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Abstract

This paper proposes a novel approach that uses meteorological information to predict the

incidence of influenza in Galicia (Spain). It extends the Generalized Least Squares (GLS)

methods in the multivariate framework to functional regression models with dependent

errors. These kinds of models are useful when the recent history of the incidence of influ-

enza are readily unavailable (for instance, by delays on the communication with health infor-

mants) and the prediction must be constructed by correcting the temporal dependence of

the residuals and using more accessible variables. A simulation study shows that the GLS

estimators render better estimations of the parameters associated with the regression

model than they do with the classical models. They obtain extremely good results from the

predictive point of view and are competitive with the classical time series approach for the

incidence of influenza. An iterative version of the GLS estimator (called iGLS) was also pro-

posed that can help to model complicated dependence structures. For constructing the

model, the distance correlation measure R was employed to select relevant information to

predict influenza rate mixing multivariate and functional variables. These kinds of models

are extremely useful to health managers in allocating resources in advance to manage influ-

enza epidemics.

Introduction

Influenza is an infectious disease with person-to-person transmission that characteristically

occurs as an epidemic affecting the whole population [1]. The influenza virus has been catego-

rized into types A, B and C. However influenza C is a mild disease without seasonality and is

therefore not considered in influenza epidemics. One remarkable feature of the influenza A
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and B viruses is the frequency of changes in antigenicity. Alterations in the antigenic structure

of the virus leads to infection by variants to which the population has little or no immunity.

The epidemiology of inter-pandemic influenza (also named seasonal influenza) is charac-

terized in temperate zones by epidemics of variable size that occur during the colder winter

months (November to April in the Northern Hemisphere and May to September in the South-

ern Hemisphere), each of which typically lasts 8–10 weeks [2]. In a study on influenza activity

throughout eight seasons (1999–2007), the average length of epidemics in 23 European coun-

tries was 15.6 weeks (median 15 weeks; range 12–19 weeks) [3].

The reasons for the seasonal presentation of influenza epidemics are not entirely clear but

they might result from more favourable environmental conditions for virus survival [4]. Vari-

ous theories including improved virus survival in low temperatures, low humidity and low lev-

els of ultraviolet radiation [2] have been advanced to explain this pattern in temperate zones.

The typical incubation period for influenza is 1–4 days (average: 2 days).

Surveillance systems require accurate indicators that detect possible epidemics in advance.

The epidemic of influenza is one of the problems of most concern to public health profession-

als across the world, due to its high levels of mortality and morbidity. Influenza is highly conta-

gious and causes more morbidity than any other vaccine-preventable illness [5]. So, accurate

estimates of the incidence of influenza are essential, for both public health services and citi-

zens, to provide advance warning of epidemics and allow preventive measures to reduce

contagion.

Statistical methods to forecast the incidence of influenza in particular, and contagious dis-

eases in general, have changed over time. In one of the first studies on time series, Choi and

Thacker [6] employed an ARIMA model to estimate pneumonia and influenza mortality.

Dushoff et al. [7] used a regression model to investigate how cold temperatures contribute to

excess seasonal mortality. Hohle and Paul [8] proposed an alternative model to monitor infec-

tious diseases that consisted in applying count data charts to monitor time series. From a

Bayesian framework, Conesa et al. [9] an automated monitoring of influenza surveillance data

that made it possible to take the geographical component into account in statistical models in

addition to temporal evolution was proposed. Contributions to this methodology are growing

steadily through disease mapping. The studies by Ugarte et al. [10] and Paul and Held [11] are

recent examples of this. Their common denominator is that they apply different statistical

methodologies to multivariate time series (hierarchical Bayesian space–time, mixed models,

P–splines and conditional autoregressive models -CAR-, among others) of infectious disease

counts, collected in different geographic areas, using multivariate or longitudinal data.

Functional data analysis (FDA) has grown in popularity over recent years alongside the

increasing availability of continuous measurements in different contexts like Biomedicine

[12], Spectrometry [13], Biology [14] and Medicine [15], to mention only a few. This study

extends the regression models for independent functional data to the case where the curves

presents either spatial or temporal dependencies.

Our goal is to estimate the rate of influenza epidemics, using the information readily avail-

able from public sources possibly that include functional variables, by adapting or extending

the GLS techniques from a multivariate framework to this new framework. So, our particular

aim is to estimate dependence components of influenza, using regression models, and predict

the rate of incidence of influenza for a horizon of two weeks. We initially model influenza

using a traditional linear approach (with independent errors) and later extend these ideas to

the functional case (with dependent errors).

The article is structured as follows. Methodology section presents the Generalized Least

Squares (GLS) approach for functional regression models. The estimation of the different

parameters (for the regression function or the dependence) is usually done using maximum
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likelihood although, as an alternative, we introduce an iterative GLS (iGLS) procedure that

provides similar results. The latter could be interesting when the structure of the dependence

is complicated. The practical performances of the GLS and iGLS procedures are compared, by

means of a simulation study. Real example section applies these models to the prediction of

the influenza rate in a region of Spain.

Methodology

The functional regression model (FRM) is one of the most studied topics in FDA over the last

few years. A regression model is said to be “functional” if any of the variates involved (the pre-

dictors or the response) has a functional nature, i.e. it is a measure observed along a continu-

ous interval. Cases with a scalar response and functional predictors have particularly attracted

a lot of attention. For example, Sørensen et al. [15] gives a basic introduction for the analysis of

functional data applied in datasets from medical science.

The functional regression model with scalar response (FRM) is stated as follows: Let X ; y
two random variates taking values in E � R where E is a functional space (semi-metric,

normed or Hilbert). The relationship between the two variates can be expressed as follows:

y ¼ mðXÞ þ � ¼ E ðyjXÞ þ � ð1Þ

where � is a real random variable verifying E ð�jXÞ ¼ 0. Depending on the nature of the func-

tional space E and on the regression operator m, we can classify the different types of FRM:

• Multivariate Linear Model: E ¼ Rp and m is the linear operator in the space, i.e.

E ðyjXÞ ¼ Xb with b 2 Rp.

• Functional Linear Model: E ¼ L2
ðTÞ is the Hilbert space of square integrable functions

over T = [a, b] and m is a linear operator in the space, i.e. mðXÞ ¼ hX ; bi with b 2 L2
ðTÞ.

This model has been treated extensively in the literature mainly devoted to the optimal way

of representing the linear operator through the representation of X and β on a basis of

L2
ðTÞ.

Depending on the latter, the references can be classified into two main categories:

• Fixed basis. The most commonly used basis in this context are the Fourier [16], the B-

spline [17] and the Wavelet [18].

• Data-driven basis. Two main basis computed from the data are used in the literature: the

most parsimonious one is given by the functional principal components [19, 20] and the

one that maximizes the covariance among the response and the functional predictor uses

the functional partial least square components (PLS) [21, 22].

Note that, due to the representation employed, the FRM is always an approximated model

and its goodness typically relies on the properties of the chosen basis and its suitability to

the data at hand.

• Functional Non Linear Model: E is (at least) a semi-metric space and m is a continuous

operator i.e. limX 0!X mðX 0Þ ¼ mðXÞ. For a complete review of this model see Ferraty and

Vieu [13] and the references therein.

• Extensions of the above models: The above models could be extended in several ways, usu-

ally considering more than one predictive variate. This could lead to semi-linear models [23,

24], additive models [25, 26], [27], single index models [28, 29] or projection pursuit models

[30].

Functional regression models with temporal dependence
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Many of the above-mentioned authors consider that � = (�1, . . ., �n)0 is an homoskedastic

independent error vector, i.e. Eð�Þ ¼ 0,Varð�Þ ¼ s2 and Cov(�i, �j) = 0, i 6¼ j. This assumption

is made to obtain simple diagnostics or confidence intervals for the response but it could be

too restrictive in functional regression models and difficult to check or fulfill in practice. Some

papers consider dependence in the functional variate. See, for example, [31, 32] and [33] for

contributions devoted to spatial dependence with functional data or [34–36] and [37] for time

dependence. In both cases, the functional nature of the variate complicates the predictive abil-

ity of the model. The aim of this paper is to extend the GLS approach [38] to the functional

context as the simplest way of incorporating temporal or spatial dependence in the regression

models. In fact, the GLS approach can handle a wide range of regression models with depen-

dence in a simple way: equi-correlation models, random effects, time and spatial dependence,

and so on. This idea was first introduced in the context of FDA in [39].

Functional generalized least squares regression

The functional generalized least squares regression (FGLS) model between two centered vari-

ables (EðyÞ ¼ 0, EðXÞ ¼ 0) states that

y ¼ hX ; bi þ � ¼
Z

T
XðtÞbðtÞdt þ � ð2Þ

where b 2 L2ðTÞ and � is now a random vector with mean 0 and covariance matrix

O ¼ Eð��0Þ. This model includes, as its special cases, many others models, all of them based on

O = O(ϕ) = σ2 S(ϕ), where ϕ is the parameter associated with the dependence structure of O.

Some classical examples are presented in the following models:

1. Equi-correlated model:Varð�iÞ ¼ s2 and Cov(�i, �j) = σ2 ϕ, i 6¼ j, ϕ 2 (−1, 1)

2. Heteroskedastic block model: O ¼ diag ðs2
1
In1
js2

2
In2
j � � � js2

pInp
Þ with n1 + n2 + � � � + np = n

3. AR(1) model: �i = ϕ�i−1 + εi with |ϕ|< 1, EðεiÞ ¼ 0,VarðεiÞ ¼ t2 and Cov(εi, εj) = 0, i 6¼ j

O ¼
t2

1 � �
2

�
�
ji� jj
�n

i;j¼1

The variance structure is also known for every ARMA(p,q) model.

4. Spatial correlation model:

O ¼ s2 ðrðdðsi; sjÞÞÞ

where si,sj are, respectively, the locations for i, j; and ρ is the spatial correlation function.

Estimation of functional GLS. The classical theory of Kariya and Kurata [38] can be

extended to the functional case by adapting the GLS criterion accordingly, i.e.

GLSðb; �Þ ¼ ðy � hX ; biÞ0 Sð�Þ� 1
ðy � hX ; biÞ

Given the sample fðX 1; y1Þ; . . . ; ðX n; ynÞg, we can approximate X i and β using a finite sum

of the basis elements:

X iðtÞ �
XKx

k

cikckðtÞ; bðtÞ �
XKb

k

bkφkðtÞ

Functional regression models with temporal dependence
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The preceding equations can be expressed as matrix notation using the evaluation in a grid

of the length M {a = t1 < � � �< tM = b} as

X ¼ CC; B ¼ b0φ;

where X is the matrix n × M with the evaluations of the curves in the grid, C is the matrix

n × Kx with the coefficients of the representation in the basis and C is the matrix Kx × M with

the evaluations of the basis elements on the grid. Similarly, B is the matrix (1 × M) with the

evaluation of the β parameter on the grid, φ is the matrix (Kβ × M) with the evaluations of the

basis {φj} and b on the grid, is the vector of the coefficients of β in the basis.

With this notation, the terms fhX i; big
n
i¼1

can be approximated by C Cφ0 b = Z b which, in

essence, is a reformulation of a classical multivariate linear model that approximates the func-

tional model. Here, the matrix Z takes into account all the approximation steps done with the

available information: the chosen basis for X and β with the selected components: Kx and Kβ.
Once a certain approximation is selected, supposing that ϕ is known, we can define

W = S(ϕ)−1, and use the classical theory for multivariate GLS to obtain the BLUE of b

through:

bS ¼ ðZ
0WZÞ

� 1Z0Wy;

where bS has covariance

Cov ðbSÞ ¼ s2 ðZ0WZÞ
� 1

Finally, the fitted values are obtained by:

ŷ ¼ ZðZ0WZÞ
� 1Z0Wy ¼ Hy

where H is the hat matrix.

Once the model is estimated, we can compute the prediction for a collection of m new

data fX j
0
g using the model chosen for S. Being �0 the vector of errors for the new points,

Δ0 = Cov(�, �0) and S0 ¼ Var ð�0Þ, we can obtain the equations for prediction:

ŷ0 ¼ hX 0; b̂i þ DS� 1 y � hX ; b̂i
� �

Var ðŷ 0Þ ¼ s2 ðS0 � DS� 1D
0
Þ

The GLS criterion can be employed to jointly estimate all the parameters associated to the

model and can be expressed as:

min
Kx ;Kb ;b;�

GLS ¼ min
Kx ;Kb ;b;�

ðy � ZbÞ0 Sð�Þ� 1
ðy � ZbÞ;

where the parameters Kx and Kβ related to the basis for X and β are typically chosen a priori
taking into account, for instance, the quality of the data and its representation on the discreti-

zation grid or other considerations related to the data-generating process (smoothness, physi-

cal restrictions, interpretability,. . .). The direct minimization of GLS usually cannot be

affordable even though we only consider the parameters b and ϕ. The generalized cross-valida-

tion (GCV) criterion has been widely used to this end despite not being the right criterion for

dependent errors. We use the generalized correlated cross-validation (GCCV) as a better alter-

native. This suggested criterion is an extension to GCV within the context of correlated errors

Functional regression models with temporal dependence
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proposed by Carmack et al. [40]. It is defined as follows:

GCCVðKx;Kb; b; �Þ ¼

Xn

i¼1
ðyi � ŷ i;bÞ

2

1 � trðGÞ
n

� �2

where G = 2H S(ϕ) − H S(ϕ)H
0

takes into account the effect of the dependence, the trace of G

is an estimation of the degrees of freedom consumed by the model and H is the hat matrix.

The important advantage of this criterion is that it is rather easy to compute because it avoids

the need to compute the inverse of the matrix S. Even so, the complexity of the GLS criterion

depends on the structure of S and it could sometimes be hard either to minimize or computa-

tionally expensive.

We implement the function fregre.gls (and predict.fregre.gls) that estimates

(and predicts) the functional regression model with correlated errors, see S1 Appendix. The

fregre.gls function calls the gls function of nlme package. Therefore, the correlation

structures allowed are those programmed by the original authors of the package [41].

Estimation of functional iterative GLS (iGLS). The above GLS criterion is employed to

jointly estimate all the parameters associated with the model: Kx, Kβ, b and ϕ. One possibility

to alleviate the computational burden is to separate the estimation of the dependence structure

(ϕ) from the parameters associated to the regression (Kx, Kβ, b) in an iterative way (called

iGLS) as it is done in multivariate regression. The iGLS proven to be equivalent to classical

GLS (see, for instance, [42]). Additionally, the method could consider more flexible depen-

dence models (for instance, selecting the order of an AR instead of fixing it in advance) that

avoid the risk of misspecification in the dependence structure. We extend this procedure to

the functional regression in the following iterative procedure (called functional iGLS):

1. Begin with a preliminary estimation of �̂ ¼ �0 (for instance, ϕ0 = 0). Compute Ŵ.

2. Estimate bS ¼ ðZ
0ŴZÞ� 1Z0Ŵy

3. Based on the residuals, ê ¼ ðy � ZbSÞ, update �̂ ¼ rðêÞ (and consequently, Ŵ) where ρ is

subject to the dependence structure chosen.

4. Repeat steps 2 and 3 until convergence (small changes in bS and/or �̂)

The estimation of functional ^bðtÞ by bS is done in step (2), and separated from the estima-

tion of dependence structure ρ in step (3). This allows for the flexibility of including any type

of dependence structures designed by the user (for instance, using particular restrictions) that

are typically not included in the usual packages (like nlme).

We implement, the function fregre.igls (and predict.fregre.igls) that esti-

mates (and predicts) the functional regression model with correlated errors using the iterative

scheme (iGLS). We have developed the following two simple structures for S in fda.usc
package [45] for fit serial dependence structure:

• In iGLS-AR(p) scheme, the procedure automatically fits the autoregressive order p in each

iteration of the errors defined by the equation �i ¼
Pp

j¼1
�j�i� j þ εi where εi * N(0, σ2).

• In iGLS-ARMA(p,q) scheme, the user must specify the parameters p and q of the autoregres-

sive–moving–average (ARMA(p,q)) model, which fits the serial error dependence defined by

equation: �i ¼
Pp

j¼1
�j�i� j þ

Pq
j¼1

yj�i� j þ εi where εi * N(0, σ2). This structure is provided

by the nlme package but it has a restriction: all parameters of the AR side must be lower

Functional regression models with temporal dependence
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than one in absolute value. This rule clearly does not include all the possible stationary mod-

els of that order (this is only true for ARMA(1,q)).

For these structures, we have used the basic functions ar and arima of the stats pack-

age to fit the AR(p) and ARMA(p,q) models, respectively. The users can define their own func-

tions or use other well-known functions that exactly fit the situation at hand.

Simulation

We have used two functional linear models (FLM) included in [17] to compare the effect of

the temporal dependence. Specifically, we have generated nB = 1000 replicas of size n = 100

from the FLM model y ¼ hX ; bi þ �, being X a Wiener process observed in a grid of length

M = 100 in the interval [0, 1] and � an AR(1) process with autoregressive parameter ϕ and vari-

anceVarð�Þ ¼ snrVarðhX ; biÞ, where snr is the signal to noise ratio. For each sample, ten

future values, denoted by (yn+h, h = 1, . . ., 10), were generated to check the predictive ability of

the proposal.

The two models differ only in the β parameter that are respectively:

1. β(t) = 2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt), t 2 [0, 1],

2. β(t) = log(15t2 + 10) + cos(4πt), t 2 [0, 1].

The scenario (a) corresponds to a β parameter which has an exact representation respect to

the first three theoretical principal components of the Wiener process. On the contrary, the β
parameter for scenario (b) cannot be well represented using a small number of theoretical

principal components. In both scenarios, we have used two types of basis for representing X
and β: the empirical principal components basis derived from the sample (FPC) and the cubic

B–splines (BSP) at equispaced knots in [0, 1]. The same basis was employed for both represen-

tations i.e. in this case C = φ and Kx = Kβ. The optimal number of components (Kβ) was

selected using the GCCV criterion in the range 1–8 for FPC and 5–11 for BSP.

For sake of simplicity, we only show here the results for model (a). The results for model (b)

can be revised in the S2 Appendix of the Supporting information.

Tables 1 to 4 summarize the results for the first model (a) to show, respectively, the aver-

age number of selected components chosen using GCCV criterion, the mean square error

(MSE) for estimation of β, the MSE for estimation of ϕ and the mean square prediction

errors (MSPE) for horizons 1, 5 and 10. In these results, LM denotes the estimation through

a classical functional linear model whereas GLS and iGLS corresponds, respectively, to the

functional GLS and functional iGLS methods (shown in Methodology section for AR(1)

dependent errors).

E
�
�
�

�
�
�b � b̂

�
�
�

� �
�
�
2
�

E
�
� � �̂

�2
� �

Table 1. Average of number of basis elements selected by GCCV criterion in nB = 1000 replicas in model (a).

PC BSP

snr ϕ = 0 ϕ = 0.5 ϕ = 0.9 ϕ = 0 ϕ = 0.5 ϕ = 0.9

0.05 3.3 3.3 3.3 6.4 6.5 6.6

0.10 3.2 3.2 3.3 5.9 6.0 6.1

https://doi.org/10.1371/journal.pone.0194250.t001
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MSPE ¼
1

nB

XnB

b¼1

ðyb
nþh � ŷ b

nþhÞ
2

Table 1 shows an average number of FPC selected components between 3 and 4 with a

slight tendency to lower values as the snr grows. The average number of B–splines basis was

Table 4. Mean square prediction errors for lags h = 1, 5 and 10. Model (a), nB = 1000.

AR(1)

ϕ = 0 ϕ = 0.5 ϕ = 0.9

snr Model Basis h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10

0.05 LM PC 0.070 0.068 0.065 0.070 0.077 0.068 0.070 0.070 0.070

0.05 GLS-AR(1) PC 0.070 0.068 0.065 0.054 0.077 0.068 0.015 0.047 0.061

0.05 iGLS-AR(1) PC 0.070 0.068 0.065 0.054 0.077 0.068 0.015 0.047 0.061

0.05 iGLS-AR(p) PC 0.070 0.068 0.065 0.055 0.076 0.068 0.015 0.047 0.062

0.05 LM BSP 0.071 0.069 0.066 0.071 0.077 0.068 0.071 0.072 0.070

0.05 GLS-AR(1) BSP 0.071 0.069 0.066 0.054 0.076 0.068 0.015 0.046 0.060

0.05 iGLS-AR(1) BSP 0.071 0.069 0.066 0.054 0.076 0.068 0.015 0.046 0.060

0.05 iGLS-AR(p) BSP 0.072 0.069 0.066 0.055 0.076 0.068 0.015 0.047 0.061

0.10 LM PC 0.137 0.152 0.126 0.150 0.137 0.141 0.136 0.136 0.153

0.10 GLS-AR(1) PC 0.137 0.152 0.126 0.114 0.137 0.140 0.030 0.094 0.136

0.10 iGLS-AR(1) PC 0.137 0.152 0.126 0.114 0.137 0.140 0.030 0.093 0.136

0.10 iGLS-AR(p) PC 0.138 0.152 0.126 0.115 0.138 0.140 0.030 0.094 0.136

0.10 LM BSP 0.138 0.153 0.130 0.150 0.137 0.143 0.140 0.137 0.155

0.10 GLS-AR(1) BSP 0.139 0.153 0.130 0.114 0.137 0.140 0.029 0.094 0.136

0.10 iGLS-AR(1) BSP 0.139 0.153 0.130 0.114 0.137 0.140 0.029 0.093 0.135

0.10 iGLS-AR(p) BSP 0.140 0.153 0.130 0.115 0.137 0.140 0.030 0.094 0.136

https://doi.org/10.1371/journal.pone.0194250.t004

Table 2. Mean square error of β parameter. Model (a), nB = 1000.

PC BSP

snr Model ϕ = 0 ϕ = 0.5 ϕ = 0.9 ϕ = 0 ϕ = 0.5 ϕ = 0.9

0.05 LM 0.457 0.442 0.443 0.996 1.014 0.965

0.05 GLS-AR(1) 0.457 0.421 0.400 0.997 0.813 0.493

0.05 iGLS-AR(1) 0.457 0.421 0.400 0.997 0.813 0.493

0.05 iGLS-AR(p) 0.457 0.421 0.400 1.001 0.816 0.494

0.10 LM 0.501 0.502 0.503 1.243 1.261 1.218

0.10 GLS-AR(1) 0.501 0.471 0.437 1.244 1.031 0.661

0.10 iGLS-AR(1) 0.501 0.471 0.437 1.244 1.031 0.661

0.10 iGLS-AR(1) 0.501 0.471 0.437 1.247 1.032 0.662

https://doi.org/10.1371/journal.pone.0194250.t002

Table 3. Mean square error of ϕ parameter. Model (a), nB = 1000.

PC BSP

snr Model ϕ = 0 ϕ = 0.5 ϕ = 0.9 ϕ = 0 ϕ = 0.5 ϕ = 0.9

0.05 GLS-AR(1) 0.004 0.003 0.001 0.004 0.003 0.001

0.05 iGLS-AR(1) 0.004 0.003 0.002 0.004 0.003 0.001

0.10 GLS-AR(1) 0.004 0.003 0.001 0.004 0.003 0.001

0.10 iGLS-AR(1) 0.004 0.003 0.001 0.004 0.003 0.001

https://doi.org/10.1371/journal.pone.0194250.t003

Functional regression models with temporal dependence

PLOS ONE | https://doi.org/10.1371/journal.pone.0194250 April 25, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0194250.t004
https://doi.org/10.1371/journal.pone.0194250.t002
https://doi.org/10.1371/journal.pone.0194250.t003
https://doi.org/10.1371/journal.pone.0194250


between 6 and 7 although in this case we do not have a theoretical quantity to compare with. It

seems that there are no trends with respect to the ϕ values. Table 2 clearly shows the advantage

of the PC estimator over the B–splines because the estimation error using B–splines typically

doubles the error using PCs. In this table, we can also see the improved estimates of the GLS

and iGLS method over the LM, especially when ϕ grows. The same equivalence is shown in

Table 3 for the mean square error (MSE) of the ϕ parameter, which shows better results as the

dependence grows. Finally, Table 4 shows the mean square prediction errors (MSPE) for dif-

ferent lags showing a clear improvement of GLS procedures, specially for large ϕ and shorter

lags. With respect to the prediction ability between PC or B–splines, the results show that both

methods are almost equivalent with minor differences along the table.

Table 5 summarizes the results of the Model (a) but replaces the AR(1) by an AR(2) error

process using the FPC estimation (the results with BSP are similar). In all these models, the

minimum square prediction error is achieved with model iGLS-AR(2) in which an AR(2) is

estimated in each iteration of the algorithm. This is followed very closely by model iGLS-AR(p),

estimating an automatic choice of p at each iteration.

MSPE ¼
1

nB

XnB

b¼1

ðyb
nþh � ŷ b

nþhÞ
2

The first AR(2) process, (ϕ1 = 0.5, ϕ2 = 0.45), is roughly like an AR(1) process with ϕ� 0.95.

This can explain why the results of the iGLS-AR(1) model are so close to the optimum esti-

mated by the iGLS-AR(2). The second AR(2) process, (ϕ1 = 1.4, ϕ2 = −0.45), was selected to

assess the misspecification error. Although the use of an AR(1) process in the GLS and iGLS

models improves the LM model, these results are far from the best using an AR(2) specifica-

tion. The autocorrelation function of the AR(2) process shows a periodicity pattern that cannot

be approximated by an AR(1) process. Finally, the third AR(2), (ϕ1 = 1.5, ϕ2 = −0.75), shows

the effect of the misspecification in a later horizon h = 5, making the results at that horizon

for an AR(1) specification even worse than the LM model. Again, this is motivated by the peri-

odicity pattern of the AR(2) due to the negative sign of ϕ2. In all cases, the specification iGLS–

AR(p) is rather close to the optimum. However, the important advantage is that it avoids a

closed specification form of the dependence structure. Finally, the GLS-AR(2) scenario was

not considered in this table because the gls function of nlme package does not allow the esti-

mation of any parameter of an AR(2) greater than 1 in absolute value. This is an empirical rule

in the package that avoids the use of non stationary processes although, in this case, the three

AR(2) specifications are clearly stationary, but only the first specification can be estimated

using the gls function.

Table 5. Mean square prediction errors for different lags h = 1, 5, 10. Estimation of Model (a) using PC with an AR(2) error process.

AR(p = 2)

(ϕ1 = 0.5, ϕ2 = 0.45) (ϕ1 = 1.4, ϕ2 = −0.45) (ϕ1 = 1.5, ϕ2 = −0.75)

snr Model h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10

0.05 LM 0.0707 0.0693 0.0725 0.0643 0.0628 0.0667 0.0657 0.0688 0.0737

0.05 GLS-AR(1) 0.0144 0.0304 0.0490 0.0154 0.0493 0.0626 0.0191 0.1072 0.0714

0.05 iGLS-AR(1) 0.0144 0.0309 0.0497 0.0154 0.0483 0.0600 0.0191 0.1055 0.0712

0.05 iGLS-AR(2) 0.0109 0.0250 0.0415 0.0050 0.0358 0.0551 0.0092 0.0572 0.0682

0.05 iGLS-AR(p) 0.0115 0.0256 0.0424 0.0052 0.0364 0.0554 0.0093 0.0569 0.0682

https://doi.org/10.1371/journal.pone.0194250.t005
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An application to Galician flu prediction rate

Galicia is a region of 29, 574 km2 located in Northwest Spain with a population of 2.8 million

people. We analyzed the weekly incidence of reported cases of influenza in Galicia between

2001 and 2011 for each of the 53 Galician counties:

Raten;s ¼ log ðcasesn;s � 100000=popn;sÞ

for county s and week n. The population (pop) was obtained from the Statistical Institute of

Galicia (IGE, http://www.ige.eu) and the number of influenza cases (cases) from the Health

Service of Galicia (www.sergas.es).

The influenza season in Galicia usually begins in week 40 and ends in week 20 of the follow-

ing year. The goal is to predict the incidence of influenza for the following two weeks (n + 1

and n + 2) for each of the s regions with the available information:

• Raten,s(w): Weekly influenza rate for last 13 weeks, w 2 [n − 12, n].

• Tempn,s(t): Daily temperature in Celsius degrees (˚C) for last 14 days, t 2 [n − i/7, n], for

i = 14, . . ., 1.

• Dushoff et al. [7] defined cold as the number of degrees below a threshold temperature:

Temp.thn,s = min(Tempn,s − thres, 0) with thres = 10˚C. The functional variable is defined

as: Temp.thn,s(t) with t 2 [n − i/7, n], for i = 14, . . ., 1.

• SRn,s(t): Daily solar radiation (W/m2) for the last 14 days, t 2 [n − i/7, n], for i = 14, . . ., 1.

• Humn,s(t): Relative humidity for the last 14 days: t 2 [n − i/7, n], for i = 14, . . ., 1.

For representing the above functional covariates, a B–spline basis of five components was

used in all cases (based on the previous experience of the authors with this type of data). The

prediction for the overall influenza rate is constructed by appropriately aggregating the pre-

dictions of the s regions that are made independently, i.e. the estimation of β and ϕ are made

only with the data of that county. Fig 1 shows the overall influenza rate that normally grows

in the late autumn and reaches a peak at the beginning of the calendar year. These plots

clearly show the large difference between reported influenza cases in winter and summer.

The influenza rate for each county shows a similar pattern but with small differences in the

peak epidemic period. We downloaded meteorological data from the regional Weather Ser-

vice of Galicia (http://www.meteogalicia.es/). S1 Appendix describes the supplementary

material (functions, libraries, source data and code) and S1 File contains the code and dataset

used in this study.

Variable selection using distance correlation measure

Distance correlation R is a measure of dependence between random vectors introduced by

Székely et al. [43]. The distance correlation satisfies 0 � RðX;YÞ � 1 and its interpretation is

similar to the squared Pearson’s correlation. However, the advantages of distance correlation

over the Pearson correlation is that it defines RðX;YÞ in arbitrary finite dimensions of X and

Y and R characterises independence, i.e. RðX;YÞ ¼ 0, X;Y are independent. Recently,

Lyons [44] provided conditions for the application of the distance correlation to functional

spaces. So, this measure seems to be a good indicator of the correlations between functional

and multivariate variables that may be useful for designing a functional linear model (for

instance, avoiding variates with high collinearity). The empirical distance correlation
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Rn;sðX;YÞ can be easily computed as

Rn;sðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

n;sðX;YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2

n;sðXÞV
2

n;sðYÞ
q

v
u
u
t :

where Vn;sðX;YÞ is the empirical distance covariance defined by

V2

n;sðX;YÞ ¼
1

n2

Xn

k; l¼1

AklBkl

where Akl ¼ akl � �ak: � �a :l þ �a :: and Bkl ¼ bkl �
�bk: �

�b:l þ �b::: with akl = kXk − Xlk,

bkl = kYk − Ylk, k, l = 1, . . ., n, and the subscript. denotes that the mean is computed for

the index that it replaces. Similarly, Vn;sðXÞ is the non-negative number defined by

V2

n;sðXÞ ¼ V2

n;sðX;XÞ ¼ 1

n2

Pn
k; l¼1

A2
kl.

The distance correlation R was used to select the information relevant to the prediction of

influenza rate not only with respect to the response but also among the possible covariates to

avoid collinearities. The results are shown in Table 6. Relative humidity, Humn,s(t), has the

lowest correlation with the influenza rate {Raten+1,s, Raten+2,s} and therefore, it seems that its

Fig 1. Influenza rate and meteorological covariates. From top to bottomml: Overall weekly influenza rate, and daily average temperature, solar

radiation and relative humidity in the Galician region during the period.

https://doi.org/10.1371/journal.pone.0194250.g001

Table 6. Distance correlation R between the response at week n + 1 and n + 2 and functional covariates at week n.

R Raten,s(w) Tempn,s(t) Temp.thn,s(t) SRn,s(t) Humn,s(t) Raten+1,s Raten+2,s

Raten,s(w) 1.00 0.56 0.48 0.43 0.26 0.69 0.64

Tempn,s(t) 0.56 1.00 0.90 0.78 0.54 0.52 0.50

Temp.thn,s(t) 0.48 0.90 1.00 0.73 0.44 0.46 0.45

SRn,s(t) 0.43 0.78 0.73 1.00 0.72 0.52 0.51

Humn,s(t) 0.26 0.54 0.44 0.72 1.00 0.31 0.30

https://doi.org/10.1371/journal.pone.0194250.t006
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contribution to the response is negligible (a model with Humn,s(t) never improves one without

the variate). Besides, the distance correlation values are useful for designing models avoiding

closely related covariates (for instance, Tempn,s(t) and Temp.thn,s(t) share the same informa-

tion). With these considerations, the number of possible different models to be tested is quite

reduced.

Prediction using temporal dependence structure

A rolling analysis was employed to compare the models in a predictive scenario. Initially, a

series of length j = 1, . . ., n = 150 weeks in s = 53 counties is used to predict the influenza rate

in the next two weeks, n + 1 and n + 2. The rolling is then performed along the epidemic peri-

ods (J = 28 weeks, from week 40 to week 15 next year) by computing the mean square predic-

tive error:

MSPE ¼
1

J

XnþJ

j¼nþ1

Xs

r¼1

wr Ratej;r � dRatej;r

� �2

where wr is the weight (in terms of pop) for county r. For ease of simplicity, the GLS setting is

only considered with an AR(1) specification of the dependence structure, whereas the iGLS is

combined with an AR(1), AR(2) and AR(p).

Table 7 summarises the MSPE for the influenza season. The best result for each set of covar-

iates is shaded in light gray and the overall winner for each horizon is in bold font. In the mod-

els with the predictor Raten,s(w) (rows (a), (e), (f) and (g)) the gain, in terms of MSPE, of the

functional GLS models (GLS–AR(1), iGLS–AR(1), iGLS–AR(2) and iGLS–AR(p)) is relatively

small with respect to functional LM models because the Raten,s(w) partly accounts for the tem-

poral dependence. Furthermore, in some sense, the inclusion of the predictor Raten,s(w) in the

model is akin to the estimation of the dependence structure. The models without influenza

Table 7. Mean square predictive error for influenza period using the rolling procedure.

n + 1

Covariates LM GLS-AR(1) iGLS-AR(1) iGLS-AR(2) iGLS-AR(p)

(a) Raten, s(w) 0.510 0.404 0.404 0.405 0.402

(b) Tempn, s(t) 1.177 0.362 0.362 0.364 0.379

(c) Temp.thn, s(t) 2.530 0.391 0.391 0.402 0.418

(d) SRn, s(t) 1.290 0.381 0.381 0.394 0.407

(e) Raten, s(w), Tempn, s(t) 0.487 0.404 0.404 0.392 0.390

(f) Raten, s(w), Temp.thn, s(t) 0.538 0.362 0.448 0.441 0.437

(g) Raten, s(w), SRn, s(t) 0.505 0.418 0.418 0.409 0.404

(h) Tempn, s(t), SRn, s(t) 1.163 0.384 0.384 0.389 0.402

n + 2

Covariates LM GLS-AR(1) iGLS-AR(1) iGLS-AR(2) iGLS-AR(p)

(a) Raten, s(w) 0.931 0.903 0.901 0.849 0.809

(b) Tempn, s(t) 1.250 0.785 0.764 0.760 0.712

(c) Temp.thn, s(t) 1.954 0.841 0.830 0.828 0.792

(d) SRn, s(t) 1.272 0.821 0.823 0.834 0.795

(e) Raten, s(w), Tempn, s(t) 0.883 0.879 0.814 0.810 0.764

(f) Raten, s(w), Temp.thn, s(t) 0.911 0.785 0.874 0.856 0.800

(g) Raten, s(w), SRn, s(t) 0.951 0.939 0.880 0.877 0.855

(h) Tempn, s(t), SRn, s(t) 1.273 0.796 0.784 0.783 0.746

https://doi.org/10.1371/journal.pone.0194250.t007
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rate (rows (b), (c), (d) and (h)) begin with a worse result in the LM setting, but their results

become competitive (or even become the best ones) with the inclusion of the serial depen-

dence. The difference between the GLS or iGLS setting is that the latter allows more flexibility,

not only defining a different dependence structure in each county, but also in the estimation of

that dependence. This is particularly useful when the forecast horizon increases. The GLS set-

ting must fix the order of the AR in advance and, when the number of regions is high, it is a

tough assumption to consider the order of the serial dependence model fixed for all of them.

For n + 1 the best models are (b) and (c) with GLS–AR(1) and iGLS–AR(1) specifications,

using the curve of temperature of last 14 days as the predictor and a simple AR(1) structure for

the adjustment of the residuals. The best autoregressive model estimated by the iGLS–AR(p)

model has been, in most cases, of order 1. For n + 2, in some regions, an AR(1) or AR(2)

model may be insufficient; the best result is achieved with the iGLS–AR(p) procedure, which

presents greater flexibility in estimating the different p order for each county.

MSPE ¼
1

J

XnþJ

j¼nþ1

Xs

r¼1

wr Ratej;r � dRatej;r

� �2

Models (b) and (c), with GLS setting, present slight differences. Of course, it seems better

to use the temperature than to only use the threshold respect to a level. Yet the differences

between these two models suggest that the evolution of temperatures when it is cold is crucial

to explaining the influenza rate. Model (h) makes no improvement on the results of models (b)

and (c) in terms of MSPE. In fact, it worsens them; this is probably due to collinearity among

Tempn,s(t) and SRn,s(t). Concerning models (b), (c) and (d), the first two are preferable because

they are easier to apply and interpret. Besides, in model (d) the measures of solar radiation

usually depend on specialised devices, whereas the covariates related to temperature are readily

available using standard (and cheaper) equipment. Finally, for short horizons, it seems unnec-

essary to specify high order autoregressive models, even though the improvement can be

about 5% for larger lags.

Indeed, it is possible to interpret the b̂ parameter associated with models. To this end, we

have computed for models (a) and (b), the quantities vi ¼ hX i; b̂i, which are the contribution

of every curve to the influenza rate. So, if we classify the curves in groups according to these

values and average them, we can see the pattern of the curves that have the most (or least)

influence with respect to the incidence rate. This is done in Fig 2, which shows the pattern of

curves that most contributed to increasing (in red scale) and decreasing (in blue scale) the

influenza rate. In particular, we have split the data with respect to the quartiles of vi and

assigned (from bottom to top) the following colors: blue, sky blue, red and dark red. This

assesses the evaluation of the contribution of these curves in the response. So, as expected,

the contribution of an intense increasing pattern of the influenza rate in the last weeks is

plotted in dark red (see left panel of Fig 2), which leads to predicting high influenza rates. On

the other hand, a decreasing pattern is plotted in dark blue, meaning that this type of pattern

corresponds with low influenza rates. The same reasoning can be applied to model (b)(see

right panel of Fig 2). Curves of temperature below 7˚C are plotted in dark red, meaning that

this pattern provides high prediction rates. On the other hand, the curves around 19˚C (plot-

ted in dark blue) lead to almost zero influenza rates. The dark red line corresponds to the

pattern of the curves that most contribute to increasing the estimated incidence rate. In the

week w = 1 begins vq4
� 3:3 that, if we undo the logarithmic transformation represents an

incipient incidence of 27.1 cases per 100, 000 population and goes up monotonously until
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last register (w = 13), which takes the value vq4
� 4:6, implying an increase of 99.5 cases per

100, 000 population.

Finally, as an illustration in Fig 3 the prediction of the raw rate (cases × 100000/pop) during

the 2010–11 flu epidemic season is provided for two counties (Vigo and Santiago) as a result of

reversing the log transform of the response in the preceding models. In both counties, the peak

is achieved at week 2011–5 (first week of February). The two considered horizons (t + 1 and

t + 2) are shown by rows. In each case, the raw rate is compared with the prediction obtained

one or two weeks before with the models LM, Rate(w); GLS–AR(1), Rate(w); GLS–AR(1),

Temp(t) and GLS–AR(p), Temp(t). Focusing on t + 1, the comparison among the two depen-

dence structures (AR(1) and AR(p), lines green and blue, respectively) associated with Temp(t)
shows a big difference for Vigo but no for Santiago. This suggests that for Santiago an AR(1) is

enough whereas for Vigo it seems more adequate a general AR(p) specification. Respect to the

models including the Rate(t) (lines red and gray), the model using GLS reacts faster than the

LM model providing better predictions of the peak. Predictions for medium or low intensities

(below 125) are quite similar. For t + 2, no clear patterns are shown, although the specification

GLS–AR(p) seems to do slightly better.

Fig 2. Shape of the covariates with respect to their contribution in the model. Shape of rate curves (on left) and temperature threshold curves (on

right) categorized by their projection value vX ¼ hX; b̂ i. The groups are constructed as a function of the quantile of vX (q(vX)): q(vX) 2 [0, .25] (dark

blue line), q(vX) 2 (0.25, 0.50] (blue line), q(vX) 2 (0.50, 0.75] (red line) and q(vX) 2 (0.75, 1] (dark red line).

https://doi.org/10.1371/journal.pone.0194250.g002
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Conclusion

This paper extends the GLS model from a multivariate to a functional framework: it thereby

allows us to estimate functional regression models with temporal or spatial covariance errors

structure in a simple way. It proposes an iterative version of the GLS estimator, that can help

to model very complicated dependence structures. This procedure (called iGLS) is much sim-

pler than GLS in terms of the optimization function to be accomplished but, of course, it may

take longer due to the iterations. However, iGLS may be the only option when the sample size

or the dimension of the parameter increases and the joint optimization performed by GLS is

not affordable (in terms of complexity or memory consumption).

A simulation study shows that the GLS estimators improve the classical approach because

they provide better estimations of the parameters associated with the regression model and

extremely good results from the predictive point of view, specially for short lags.

The GLS procedures have been applied to the prediction of the influenza rate using readily

available functional variables. These kinds of models are extremely useful to health managers in

allocating resources in advance for an epidemic outbreak. The estimation of the dependence

allows that simpler models can achieve good results maintaining nice interpretations of the

model. In particular, the simple model (b) that only uses the easy-to-measure variate Tempn,s(t),
shows that influenza may increase due to a cold wave with daily temperatures around 7˚C for

two weeks which is consistent with much of the literature on influenza. Also, the models show

that the estimated temporal dependence of the influenza virus is strong and stable over time.

In our examples, we estimated the error structure with simple AR(p) models (mostly AR(1)

or AR(2)) obtaining a good fit for time dependence. We also tried other ARMA models and

obtained similar results. Our method can additionally be used to explore more complex

Fig 3. Example of raw influence rate prediction. Prediction of the raw rate (cases × 100000/pop) for two counties (Vigo and Santiago) in Galicia using

four models: LM, Rate(w); GLS–AR(1), Rate(w); GLS-AR (1), Temp(t) and GLS-AR(p), Temp(t). In each case, the raw rate is compared with the

prediction provided one week before (t + 1, first row) and two weeks before (t + 2, second row). The counties are separated by columns.

https://doi.org/10.1371/journal.pone.0194250.g003

Functional regression models with temporal dependence

PLOS ONE | https://doi.org/10.1371/journal.pone.0194250 April 25, 2018 15 / 18

https://doi.org/10.1371/journal.pone.0194250.g003
https://doi.org/10.1371/journal.pone.0194250


dependence structures like heterogeneous covariances by counties or even spatio–temporal

modelling. The iGLS procedure allows for more simplicity and flexibility in the estimation of

the dependence structure at the cost of a light heavier computational work. Furthermore, in

particular in the example provided, the iGLS allows us to specify a general dependence struc-

ture that can be adapted for every county rather than considering the same model for all coun-

ties or designing, by hand, the best structure for each county.
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