gains are smaller. For Slash/Longleaf pine, the change is +12.5m3 ha−1

(+21.7%; P <0.05; 95% CI from +4.3 to +20.7m3 ha−1; t = 2.5; df= 1981),
for Loblolly/Shortleaf pine, the change is +21.4m3 ha−1 (+28.8%;
P < 0.05; 95%CI from+15.9 to +26.9m3 ha−1; t = 7.6;df = 10,170), and for
White/Red/Jack pine, the change is +15.3m3 ha−1 (+29.4%; P <0.05; 95%
CI from +4.5 to +26.1m3 ha−1; t = 2.8; df = 1280). The results for natural
stands are consistent with the results presented in Table 1 that are
derived from all observations aged 1 to 100.

The size of the coefficient on the natural log of lifetime CO2 for
natural stands is larger though for the analysis using forests aged 1 to
50 than the analysis for Table 1 using forests aged 1 to 100. For
Loblolly/Shortleaf, using only observations aged 1 to 50, the parameter
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on the carbon-fertilization variable is 1.66 (P < 0.01; 99%CI from 1.59 to
1.73; t = 43.8), whereas, when using observations aged 1 to 100, the
parameter is smaller at 1.29 (P <0.01; 99% CI from 1.25 to 1.33; t = 59.9)
(Supplementary Table 10). Likewise, for White/Red/Jack pine, the
values are 1.70 (P < 0.01; 99% CI from 1.49 to 1.90; t = 16.1) and 1.38
(P < 0.01; 99% CI from 1.26 to 1.50; t = 21.9) (Supplementary Table 10),
respectively. These larger parameters, when using just the observa-
tions of younger stands, suggest that the effect of carbon fertilization
could attenuate over time for some forest groups. For Slash/Longleaf
though, the parameter values are relatively consistent at 1.25 (P <0.01;
99% CI from 1.08 to 1.42; t = 14.5) and 1.27 (P <0.01; 99% CI from 1.16 to
1.37; t = 23.9) (Supplementary Table 10), respectively.

Discussion
Our estimated response of wood volume in ecosystems to elevated
CO2 is stronger than that predicted by experimental results. Over the
period 1970 to 2015, CO2 concentrations increased by 75 ppm, and we
find that this increase in CO2 stimulated an increase in wood volume in
naturally regenerated 75-year-old forests in the United States by 12.3%
(7.5 and 17.1%: 99% CI). This is larger than the 8.2% effect found in
experimental studies20, although those estimates included non-
forested ecosystems, which do not appear to respond as strongly as
wood volume to elevated CO2. Also, our results are for temperate
forest groups that exist largely in parts of the Eastern US where the
climate is mostly warm and wet. This is important given the recent
finding that, in settings that are colder andhavemorewater stress, CO2

exposure generates smaller effects on tree-volume19.
For the southern pine forest groups, our estimates indicate that

the proportional response of wood volume in planted stands is
roughly equivalent to the response in natural stands, but the results in
cubic meters per hectare are larger for planted stands because these
planted stands have more volume on average than naturally regener-
ated stands. For White/Red/Jack pine, our estimates indicate a differ-
ent pattern. The proportional response of wood volume in planted
stands is far larger than the response in natural stands, but the results
in cubic meters per hectare are smaller for planted stands early in life.
Potentially, there are some management activities associated with the
replanting of White/Red/Jack pine, such as competition management,
that initially reduce biomass. Using the results for 25-year-old stands
(Table 2), the 75-ppm increase in CO2 between 1970 and 2015 gener-
ated a 28.8% (21.4m3 ha−1) increase in wood volume in 25-year-old,
naturally regenerated Loblolly/Shortleaf stands and a 27.4%

(34.6m3 ha−1) increase in planted stands of the same age. This suggests
that from 1970 to 2015, wood volume on natural Loblolly/Shortleaf
stands increased by about 0.5m3 ha−1 yr−1 due to elevated CO2, while
volume increased by 0.8m3 ha−1 yr−1 on planted stands.

The parameter on logged CO2 for Loblolly/Shortleaf and White/
Red/Jack pine is smaller for the regressions using forests aged 1 to 100
than those using only forests aged 1 to 50 (Supplementary Table 10).
This suggests that for these two forest groups, carbon fertilizationmay
attenuate over time—that is, the proportional response in wood
volume to elevated CO2, when measured with data including older
stands, is smaller than when measured with data including only
younger stands. Although the proportional effect of elevated CO2

appears to decline for older stands, the additional accumulation of
volume in older stands due to elevated CO2 remains substantial
nonetheless because older stands have more wood volume.

The methods in this study explicitly control for other time-linked
phenomena. Climate change is controlled directly through our
experimental design bymatching observations before 1990with those
after 2000 and then including polynomial functions of seasonal cli-
mate variables in our post-matching estimations. Other episodic fac-
tors, such as nitrogen deposition and invasive species, are controlled
with dummy variables that account for the year the plot was observed.
While we cannot observe these specific factors, the results indicate
that, on average, these episodic factors have caused wood volume in
naturally regenerated stands to decline. In fact, across all forest
groups, these time-related factors reduced volume by 8.9% (P <0.01)
between 1970and 2015 (Table 1).Only twoof the forest groups showed
an increasing trend in wood volume that is not attributable to climate
change or elevated CO2: White/Red/Jack pine (P <0.01) and Spruce/Fir
(P < 0.10). We hypothesize that these results are both tied to recovery
from past natural disturbances.

For planted stands aged 1 to 50, we find a significant negative
trend in wood volume for Loblolly/Shortleaf and White/Red/Jack (but
not for Longleaf/Slash) pine that is attributed to episodic temporal
factors unrelated to elevated CO2 and climate change, but for similarly
aged naturally regenerated stands, the effect is smaller or not sig-
nificant (Supplementary Data 31–33). This outcome suggests that on
planted stands, temporal factors unrelated to elevated CO2 and cli-
mate change have had a negative influence on wood volume in the last
30 to 40 years. Although we control for stocking conditions in the
matching process, increased thinning activity or lower investments in
fertilizing after 2006, as timber prices declined and fertilizer prices

Table 2 | Change in predicted volume from 1970 to 2015 due to carbon fertilization on naturally regenerated and planted pine
stands at ages 10 and 25 using observations aged 1–50

Age (years) Slash/Longleaf Loblolly/Shortleaf White/Red/Jack

Natural Planted Natural Planted Natural Planted
Obs. 2036 914 10,226 2814 1334 726

10 Δ (%) 24.5 24.6 32.5 30.9 33.2 48.3

95% CI (10.2, 38.7) (5.3, 43.9) (26.3, 38.8) (19.5, 42.4) (15.8, 50.6) (17.1, 79.6)

Δ (m3/ha) 5.5 7.3 9.3 10.1 9.4 4.2

95% CI (2.3, 8.6) (1.6, 13.0) (7.5, 11.1) (6.3, 13.8) (4.5, 14.3) (1.5, 6.8)

25 Δ (%) 21.7 21.7 28.8 27.4 29.4 42.8

95% CI (7.4, 35.9) (2.4, 41.0) (22.5, 35.0) (15.9, 38.8) (12.0, 46.8) (11.5, 74.0)

Δ (m3/ha) 12.5 15.5 21.4 34.6 15.3 16.0

95% CI (4.3, 20.7) (1.7, 29.3) (16.7, 26.0) (20.1, 49.1) (6.3, 24.4) (4.3, 27.7)

The data were truncated to observations aged 1 to 50 years. Then matching occurred with control observations spanning 1968–90 and treatment observations spanning from 2000–18. Post-
matching, full multivariate-regression analysis was performed and the effect of C fertilization was estimated by comparing the average volume given the age-specific, CO2 exposure for 1970 and
2015 (i.e., a 25-year-oldstand in 1970wouldhave received the sumofyearlyexposure values from1946 to 1970anda25- year-old stand in 2015wouldhave received thesumofyearly exposure values
from 1991 to 2015). Thep value for theCO2 variablewas less than0.01 for both thenatural andplanted runs for each forest group.Climatevariableswere heldat their age-specific, 1970 levels. Using a
one-sided t-test to test the hypothesis that volume in 2015 was significantly different than volume in 1970, Table 2 displays the 95% confidence interval.
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increased during the Great Recession, could explain this result. Forest
managers, as well, may have shifted management objectives from
being largely focused on increasing volume to increasing value.

Overall, our results present evidence that there has been a posi-
tive response in wood volume to elevated CO2 in ten temperate forest
groups in the United States. Our matching approach, which allows us
to identify the effect of elevated CO2, does not enable us to assess how
elevated CO2 interacts with its resulting climate impacts, such as
changes in temperature, precipitation, forest composition, and range.
The pooled modeling approach we include in the robustness analysis
(Supplementary Data 3, 4) may provide an opportunity to test these
interactions. Our results hint that the effects of elevated CO2 could
attenuate in older forests, but we cannot directly test for attenuation
with our approach. Future research should address this question.

Methods
Materials
Information on wood volume and the physical environment of the
plots were obtained from the US Forest Service Forest Inventory and
Analysis (USFS-FIA)22. The FIA database categorizes each plot into one
of 33 forest groups, but 23 groups do not have sufficient data in the
control period (before 1990) to enable robust matching and so were
dropped from this study. As a result, several western forest groups
(e.g., Douglas-fir) were not included in our study. The following ten
forest groups [(1) Loblolly/Shortleaf Pine, (2) Slash/Shortleaf Pine, (3)
White/Red/Jack Pine, (4) Spruce/Fir, (5) Elm/Ash/Cottonwood, (6)
Maple/Beech/Birch, (7) Oak/Hickory, (8)Oak/Gum/Cypress, (9) Aspen/
Birch, and (10) Oak/Pine] all had more than 5000 observations and
large numbers of observations both from before 1990 and from 2000
on.Data for the 48 conterminous states fromevaluation years between
1968 and 2018 were included in the study. We limited our analysis to
plots with trees from 1 to 100 years of age, resulting in trees that had
been planted somewhere between 1869 and 2018—a period during
which atmospheric CO2 increased from roughly 287 to more than 406
ppm32–34. The geographic distribution of the ten forest groups pre-
sented in Fig. 2 shows in orange all counties in which the USFS recor-
ded in at least one year between 1968 and 2018 the presence of a plot
of the respective forest group that met the age requirements for
inclusion in this study. Precipitation and temperature data were
obtained from the PRISM Climate Group41.

Methods
Results in Tables 1 and 2 are based on estimated exponential tree-
volume functions of the generalized form shown in Eq. 1. The left-hand
side is the natural log of the volume per hectare in the central stem of
trees on each plot in cubicmeters. Volume is assumed to be a function
of age, the logged cumulative lifetime concentration of CO2, and other
variables, including plot-specific variables that vary across plots but
not time (Xi), weather variables that vary across plots and time (Wit),
and time-specific fixed effects that vary across time but not plots (Et).

Ln
Volume
Hectare

� �
it
= α + β0

1
Ageit

+β1 LnðCumCO2LifetÞ

+β2Xi +β3Wit +β4Et + εit

ð1Þ

The nonparametric smearing estimate method was used to
transform logged-volume results into a volume in cubic meters per
hectare42. The climate variables, obtained from the PRISM Climate
Group41 and described in Supplementary Table 1, enter as cubic poly-
nomials of the lifetime seasonal temperature and precipitation avera-
ges that a plot of a given age at a given time experienced.

The variable for atmospheric carbon was constructed as the
logarithmic transformation of the sum of yearly atmospheric CO2

exposures over the lifetime of the stand. Other site-specific covariates
were obtained from the FIA data (Supplementary Table 2), such as the

availability of water, the quality of the soil, the photoperiod of the plot,
whether disturbances had impacted the land, and whether the land
was publicly or privately owned43,44.

The time-specific fixed effects (Et) in the model control for epi-
sodic factors like nitrogen deposition and invasive species, which are
correlated with time but cannot be observed over space for the whole
time period. These time-dummy variables account for underlying,
unobservable systematic differences between the 21st-century period
when atmosphericCO2was higher and thepre-periodwhen levelswere
much lower. Controlling for these factors aids the identification of the
impact of elevated CO2, which varies annually.

A potential concern is that wood volume changes over time could
be related to an increased number of trees per hectare rather than
increasedwood volumeof the trees. To assesswhether controls for the
stocking condition were needed, we examined data on the number of
trees per acre of each forest type. First, we looked at a group of
southern states (Supplementary Table 3) and found double-digit per-
centage changes in tree stocking between 1974 and 2017 for seven of
the nine forest groups. However, the changes were mixed, with four
having increased tree density and five decreasing tree density. The FIA
data do not record the Aspen/Birch forest group as present in these
southern states in these evaluations.

Examination of a group of northern states involved a compar-
ison of the average stocking conditions around 1985 with those in
2017. The changes in tree density for these forest types (Supple-
mentary Table 4) were also split with four showing increased stock-
ing and five having less dense stocking. The change for Loblolly/
Shortleaf pine was relatively large, with stocking density increasing
by 27.2%. Slash/Longleaf was not recorded as present in these states
in these evaluations.

Next, we analyzed changes, over the period from around 1985 to
2017, in all states east of the 100thmeridian, as those states comprised
the bulk of the data in our study (Supplementary Table 5). Results for
seven of the ten forest groups showed a less dense composition.
Loblolly/Shortleaf pine againwas shown to have becomemore densely
stocked, with an increase of 13.2%.

The last check included all of the 48 conterminous states and
compared changes in stocking conditions from years around 1985 to
2017 (Supplementary Table 6). Seven of the ten forest groups showed
decreased stocking density over time. Not surprisingly (because most
Loblolly/Shortleaf is located in the Eastern US), the change in Loblolly/
Shortleaf pine density is the same for this check as was shown in the
results in Supplementary Table 5. Based on the results from all these
comparisons and given that stocking density has changed over time,
we controlled for it both in the matching and in the multivariate-
regression analysis.

Genetic matching (GM), the primary approach used for this ana-
lysis, combines propensity score matching andMahalanobis matching
techniques45. The choice of GM was made after initially considering
other approaches, such as nearest-neighbor propensity score match-
ing with replacement and a non-matching, pooled regression
approach. These three options were tested on the samples for
Loblolly/Shortleaf pine and Oak/Hickory, and the regression results
are presented in Supplementary Data 3-4.

The results across these different approaches were quite similar,
suggesting that the results are not strongly driven by methodological
choice. We focused on matching rather than a pooled regression
approach to help reduce bias and provide estimates closer to those
that would be obtained in a randomized controlled trial. When
choosing the specificmatching approach,we considered that standard
matching methods are equal percent bias reducing (EPBR) only in the
unlikely case that the covariate distributions are all roughly normal46

and that EPBR may not be desirable, as in the case where one of two
covariates has a nonlinear relationship with the dependent variable16.
We also noted that GM is a matching algorithm that at each step
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minimizes the largest bias distance of the covariates24 and that GMhas
been shown to be a more efficient estimator than other methods like
the inverse probability of treatment weighting and one-to-one greedy
nearest-neighbor matching24,47–49. Additionally, when the distributions
of covariates are non-ellipsoidal, this nonparametric method has been
shown to minimize bias that may not be captured by simple mini-
mization of mean differences50. Lastly, as sample size increases, this
approach will converge to a solution that reduces imbalance more
than techniques like full or greedy matching48,51,52. Given the support
that this choice has in the literature, we decided to employ GM to
create all the matched data used in this study using R software53.

Artificial regeneration of forest stands, noted as planting
throughout the text is used as the main proxy for the impact of forest
management. The other indicator of management activity is what can
be described as interventions, which are a range of human on-site
activities that the USFS details22. We define unmanaged land as stands
with natural regeneration and where no interventions occurred on
the plot.

To create Table 1, we first excluded all plots on which there had
been either planting activities or some type of human intervention.
Then, we created treatment and control groups by forming two time
periods separated by an intervening period of ten years to ensure a
more than a marginal difference between the groups in terms of life-
timeexposure to atmosphericCO2. The control period used forestplot
data sampled between 1968 and 1990, and the treatment period used
forest plots sampled between 2000 and 2018. Note that even though
the earlier period contains more years, there are fewer overall
observations.

Matches were then made to balance the treatment and control
groups based on the following observable covariates: (1) Seasonal
Temperature, (2) Seasonal Precipitation, (3) Stocking Condition, (4)
Aspect, (5) Age, (6) Physiographic Class, and (7) Site Class. The
propensity score was defined as a logit function of the above cov-
ariates to generate estimates of the probability of treatment. Cali-
pers with widths less than or equal to 0.2 standard deviations of the
propensity score were also employed to remove at least 98% of
bias49.

Balance statistics for the primary covariates are presented in
Supplementary Data 1–2 and show a strong balance for all covariates
across all forest groups. Thus for each forest group, our sample of
plots includes control plots (pre-1990) and treatment plots (post-
2000) that are comparable (balanced) in climate and other biophysical
attributes.

After trimming our sample using this matching process and
obtaining strongly balancedmatches, we turned to regression analysis,
where we employed Stata software54. To confirm that we had themost
appropriate model structure, tests of the climate and atmospheric
carbon variableswere undertakenusing various polynomial forms, and
the main variable of interest, atmospheric carbon, was tested both
using a linear lifetime cumulative CO2 variable and a logarithmic
transformation of that variable. Results (Supplementary Data 5–10)
show that the climate variables were not improved with complexity
beyond cubic form. Moreover, selection tools, like the Akaike and
Bayesian information criterion, favored the cubic choice, and so we
utilized the cubic formulation throughout this study. Results for the
CO2 variable were similar in both sign and significance for the linear
and logged form. We use the logged form as it allows easier inter-
pretationof the effect, suppresses heteroscedasticity, and removes the
assumption that each unit increase in CO2 exposure will have a linear
(constant) effect on volume.

The estimated effect of CO2 exposure for each forest group
(Supplementary Data 12–21) was estimated using alternate specifica-
tions of the independent variables included in Eq. 1. For each forest
type, the Model (1) specification (Eq. 2) is the basis for the results
presented in Table 1. The β0 coefficient details the impact on the

volume of the main variable of interest, atmospheric carbon.

Ln
volume
hectare

� �
=α +β0 LnðLifetimeCO2Þ+β1

1
Age

+β2SiteClass

+β3Seasonal Temperature +β4Seasonal Temp2 +β5Seasonal Temp3

+β6Seasonal Precipitation+β7Seasonal Precip
2 +β8Seasonal Precip

3

+β9Stocking +β10Disturbances+β11PhysiographicClass +β12Aspect

+β13Slope+β14Elevation+β15Latitude +β16Longitude+β17Ownership

+β18TimeDummies +β19Seasonal Vapor PressureDeficit

+β20Lengthof GrowingSeason+ ε

ð2Þ
After estimating Eq. 2 for each forest type individually (Supple-

mentary Data 12–21), all plots were pooled across forest groups, with
additional forest-group dummy variables, to estimate a general tree-
volume function (Supplementary Data 22).

Our main Model (1) results are provided in Supplementary
Data 12–22, along with three additional models that assess the
robustness of the elevated CO2 effect to different specifications. The
simplest specification, Model (4), included only stand age, CO2 expo-
sure, and a time-dummy variable. Model (3) took the Model (4) base
and added in an array of site-specific variables, including those for the
climate. Model (2) was similar to Model (1) in that it included the
impact of vapor pressure deficit and the length of the growing season
on the variables included inModel (3), but it differed fromModel (1) in
that it tested an alternate approach to capturing the impact of
underlying, unobservable systematic differences like nitrogen
deposition.

Using the estimated coefficients from the preferred Model (col-
umn 1) specification (Eq. 2), the estimated change in growing-stock
volume between two CO2 exposure scenarios was calculated at ages
25, 50, and 75. The first scenario examined CO2 exposure up to 1970
(that is, when calculating growing-stock volume for a 25-year-old
stand, the CO2 exposure would have the summation of the yearly
values for the years from 1946 to 1970 [310 to 326 ppm CO2]). The
second scenario examined CO2 exposure up to 2015 (that is, when
calculating growing-stock volume for a 25-year-old stand, the CO2

exposure was the summation of the yearly values for the years from
1991 to 2015 [347 to 401 ppm CO2])

32–34. In both scenarios, climate
variables were maintained at their 1970 exposure levels, covering the
same historical years (e.g., for a 25-year-old stand, 1946 to 1970 were
the years of interest), while using seasonal, not annual values and
calculating average values, not lifetime summations.

Forest dynamics in the Western US differ from those in the East
(e.g., generally drier conditions; greater incidence of large wildfires)
and as most of the observations for this study are of forest groups
located in the 33 states that the USFS labels as comprising the Eastern
US, robustness tests were conducted to assess whether results would
differ were only eastern observations utilized. Three forest groups [(1)
Loblolly/Shortleaf pine, (2) Oak/Gum/Cypress, and (3) Slash/Longleaf
pine] have no observations in the Western US. A fourth, White/Red/
Jack Pine, has a slight presence in a fewWestern states, but no western
observations were selected in the original matching process (Supple-
mentary Data 2). For the other six forest groups, all observations from
Western US states were dropped. As can be seen from Fig. 2, this had
the biggest impact on Aspen/Birch and Elm/Ash/Cottonwood. With
this data removed, the GM matching algorithm was again used. Bal-
ance statistics are presented in SupplementaryData 23 and again show
a strong balance for all covariates across all forest groups. With mat-
ches made, the average treatment effect on the treated was estimated
using the Model (1) specification used to create Table 1. Regression
results are presented in Supplementary Data 24, 25, and a revised
version of Table 1 for just the observations from the Eastern US is
presented as Supplementary Table 7.

As an additional robustness check on the results in Table 1, we
tested an alternative functional form of the volume function. This
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alternative volume function is shown in Eq. 3. It has a similar shape as
the function used for the main results in the paper, however, this
equation cannot be linearized with logs in a similar way. Thus, it was
estimated with nonlinear least squares, using the matched samples of
naturally regenerated forests for individual forest groups, aswell as the
aggregated sample.

Volume
Hectare

=a=ðb + expð�c * AgeÞÞ ð3Þ

We began by estimating two separate growth functions, one for
the pre-1990 (low CO2) period and one for the post-2000 (high CO2)
period using Eq. 3. That is, observations from the pre-1990 (low CO2)
control period and from the post-2000 (high CO2) treatment period
were handled in separate regressions. For this initial analysis with the
nonlinear volume function, we did not control for CO2 concentration
or other factors that could influence volumeacross sites (e.g., weather,
soils, slope, aspect), and thus, results likely show the cumulative
impact of these various factors. Using the regression results (Supple-
mentaryData 26), we calculated the predicted volume for the pre-1990
and post-2000 periods and compared the predicted volumes (Sup-
plementary Table 8).

Next, we tested this yield function on the combined sample
(containing both control and treatment observations) and all forest
groups. Here the model was expanded to better identify the impact of
elevated CO2 by including all covariates. Instead of using a dummy
variable for each forest group, though, a single dummy variable was
used to differentiate hardwoods from softwoods. Once again, the
equation was logarithmically transformed for ease of comparisonwith
the results presented inTable 1. All covariateswereoriginally input, but
those which were not significant were removed. That process yielded
the functional form shown in Eq. 4. Results for the regression are
presented in Supplementary Data 27. The predicted change in volume
due to CO2 fertilization from 1970 to 2015 is shown in Supplementary
Table 9.

Volume
Hectare

=
�
a0+a1 * TimeDummy+a2 * LnðLifetimeCO2Þ+a3 * LnðSeasonal TemperatureÞ
+a4 * LnðSeasonal PrecipitationÞ+a5 * SiteClass
+a6 * PhysiographicDummy+a7 *AspectDummy+a8 * StockingCode

+a9 *Disturbances +a10 *Hardwood=SoftwoodDummyÞ=ðb0+ b1 * TimeDummy

+ b2 * LnðLifetimeCO2Þ +b3 * LnðSeasonal TemperatureÞ
+ b4 * LnðSeasonal PrecipitationÞ+b5 * SiteClass
+ b6 * PhysiographicDummy+b7 * AspectDummy+b8 * StockingCode

+ b9 *Disturbances+ b10 *Hardwood=SoftwoodDummy

+ expð � ðc0+ c1 * TimeDummy+ c2 * LifetimeCO2

+ c3 * LnðSeasonal TemperatureÞ+ c4 * LnðSeasonal PrecipitationÞ+ c5 * SiteClass
+ c6 * PhysiographicDummy+ c7 *AspectDummy+ c8 * StockingCode

+ c9 *Disturbances + c10 *Hardwood=SoftwoodDummyÞ * AgeÞÞ
ð4Þ

As the results using the nonlinear volume functionswere similar in
sign and magnitude to the multivariate-regression results and as the
practice of matching and then running a multivariate-regression
represents a doubly robust econometric approach that has been
shown to yield results that are robust to misspecification in either the
matching or the regressionmodel47,55–57, themain text results arebased
on estimations utilizing multivariate-regression analysis post-
matching.

To develop Table 2, which compares naturally regenerated stands
withplanted stands,weused the samegeneral approachaswasused to
create Table 1. The analysis and comparison of planted and naturally
regenerated stands was conducted only for stands with enough
observations of both to make a comparison: White/Red/Jack, Slash/
Longleaf, and Loblolly/Shortleaf pine. We followed the samematching
and regression procedures as above, but conducted the matching
separately for naturally regenerated and planted stands. We also

limited the data to stands less than or equal to 50 years of age, as there
are fewplanted stands of older ages due to the economics of rotational
forestry35–40. Balance statistics for the matched samples are presented
in Supplementary Data 28–30. Again, thematching process resulted in
a good balance in observable plot characteristics, which implies that
we achieved comparable treatment and control plots.

Using the matched data, we estimated the same regression as in
Eq. 2. Estimation results, which use the Model (2) specification from
Supplementary Data 19–21 that was used with the data for these three
forest groups from ages 1–100, are presented in Supplementary
Data 30–32. A comparison of the parameter estimates on the natural
log of lifetime CO2 exposure between the results for ages 1–50 (from
Supplementary Tables 31–33) and those for ages 1–100 (from Sup-
plementary Data 19–21) is presented in Supplementary Table 10.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The compiled data generated from the raw data in the USFS-FIA and
PRISM group databases have been deposited in the Ohio State Uni-
versity repository, which is a public database that does not require
special permission to access. The data can be accessed using: Click
Link [https://u.osu.edu/forest/co2-fertilization/]. Source data are pro-
vided with this paper.

Code availability
The code files have also been deposited in the Ohio State University
repository, which is a public database that does not require special
permission to access. The code can be accessed using: Click Link
[https://www.dropbox.com/sh/c08s1spc4xutw6i/AABF_l-YVfy1rCk12-
vqeM3za/FIA_CO2FertilizationData?dl=0&subfolder_nav_tracking=1].
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