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Background: Genomic rearrangements at the fragile site FRA1E may disrupt the dihydropyrimidine dehydrogenase gene (DPYD)
which is involved in 5-fluorouracil (5-FU) catabolism. In triple-negative breast cancer (TNBC), a subtype of breast cancer frequently
deficient in DNA repair, we have investigated the susceptibility to acquire copy number variations (CNVs) in DPYD and evaluated
their impact on standard adjuvant treatment.

Methods: DPYD CNVs were analysed in 106 TNBC tumour specimens using multiplex ligation-dependent probe amplification
(MLPA) analysis. Dihydropyrimidine dehydrogenase (DPD) expression was determined by immunohistochemistry in 146 tumour
tissues.

Results: In TNBC, we detected 43 (41%) tumour specimens with genomic deletions and/or duplications within DPYD which were
associated with higher histological grade (P¼ 0.006) and with rearrangements in the DNA repair gene BRCA1 (P¼ 0.007).
Immunohistochemical analysis revealed low, moderate and high DPD expression in 64%, 29% and 7% of all TNBCs, and in 40%,
53% and 7% of TNBCs with DPYD CNVs, respectively. Irrespective of DPD protein levels, the presence of CNVs was significantly
related to longer time to progression in patients who had received 5-FU- and/or anthracycline-based polychemotherapy (hazard
ratio¼ 0.26 (95% CI: 0.07–0.91), log-rank P¼ 0.023; adjusted for tumour stage: P¼ 0.037).

Conclusion: Genomic rearrangements in DPYD, rather than aberrant DPD protein levels, reflect a distinct tumour profile
associated with prolonged time to progression upon first-line chemotherapy in TNBC.

Breast cancer is a heterogeneous disease encompassing different
subtypes with distinct biological phenotypes and clinical profiles.
Among these, triple-negative breast cancer (TNBC) accounts for
15–20% of all breast cancer cases. This subtype is defined by loss of
oestrogen- and progesterone receptor (ER and PR) expression as
well as lack of human epidermal growth factor receptor-2 (HER2)
amplification (Kang et al, 2008; Reis-Filho and Tutt, 2008).

The majority of TNBCs also exhibit basal-like features. Owing to
the absence of specific therapeutic targets such as ER or HER2,
adjuvant treatment currently consists of cytotoxic chemotherapy
only. Those TNBC patients who do not respond to chemotherapy
have an even worse outcome compared with chemoresistant non-
TNBC patients (Dent et al, 2007; Gluz et al, 2009; Linn and Van ’t
Veer, 2009; Chacon and Costanzo, 2010). A challenging field is,
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therefore, the identification of TNBC patients with tumours that
are likely to be responsive or resistant to first-line chemotherapy.
Individuals with an unfavourable molecular-genetic tumour profile
would be potential candidates for alternative treatment modalities
exploiting novel molecular targets (Tutt et al, 2010; Fost et al, 2011;
Mehta et al, 2011).

Several studies have revealed that a significant number of
patients with TNBC respond well to standard treatment with 5-FU
and/or anthracyclines (Liedtke et al, 2008; Gluz et al, 2009). More
recent studies (Colleoni et al, 2010; Wang et al, 2011) suggested
also benefit from the classical CMF (cyclophosphamide, metho-
trexate, 5-FU) regimen in TNBC. Regarding the efficacy of
chemotherapy regimens based on 5-FU or increasingly prescribed
oral 5-FU prodrugs, the key enzyme in the catabolism of
(fluoro)pyrimidines is dihydropyrimidine dehydrogenase (DPD).
More than 80% of the administered 5-FU is degraded by DPD,
thus requiring high standard dosages of the drug (Lu et al, 1993).
Low tumoural DPD expression was, therefore, supposed to
increase the response rates upon 5-FU treatment (Etienne et al,
1995; Salonga et al, 2000), but the molecular mechanisms leading
to altered DPD concentrations in tumour tissues are largely
unknown.

In this context, the detection of the common fragile site FRA1E
which extends over 370 kb within the dihydropyrimidine de-
hydrogenase gene (DPYD) was an important finding, demonstrating
a potential mechanism for modifying DPD levels (Hormozian et al,
2007). Common fragile sites are instable chromosomal structures
with high DNA torsional flexibility (Schwartz et al, 2006) leading
to genomic translocations, amplifications or deletions in case of
replication stress. We have recently characterised large intragenic
rearrangements within DPYD that occurred in individuals
presenting with profound or partial DPD deficiency (van
Kuilenburg et al, 2009; van Kuilenburg et al, 2010). However,
these events revealed to be extremely rare in the germline (Ticha
et al, 2009; Pare et al, 2010). As enhanced fragility of common
fragile sites has been observed in cancer cells (Arlt et al, 2006), it is
conceivable that TNBC tumours which are frequently deficient in
BRCA1-mediated DNA repair (Turner and Reis-Filho, 2006;
Turner et al, 2007; Rodriguez et al, 2010; Weigman et al, 2012),
might be especially susceptible to acquire somatic rearrangements
including the DPYD locus. Consequently, disruption of the DPYD
gene may have implications for treatment of TNBC with 5-FU
containing therapy regimens.

On the basis of these hypotheses, we have evaluated the
presence or absence of DPYD copy number variations (CNVs) in
TNBC tumour specimens. In this retrospective study, we show that
genomic DPYD rearrangements occur frequently and are asso-
ciated with better patient outcome in TNBC, while mere DPD
protein levels did not influence clinical outcome.

PATIENTS AND METHODS

Patients and tumour specimens. One hundred and six fresh-
frozen tumour specimens of patients diagnosed with primary
TNBC, stored in liquid nitrogen at the Department of Obstetrics
and Gynecology, Klinikum rechts der Isar, Technische Universität
München, were available for studies using high-molecular-weight
DNA (cohort 1). Tumour content of the specimens was generally
70% or higher. In addition, nine tissue microarrays (TMAs) which
were constructed from paraffin-embedded tumour material of 146
TNBC patients, archived at the Institute of Pathology, Technische
Universität München, were used for immunohistochemical
analyses (cohort 2). In 34 cases, matched fresh-frozen and
paraffin-embedded tumour samples were available from the same
patient. The patient samples had been collected after surgery

between 1988 and 2009 and had been classified and assessed for
steroid hormone receptor (ER and PR) and HER2 expression by
immunohistochemistry (IHC) (Aubele et al, 2007). Hormone
receptor status was defined as negative when less than or equal
to 3/12 nuclear staining (Remmele’s score) was observed.
Tumours were classified as HER2-negative when assigned
as 0 or 1þ by IHC staining and/or lacking of HER2 amplification
in FISH staining (according to ASCO guidelines). Samples
collected before 1999 were retrospectively assessed for HER2
expression by IHC.

Table 1A. Clinical data and DPYD CNV

DPYD CNVs
(% patients)

Parameter n Valid % Yes No P
Cohort 1 106 n¼43 n¼ 63

Age

o50 41 39.8 41.9 38.3
X50 62 60.2 58.1 61.7 0.718
Unknown 3

Tumour stage

pT1þpT2 86 84.3 87.8 81.7
pT3þpT4 16 15.7 12.2 18.3 0.407
Unknown 4

Nodal status

N0 51 52.0 58.5 48.3
Node-positive 47 48.0 41.5 51.7 0.314
Unknown 8

Histological grade

1þ2 23 23.0 9.5 32.8
3 77 77.0 90.5 67.2 0.006a

Unknown 6

Histology

Invasive ductal 82 80.4 80.9 80.0
Medullary 6 5.9 7.1 5.0
Other 14 13.7 11.9 15.0 0.732
Unknown 4

BRCA1 CNVs

Yes 63 70.0 87.5 60.3
No 27 30.0 12.5 39.7 0.007a

Unknown 16

Chemotherapy

None 19 19.4 14.6 22.8
FEC 27 27.6 29.3 26.3
CMF 16 16.3 22.0 12.3
EC-CMF 4 4.1 4.8 3.5
EC 21 21.4 19.5 22.8
Other 11 11.2 9.7 12.3 0.714
Unknown 8

Abbreviations: CMF¼ cyclophosphamide, methotrexate, 5-FU; CNVs¼ copy number
variations; DPYD¼dihydropyrimidine dehydrogenase; EC¼ epirubicin, cyclophosphamide;
FEC, 5-FU¼epirubicin, cyclophosphamide.
aStatistically significant.
DPYD CNVs included 21 deletions and 19 duplications (see text). BRCA1 CNVS included 60
deletions, two intragenic duplications and one gene duplication associated with a mutation.
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Clinical parameters of the studied patient panels are listed in
Tables 1A and 1B. Approximately 80% of the tumour specimens
were classified as invasive-ductal carcinoma of no special type and
were categorised in the high-grade group (G3) according to the
classification of Elston and Ellis (Elston and Ellis, 1991). Patients
had received treatment following the guidelines at the time of
diagnosis. For patient cohort 1, follow-up data were recorded for
up to 203 months and were available for 91 patients including 69
patients treated with standard 5-FU- and/or anthracycline-based
polychemotherapy and 65 patients who had received radiotherapy.
The 5-year overall survival (OS) and progression-free survival
(time to progression (TTP)) rates in patients treated with
polychemotherapy were 81±4.7% (standard error SE) and
76±5.5%, respectively. For patient cohort 2, 105 cases with
follow-up data up to 244 months were available. Sixty-eight of
these patients had received 5-FU- and/or anthracycline-based

polychemotherapy and showed 5-year OS and progression-free
survival (TTP) rates of 80±5.1% and 65±6.1%, respectively.
Patients with neoadjuvant treatment were excluded from survival
calculations.

Written informed consent for the use of tissue samples for
research purposes was obtained from all patients. Approval for use
of the tumour samples was received from the Ethics Committee of
the Medical Faculty of the Technische Universität München.

DNA preparation. Nuclear fractions were prepared from frozen
TNBC specimens after routine separation of cytosol preparations
by ultracentrifugation (Janicke et al, 1994). High-molecular weight
DNA was extracted from nuclear fractions by using the QIAamp
DNA Mini Kit (Qiagen, Hilden, Germany). Five blood samples of
healthy donors were prepared with the same kit and used as
control samples for multiplex ligation-dependent probe amplifica-
tion (MLPA) analysis.

MLPA analysis. The MLPA test for DPYD (P103-B1, MRC-Holland,
Amsterdam, The Netherlands) is composed of 38 probes for
DPYD, including one probe for detecting the c.1905þ 1G4A
mutation, and nine control probes specific for DNA sequences
outside the DPYD gene. The MLPA test was performed as
described before (Schouten et al, 2002; van Kuilenburg et al, 2010)
using 50–200 ng of DNA per reaction. Data analysis was performed
using GeneMapper software (Applied Biosystems, Nieuwekerk a/d
IJssel, The Netherlands). The relative peak area was determined by
dividing the mean of the peak areas of the control probes of each
sample by the mean of the peak areas of the control probes of all
the samples (Rcontrol). The peak area of each DPYD MLPA probe of
a sample was divided by the Rcontrol of that sample. Subsequently,
the relative peak area of each DPYD probe was divided by the
average relative peak area of this probe in all the tumour samples.
In unaffected individuals, this will result in a value of 1 (100%)
representing two copies of the target sequence in the sample.
According to the manufacturer’s recommendations, we applied
cut-off values for each probe ratio of o0.70 and41.30,
respectively, to define reduced or increased copy numbers of
the target sequence. As the MLPA test enables detection of an
aberration in a region covered by multiple MLPA probes if 20% or
even less aberrant tumour cells are present (Hömig-Hölzel and
Savola, 2012), we additionally included samples with a mean probe
ratio of all DPYD probes below p0.85 or above X1.15, indicative
for a cell fraction with deletion or duplication of the whole coding
region. Samples were analysed in duplicate runs and five blood
samples were included as reference.

The MLPA test for BRCA1 (P002-C1, MRC-Holland, Amster-
dam, The Netherlands) contains 26 probes for BRCA1 and
9 control probes specific for DNA sequences outside the BRCA1
gene. The relative peak areas were determined as described above.
Subsequently, the relative peak area of each BRCA1 probe was
divided by the average relative peak area of this probe obtained
from five blood samples.

Generation of anti-DPD antiserum. Human DPYD cDNA was
cloned into the Nco I/Bgl II restriction sites of a pQE-60 vector
(Qiagen) including a polyhistidine (His6)-tag at the C-terminus.
The recombinant protein was expressed in Escherichia coli cells
and subsequently purified by nickel-nitrilotriacetic acid sepharose
chromatography (Qiagen) according to standard procedures.
Following dialysis and re-naturation in phosphate-buffered saline,
1 mM DTT, pH 7.4, two rabbits were immunised with this protein
preparation. Anti-DPD antibodies were affinity-purified by
coupling the immunogen preparation to a mixture of 50%/50%
AffiGel-10 and AffiGel-15 (BioRad, München, Germany). Elution
was performed with 0.1 M glycine/HCl buffer pH 2.4, followed by
re-neutralisation to pH 7.4. Finally, antibodies were concentrated
by ultrafiltration with Ultracell 50 K (Merck Millipore, Schwalbach,

Table 1B. Clinical data and DPD protein expression (IHC)

DPD expression
score (% patients)

Parameter n Valid % 0–1þ 2-3þ P
Cohort 2 146 n¼ 93 n¼53

Age

o50 39 28.7 25.0 35.4
X50 97 71.3 75.0 64.6 0.199
Unknown 10

Tumour stage

pT1þpT2 107 76.4 68.2 90.4
pT3þpT4 33 23.6 31.8 9.6 0.003a

Unknown 6

Nodal status

N0 59 45.4 45.2 45.7
Node-positive 71 54.6 54.8 54.3 0.964
Unknown 16

Histological grade

1þ 2 17 12.7 14.3 10.0
3 117 87.3 85.7 90.0 0.471
Unknown 12

Histology

Invasive ductal 115 80.4 76.7 86.8
Medullary 18 12.6 13.3 11.3
Other 10 7.0 10.0 1.9 0.277
Unknown 3

Chemotherapy

None 54 37.5 42.9 28.3
FEC 26 18.1 16.5 20.8
CMF 21 14.6 14.3 15.1
EC-CMF 7 4.9 4.4 5.7
EC 24 16.7 15.4 18.9
Other 12 8.4 6.6 11.4 0.744
Unknown 2

Abbreviations: CMF¼ cyclophosphamide, methotrexate, 5-FU; DPYD¼dihydropyrimidine
dehydrogenase; EC¼ epirubicin, cyclophosphamide; FEC¼ 5-FU, epirubicin, cyclopho-
sphamide; IHC¼ immunohistochemistry.
aStatistically significant.
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Germany) and diluted 50%/50% (v/v) with glycerol for storage.
All batches were checked by one-site ELISA using DPD coated
on microplates. Immunoreactivity with the specific DPD band at
B105 kDa was confirmed by western blot using protein prepara-
tions obtained from E. coli cells expressing the recombinant
protein as well as from peripheral blood mononuclear cells.

Immunohistochemistry. DPD protein expression was measured
by IHC using TMAs (Aubele et al, 2007). Tissue microarray
sections were deparaffinized and rehydrated through a graded
ethanol series finishing with distilled water. Endogenous perox-
idase was inhibited by treatment with 3% hydrogen peroxide. The
affinity-purified rabbit anti-DPD antiserum was applied in a
dilution of 1 : 300 and incubated for 1 h at room temperature in
humidified chambers. Staining was performed with the Dako
EnVision Detection System (Dako, Hamburg, Germany) which
uses a peroxidase-conjugated polymer backbone coupled to
secondary antibody molecules, and diaminobenzidine (DABþ )
as chromogenic substrate. Nuclei of the cells were finally counter-
stained with haematoxylin. Dihydropyrimidine dehydrogenase
staining intensity was assigned as absent (0), low (1þ ), moderate
(2þ ) or strong (3þ ) staining. To confirm the adequacy of the
immunohistochemical staining, mammary ductal epithelium
(Kamoshida et al, 2005) and liver tissue (Ho et al, 1986; Gerlach
et al, 2011) were used as positive controls known to exhibit high
amounts of DPD protein or mRNA. Furthermore, an additional
breast cancer tissue section was included in each run as negative
control by omission of primary antibody (Punsawad et al, 2013).

Statistics. Data independently obtained from MLPA and IHC
analyses were merged at the Department of Obstetrics and
Gynecology, Klinikum rechts der Isar, Technische Universität
München. Statistical analysis was performed with the IBM SPSS
Statistics software version 19.0 (SPSS Inc., Chicago, IL, USA). The
OS and TTP were considered as long-term endpoints. The OS was
defined as the time from surgery until death from any cause and
TTP was defined as the time from surgery to the first incidence of
disease recurrence (local or distant). The Cox proportional hazard
model was used to assess univariate and multivariable explanatory
ability of the clinical or molecular parameters with respect to
OS and TTP. Survival curves were generated according to the
Kaplan–Meier method and the log-rank test was used for statistical
comparison of event-time distributions between independent
subgroups. Ninety-five per cent confidence intervals were provided
for relevant effect estimates such as hazard ratios (HRs).
Association of molecular and categorical clinical data was assessed
by the Chi-square test. All statistical tests were conducted two-
sided and a P-value o0.05 was considered to indicate statistical
significance. To retain a maximum of power in the primary
interesting analyses, no correction of P-values was applied to adjust
for multiple testing (Saville, 1990). This study was designed
following the reporting recommendations for tumour marker
prognostic studies (REMARK) (McShane et al, 2006; Altman et al,
2012).

RESULTS

DPYD CNVs occur frequently in TNBC tumour specimens.
One hundred and six fresh-frozen TNBC specimens (cohort 1)
were analysed by MLPA to investigate the prevalence of large
rearrangements within the DPYD gene. We detected CNVs of
DPYD exons in 43 tumour specimens (41%, 95% CI: 31–51%).
Eleven samples exhibited breakpoints within the FRA1E block
spanning DPYD exons 13–16, a region supposed to display highest
recombination frequency (Hormozian et al, 2007). Overall,
however, gains or losses were observed throughout the entire gene
without apparent hotspots. Six of 19 duplications and 11 of 21

deletions extended over the whole DPYD coding sequence as
exemplarily illustrated in Figure 1. Furthermore, three TNBC
samples showed a more complex pattern with large deleted as well
as amplified regions within the gene.

As expected, DPYD CNVs were predominantly found in the
group of high-grade (G3) tumours (Table 1A; P¼ 0.006).
Interestingly, we also observed a significant association of DPYD
CNVs with the incidence of reduced/aberrant copies of BRCA1
(P¼ 0.007). Age, tumour stage or nodal status (binary variables)
were not significantly linked to DPYD CNVs (Table 1A).

DPD protein expression is frequently downregulated in TNBC
tumour specimens. We assessed the DPD expression status in
TNBC tissues (cohort 2) using IHC. For this purpose, nine TMAs
containing tumour tissue sections of 146 triple-negative and 20
triple-positive breast cancer (TPBC) patients were constructed.
A broad range of cytoplasmic staining with the anti-DPD antibody
was observed ranging from undetectable (0) to strong (3þ )
staining (Figure 2A–F). Normal ductal epithelium (panel A) or
intraductal carcinoma exhibited strong (3þ ) staining. Compared
with ductal epithelia, the majority of TNBC (64%) as well as TPBC
(90%) tumour specimens showed profound downregulation of
DPD protein levels (score 0-1þ ). Moreover, we observed lower
DPD expression in higher stage tumours (pT3þ pT4 categories)
exhibiting statistical significance (P¼ 0.003; Table 1B and Table 2).

To evaluate the DPD expression status in TNBCs with or
without DPYD CNVs, we defined the staining pattern in 34
matched cases for which both IHC and MLPA data were available
(Table 2). Loss of heterozygosity in the DPYD gene was indeed
accompanied by low (0-1þ ) to moderate (2þ ) DPD staining in
all except one tumour sample. Similarly, cancers exhibiting
duplications were predominantly (67%) associated with moderate
(2þ ) DPD staining. One TNBC sample with a complex pattern of
deleted and amplified sequences showed total loss of DPD protein
(see also Figure 2B and E). Nevertheless, DPD expression scores
and MLPA data did not reveal a statistical correlation (P¼ 0.461)
as tumour specimens without any DPYD rearrangements showed a
broad spectrum of DPD staining as well ranging from undetectable
up to high expression levels (Table 2).

As low DPD expression has been suggested to increase the
response rates in cancer patients treated with the fluoropyrimidine
drug 5-FU, we analysed outcome in TNBC patients who had
received adjuvant treatment. However, even in the subgroup of
patients treated with 5-FU-based chemotherapy only (n¼ 46), we
did not observe a clinical benefit from low (0-1þ ) DPD protein
expression compared with moderate and high expression for TTP
(5-year TTP with low DPD expression: 65.5±8.8%; moderate
expression: 82.5±11.3%; strong expression: 75.0±21.7%; log-rank
P¼ 0.383).

DPYD CNVs have prognostic value and are associated with
longer TTP. We next assessed the impact of DPYD CNVs
(applied as combined status of deletions or duplications) on TTP
and OS (Table 3). In the patient subgroup treated with standard
adjuvant polychemotherapy (cohort 1), 32 of 69 TNBCs showed
genomic DPYD rearrangements which were significantly associated
with a reduced risk of disease progression (HR¼ 0.26 [95% CI:
0.07–0.91], log-rank P¼ 0.023) (Figure 3A). Tumour stage revealed
to be the only prognostic clinical parameter for TTP in the
univariate analysis (Table 3). Adjusted for tumour stage, the DPYD
status remained to be an independent parameter providing
additional prognostic information (P¼ 0.037). Moreover, in the
multivariable model including the most important established
clinical factors (age, histological grading, nodal status and tumour
stage) (Table 4A), DPYD CNVs and tumour stage maintained
statistical significance as well although the small number of events
(n¼ 16) may weaken the power of this model. The DPYD status
did not provide prognostic information independent of the BRCA1
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status (Table 4B) underlining the observed association of DPYD
and BRCA1 CNVs.

The TTP was also assessed in the subgroup of all patients who
had received 5-FU (n¼ 45). In patients with DPYD CNVs, higher
5-year progression-free survival rates were observed compared
with patients exhibiting normal copy numbers (86±7.3% and
64±10.2%, respectively), however, statistical significance was not
reached for overall comparison (log-rank P¼ 0.074) (Figure 3B).

In patients who had received radiotherapy (n¼ 65), we also
observed a tendency towards prolonged TTP with DPYD CNVs
(log-rank P¼ 0.056). Five-year progression-free survival rates were
87.5±6.8% in patients with DPYD CNVs compared with
64±8.1% in patients with no CNVs (Figure 3C).

DISCUSSION

Intra-tumoural levels of DPD have been suggested to be an
important prognostic factor for the efficacy of 5-FU-based
chemotherapy regimens (Etienne et al, 1995; Salonga et al, 2000).
For breast cancer, Horiguchi et al reported better patient outcome
in case of low DPD concentrations (Horiguchi et al, 2002).
Therefore, it was our intention to characterise the DPD/DPYD
status in TNBC, a breast cancer subtype which is frequently treated
with 5-FU-containing polychemotherapy. Here we show that DPD
protein expression is profoundly downregulated (compared with
normal ductal epithelium) in 64% of the TNBC specimens which is
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Figure 1. Analysis of copy number changes in DPYD using MLPA. The results of the quantitative analysis of the copy number of the 23 coding
exons and 4 intronic sequences of DPYD and 9 control probes specific for DNA sequences outside DPYD is shown for a patient with no
aberrations (panel A), deletion of the entire DPYD gene (panel B) and amplification of the entire DPYD gene (panel C). The solid lines
represent the cut-off values indicative for amplification (relative copy number 41.3) or deletion (relative copy numbero0.7) of that particular
sequence.
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consistent with previous data obtained in other neoplastic cells
(Holstege et al, 1986; Shiotani et al, 1989a,b).

The mechanistic basis of DPD downregulation in cancer is
largely unknown so far. Among breast cancers, the triple-negative/
basal-like subtype is supposed to exhibit the greatest degree of
genomic instability showing common loss of important DNA
repair genes (Weigman et al, 2012). Thus, we hypothesised that
this phenotype might favour recombination events including the
fragile site FRA1E which disrupts the DPYD gene (Hormozian
et al, 2007). Indeed, we observed for the first time a high prevalence
of 41% of genomic DPYD rearrangements in TNBC tumour
specimens, whereas their population incidence in the germline is
extremely rare (Ticha et al, 2009; Pare et al, 2010). Secondly, our
data revealed that CNVs within DPYD were positively associated

with aberrant copy numbers of BRCA1. This is in line with the
copy number studies by Weigman et al (2012) who suggested loss
of BRCA1-dependent DNA repair might be involved in overall

ND

TU

TU

ST

TU

TUST

Figure 2. DPD protein expression assessed by immunohistochemical staining of TNBC specimens with anti-DPD. DPD expression was measured by
immunohistochemistry using an affinity-purified anti-DPD antibody. Tissue microarray sections with different staining intensity are shown.
(A) Section showing normal ductal epithelium with strong (3þ ) DPD staining. (B, C) Invasive breast cancer of no special type (NST) with undetectable
DPD expression; parallel analysis of the DPYD gene in (B) revealed large deleted and amplified regions within the coding sequence. (D) Invasive breast
cancer, NST, with low (1þ ) DPD expression. (E) Invasive breast cancer, NST, showing moderate (2þ ) DPD expression of tumour cells; parallel analysis
of the DPYD gene suggested the presence of a duplication (mean copy number¼150% of normal control). (F) Invasive breast cancer, NST, showing
strong DPD expression assigned as 3þ . Abbreviations: ND¼normal ductal epithelium; ST¼ stroma; TU¼ tumour cells.

Table 2. DPD protein expression scores determined by IHC

DPD expression score (IHC)

n

Low
(0–1þ )
n (%)

Moderate
(2þ )
n (%)

High
(3þ )
n (%)

TNBC (all) 146 93 (64) 42 (29) 11 (7)

TNBCs with DPYD CNVsa,b

Deletion 9 4 (44) 4 (44) 1 (11)
Duplication 6 2 (33) 4 (67)c 0
No CNV 19 12 (63) 6 (32) 1 (5)

Comparative tissue

TPBC 20 18 (90) 2 (10)

Abbreviations: CNV¼ copy number variation; DPYD¼dihydropyrimidine dehydrogenase
gene; IHC¼ immunohistochemistry; TNBC¼ triple-negative breast cancer; TPBC¼ triple-
positive breast cancer (hormone receptor-positive and HER2-positive).
aMatched cases of TNBC specimens examined for DPD expression and DPYD CNV.
bCorrelation of copy number data with low versus moderate/high protein scores: P¼ 0.461
(Fisher’s exact test).
cTwo out of four cases consisted of duplications of the entire coding region.

Table 3. Effect of clinical and molecular-genetic parameters on outcome
of patients treated with 5-FU and/or anthracycline-based therapy

TTP (n¼69) OS (n¼73)

Variable HR 95% CI
Log-

rank p HR 95% CI
Log-

rank p

Age

o50 1.0 1.0
X50 2.31 0.80–6.67 0.109 4.01 1.12–14.40 0.021a

Tumour stage

pT1þ2 1.0 1.0
pT3þ4 4.38 1.24–15.43 0.012a 5.25 1.45–18.99 0.005a

Nodal status

N0 1.0 1.0
Node-positive 1.60 0.60–4.31 0.344 1.92 0.63–5.86 0.245

Histological grade

1þ2 1.0 1.0
3 0.91 0.26–3.21 0.886 2.62 0.34–20.05 0.335

DPYD status

No CNV 1.0 1.0
CNV 0.26 0.07–0.91 0.023a 0.89 0.31–2.56 0.831

BRCA1 status

No CNV 1.0 1.0
CNV 0.36 0.11–1.14 0.069 1.27 0.27–5.87 0.761

Abbreviations: 95% CI¼ 95% confidence interval; CNV¼ copy number variation;
HR¼ hazard ratio; OS¼overall survival; TTP¼ time to progression.
aStatistically significant.
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genomic instability in basal-like/TNBCs. Furthermore, our obser-
vations may reflect greater vulnerability of the FRA1E site in the
background of BRCA1 abnormalities, as intact BRCA1 appears to
be required for the stability of common fragile sites through its G2/
M checkpoint function (Arlt et al, 2004).

Most of the 43 aberrations we had observed in DPYD were likely
to inactivate the gene as they occurred within the coding sequence.
Only six TNBCs exhibited entire gene duplications. Thus, the
majority of samples with DPYD CNVs should be associated with a
more or less pronounced decrease of transcript and protein levels
(depending on the percentage of cells with aberrant DPYD in the
tumour specimen and/or the presence of a remaining DPYD
wildtype copy). Accordingly, we mainly found moderate to low
DPD expression in tumour tissues with DPYD rearrangements.
On the other hand, low DPD protein expression was not restricted
to the presence of DPYD CNVs, but was also evident in the

majority (460%) of tumours without any aberrations. Hence,
additional mechanisms for DPYD downregulation, for example,
epigenetic or transcriptional regulations (Ezzeldin et al, 2005;
Zhang et al, 2006) are likely to occur. Taken together, the presence
of DPYD CNVs is only one parameter among others which
altogether may influence DPD protein levels in TNBC.

As previous clinical and preclinical studies (Etienne et al, 1995;
Salonga et al, 2000; Kobunai et al, 2007; Warnecke-Eberz et al,
2010) reported a beneficial effect of altered tumoural DPYD upon
5-FU treatment, we assessed patient outcome in the presence of
DPYD CNVs. Remarkably, we observed prolonged progression-
free intervals (TTP) associated with DPYD rearrangements in
patients who had been treated with 5-FU- and/or anthracycline-
based chemotherapy regimens. Furthermore, DPYD CNVs
remained to be a strong parameter for predicting TTP independent
of tumour stage. On the other hand, we could not confirm a
potential benefit from DPD protein downregulation for adjuvant
treatment. In contrast, our data revealed that absent/low (0–1þ )
DPD staining had no positive impact on TTP even in the subgroup
treated with 5-FU-containing therapy only. This may be explained
by our findings that, in TNBC, very low DPD expression was
associated with more unfavourable clinical characteristics such as
higher tumour stage (note that a large proportion of DPYD CNVs
was associated with moderate DPD expression). Supporting these
findings of an unfavourable clinical profile, analysis of publically
available data sets of 125 hormone receptor-negative, basal-like
breast cancers (supposed to be largely overlapping with TNBC),
downloaded from GEO (Gyorffy et al, 2010), revealed that low
DPYD mRNA expression was indeed related to shorter relapse-free
survival (HR¼ 0.37 (0.2–0.7), log-rank P¼ 0.0016; Supplementary
Figure S1).

On the basis of our results, the clinical impact of genomic DPYD
rearrangements in TNBC appears to be mainly due to intrinsic
tumour characteristics irrespective of the DPD expression status.
Hence, DPYD CNVs may function as a surrogate marker
predicting better clinical outcome upon radio- and chemotherapy.
In fact, co-occurrence of BRCA1 and DPYD rearrangements, as
observed in our study, may reflect a background of decreased DNA
repair capacity (Weigman et al, 2012) and, thus, suggest increased
vulnerability of these TNBC tumours towards DNA-damaging
agents such as radiation, DNA-intercalating anthracyclines or
alkylating cyclophosphamide. Also, benefit from newly developed
agents, for example, PARP inhibitors (Tutt et al, 2010), targeting
DNA-repair-deficient cancers, might be expected. As the prog-
nostic value of molecular signatures of the first generation was
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Figure 3. Kaplan–Meier curves demonstrating the effect of DPYD status on time to progression (TTP). (A) TNBC patients treated with standard
5-FU- and/or anthracycline-based chemotherapy (n¼69). Somatic copy number changes (CNVs) in DPYD were significantly associated with longer
TTP compared with DPYD-wildtype TNBC tissues. Five-year TTP rates for patients with aberrant DPYD and wildtype DPYD were estimated to be
90±5.5% and 65.5±8.2%, respectively. (B) TNBC subset treated with 5-FU-containing chemotherapy (n¼ 45). Five-year TTP rates for patients with
DPYD CNVs and wildtype DPYD were estimated to be 86±7.3% and 64±10.2%, respectively. (C) TNBC subset treated with radiotherapy (n¼65).
Five-year TTP rates for patients with DPYD CNVs and wildtype DPYD were estimated to 87.5±6.8% and 64±8.1%, respectively.

Table 4A. Multivariable analysis of risk of progression

Variable HRa 95% CI P
DPYD status: No CNV vs CNV 0.27 0.075–0.96 0.043b

Age: o50 years vs 450 years 2.63 0.87–7.92 0.087

Grading: G1þG2 vs G3 1.16 0.31–4.36 0.822

Tumour stage: pT 1þ 2 vs 3þ 4 4.71 1.06–20.95 0.042b

Nodal status: none vs positive 1.27 0.42–3.83 0.672

Abbreviations: CNV¼ copy number variation; HR¼hazard ratio. Total number of patients in
analysis: 67; number of events: 16.
aCox proportional HR for risk of progression in patients treated with adjuvant
polychemotherapy containing 5-FU and/or anthracyclines.
bstatistically significant

Table 4B. DPYD CNVs adjusted for BRCA1 CNVs

Variable HRa 95% CI P
DPYD status: No CNV vs CNV 0.37 0.078–1.71 0.201

BRCA1 status: No CNV VS CNV 0.43 0.133–1.37 0.151

Abbreviations: CI¼ confidence interval; CNV¼ copy number variation; HR¼ hazard ratio.
Total number of patients in analysis: 57; number of events: 12.
aCox proportional HR for risk of progression in patients treated with adjuvant
polychemotherapy containing 5-FU and/or anthracyclines.
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shown to be related to ER-positive, rather than ER-negative breast
cancers (Reis-Filho and Pusztai, 2011), there is still a need for
prognostic or predictive factors for the TNBC subgroup. Genomic
DPYD rearrangements might thus arise as a candidate marker
suitable for validation in larger clinical studies.

In conclusion, we detected a high prevalence of somatic copy
number aberrations in TNBCs affecting the DPYD gene. The
presence of DPYD CNVs might help to subdivide TNBCs into
molecular classes with better prognosis, while low DPD protein
expression in general had no impact on better patient outcome.
Patients with aberrant DPYD copy numbers might therefore be
well suited for treatment with standard polychemotherapy
combined with radiotherapy. Further studies will show whether
genomic DPYD rearrangements might be incorporated into a panel
of novel molecular signatures predicting clinical outcome in
TNBC.
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