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Human pluripotent stem cells (hPSCs) represent a new and exciting field in modern med-
icine, now the focus of many researchers and media outlets. The hype is well-earned
because of the potential of stem cells to contribute to disease modeling, drug screening,
and even therapeutic approaches. In this review, we focus first on neural differentiation of
these cells. In a second part we compare the various cell types available and their advan-
tages for in vitro modeling. Then we provide a “state-of-the-art” report about two major
biomedical applications: (1) the drug and toxicity screening and (2) the neural tissue replace-
ment. Finally, we made an overview about current biomedical research using differentiated
hPSCs.
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INTRODUCTION
Human pluripotent stem cells (hPSCs) encompass human embry-
onic stem cells (hESC) and human induced pluripotent stem
cells (hIPS); they are recently added tools in world of biological
research. The first in vitro culture of hESC was established in 1998
and, even then, there was obvious interest in developmental biol-
ogy,drug discovery,and transplantation medicine (Thomson et al.,
1998). hIPS are cells in an embryonic stem cell-like state gener-
ated from non-pluripotent cells by induction of specific genes (Yu
et al., 2007). hPSCs are functionally defined by their self-renewal
and differentiation potential. They can be induced to differentiate
in vitro into virtually all human cell types (Bhattacharya et al.,
2009). A diseased or injured central nervous system (CNS) has
little capacity to compensate for the loss of cellular elements (neu-
rons, oligodendrocytes; Barrett et al., 2007), thus, cell replacement
is an interesting prospective [i.e., missing dopaminergic neurons in
Parkinson’s diseased brain; missing motoneurons in amyotrophic
lateral sclerosis (ALS) or spinal cord injury]. Significant progress
has been made in culture and differentiation protocols to obtain
cells suitable for transplantation. Further development of these
technologies could lead to the scalable production of different
neural cell types for toxicity screening and clinical therapies (Dan-
tuma et al., 2010). Currently, 10 years after the first in vitro culture
of hESC, the first therapy using hESC is being evaluated in clinical
trials, beginning to make part of these promises a reality (Geron
Corporation, 2009). However, in spite of numerous statements in
the social media declaring that these cells can be used in med-
icine for therapeutic purposes, the clinical applications remain
few (Aznar and Sanchez, 2011). hPSCs-derived neurons (-dN) are
still too rarely used for drug screening and predictive toxicity.
In these domains, requirements exist for efficient, predictive, and
cost-effective in vitro models (Bal-Price et al., 2010). Such models
have been established with hPSCs-dN but most in vitro models
use mouse ESCs-dN. For each of these research domains, we will

describe recent advances in hPSCs culture and we will focus on
the clinical relevance of using hPSCs for in vitro nervous system
disease modeling and therapies.

hESC AND iPSCs DIFFERENTIATION TOWARD NEURAL
LINEAGE
CELL LINES
One major challenge in biomedical research is to recapitulate
in vitro the biological events occurring in vivo in normal or dis-
eased organs. There remain serious concerns with the relevance of
the most commonly used model systems. For instance, human
brain tissue obtained from postmortem samples is subject to
numerous artifacts: abnormal brain pH resulting from near death
hypoxia, a lengthy postmortem period, residual amounts of med-
ications used. Although they are a major source for primary human
neuron cultures, biopsies from the CNS are restricted, owing to the
invasiveness of the procedure (Deep-Soboslay et al., 2011). Thus
hESC-dN are an attractive alternative to primary neuron culture.

Human embryonic stem cells are derived from the inner cell
mass of the 4- to 5-day-old blastocyst. These cells possess two hall-
mark characteristics: (1) they are able to proliferate in vitro and
(2) under controlled culture conditions they are able to differen-
tiate into all three germ layers (ectoderm, mesoderm, endoderm),
and thereby represent a potentially inexhaustible source of somatic
cells (Thomson et al., 1998). Growing knowledge about differen-
tiation protocols allows the generation of cells found in neural
tissue such as neurons and glia. However, the isolation of hESC
raises ethical issues due to the destruction of human embryo. The
development of hIPS avoids this ethical problem and is a good
alternative to hESC.

There are several approaches to generate hIPS from adult
somatic cells from various tissues, including nuclear transfer, cell
fusion, and direct reprogramming (Hochedlinger and Jaenisch,
2006). The direct reprogramming of differentiated cells (i.e.,
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fibroblasts) into hIPS provides a tractable source of pluripotent
cells for regenerative therapy (Figure 1). Direct reprogramming
was first realized by the transduction of four transcription factors
in fibroblasts (Oct-3/4, Sox2, KLF4, and c-Myc – OSKM fac-
tors, Takahashi et al., 2007; Yamanaka, 2008). Cell reprogramming
is usually achieved by methods involving viral-derived vectors,
but there has been progress toward optimizing security. Several
alternatives exist to replace some or all of the OSKM factors:
pharmacological molecules, recombinant proteins, signaling fac-
tors or use of other transcription factors (Huangfu et al., 2008;
Yoshida et al., 2009; Zhou et al., 2009; Gonzalez et al., 2011). More
recently, the reprogramming of human somatic cells was driven
by the expression of specific miRNA (Anokye-Danso et al., 2011).
For therapeutic purposes, hIPS transgene-free were designed and
some “safe” non-teratoma-forming cell lines have been identified
(Okita et al., 2011). Although still subject to much controversy,
hIPS proliferative and differentiation properties resemble hESC
(Ohi et al., 2011). Both hESC and hIPS exhibit high intrinsic vari-
ability between different cell lines (Bock et al., 2011). Thus, the
suitability of each cell line for clinical applications needs to be
examined.

For disease modeling purposes, hIPS lines have been generated,
for example, from patients affected by spinal muscular atrophy
(SMA), familial dysautonomia (FD), Rett syndrome, and down
syndrome (Baek et al., 2009; Hotta et al., 2009). Motor neurons
derived from SMA or FD patients hIPS exhibited, in vitro, mor-
phological features of the disease (Ebert et al., 2009; Lee et al.,

FIGURE 1 | Generation of neural precursors or neural cells from

pluripotent stem cells using differentiation or somatic cells using

transdifferentiation. (A) Fibroblasts used for direct reprogramming using
the four transcription factors: Oct4, Sox2, KLF4, c-Myc. (B) hESC, H1 cell
line cultured on mouse embryonic fibroblasts as feeder cells (MEFs). (C)
Neural precursor cells obtained from differentiated H1. (D) Monolayer of
neurons differentiated from H1.

2009). Since hIPS retain a “memory” and potential characteristics
of the cells or related tissue they originate from (Tian et al., 2011),
it was speculated that this memory could be helpful for modeling
of late-onset neurological diseases such as ALS or Parkinson’s dis-
ease (PD). Unfortunately, neurons derived from hIPS generated
from ALS or PD patients do not readily recapitulate the diseases
features (Dimos et al., 2008; Park et al., 2008; Soldner et al., 2009).
The reprogramming of an adult cell to a pluripotent state may reset
certain epigenetic hallmarks that developed during disease evolu-
tion. To avoid this problem, direct transdifferentiation of somatic
cells to neural lineages could be considered. It is now possible to
use direct reprogramming with human fibroblasts (with specific
factors such as Ascl1, Brn2, Myt1l) to generate functional neu-
rons (Vierbuchen et al., 2010; Kim et al., 2011; Pang et al., 2011)
and more specifically, dopaminergic neurons (Pfisterer et al., 2011;
Figure 1). However, these methods are inconvenient because they
generate few cells; in the most recent protocols, about 20% of cells
can be directly reprogrammed to functional neurons.

DIFFERENTIATION
Withdrawing a key factor from the medium or forcing the hPSCs
to grow in suspension is enough to induce cell differentiation
(Thomson et al., 1998). However, the stochastic nature of dif-
ferentiating hPSCs generates many different somatic cell types
(Martinez et al., 2011). hPSCs-based applications, mainly in the
biomedical domain, require specific in vitro differentiation toward
the desirable cell population harboring a unique phenotype. Cell
preparations containing undifferentiated or insufficiently differ-
entiated hPSCs can lead to cell overgrowth or teratoma formation
once transplanted in an organism (Lees et al., 2007; Aubry et al.,
2008). For a given neurodegenerative disorder, hPSCs must be
differentiated toward the specific neural cell type that could poten-
tially restore the lost functions (Table 2). For example cell replace-
ment therapy to treat PD aims dopaminergic neurons (Marchetto
et al., 2010).

The crucial point is how to induce specific hPSCs differenti-
ation toward the desired neural phenotypes. The first step is to
obtain neural progenitor cells (NPCs; Figure 1). Essentially, spe-
cific differentiation depends on the addition of instructive factors
and the removal, or inhibition, of preventive ones (Nat and Hov-
atta, 2004). To obtain NPCs, many different factors have been
tested (Reubinoff et al., 2001; Dhara and Stice, 2008; Suter et al.,
2009). The most commonly used are fibroblast growth factor
(FGF), EGF, SHH, retinoic acid (RA), and bone morphogenetic
protein-antagonists (BMPa); there is also the less well-defined
stromal-cells derived inducing activity (SDIA). These factors are
known to activate complex pathways such as Hedgehog, meso-
dermal, BMP, kinase, and WNT signaling but their roles are not
entirely elucidated. To inhibit the differentiation toward lineages
other than neural and promote neural differentiation, in most pro-
tocols, media supplements, such as N2 and B27, are added. N2 con-
tain insulin, transferrin, putrescine, progesterone, and selenium.
Insulin promotes proliferation, transferrin promotes proliferation
and survival of mature neurons, putrescine is involved in axonal
regeneration, and selenium protects against excitotoxicity. B27
contains more than 20 components including vitamins, hormone
growth factors, antioxidants, and fatty acids (Suter and Krause,
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Table 1 | Main factors used for differentiation toward specific neural

lineages.

Cell type Factors needed for differentiation

Neural precursor βFGF, EGF

Dopamine neurons FGF-8, Shh

GABA neurons BDNF, Dkk1, Shh, cAMP

Motor neurons RA, Shh

Astrocytes CNTF, LIF, BMPs

Oligodendrocytes PMN, VN, NGN, PDGF, cAMP, FGF-2

Retinal neural cells Dkk1, Lefty-1

Auditory neural cells βFGF, EGF, insulin-like growth factor, BMP4

BDNF, brain-derived neurotrophic factor; BMP4, bone morphogenetic factor 4;

cAMP, cyclic adenosine monophosphate; CNTF, ciliary neurotrophic factor; Dkk1,

Dickkopf-1; EGF, epidermal growth factor; FGF-8, fibroblast growth factor 8; GABA,

g-aminobutyric acid; LIF, leukemia inhibitory factor; NGN, neurogenin; PDGF,

platelet-derived growth factor; PMN, purmorphamine; RA, retinoic acid; Shh,

Sonic hedgehog; VN, vitronectin (Suter and Krause, 2008).

2008). Ectodermal factors are also used to restrict mesoderm
differentiation using P53 pathway (Sasai et al., 2008). Despite the
numerous components tested and added, the effective mainte-
nance and stable expansion of NPCs remains complicated, even
with the most recently developed protocols (Li et al., 2011). More-
over, no protocol allows obtaining only NPCs; and a selection of
cells of interest must be done with techniques like FACS sorting or
with inducible suicide gene (Li, 2002; Kawaguchi et al., 2008).

The second step is to drive NPCs toward a specific neural phe-
notype (Figure 1). Many molecular pathways are involved in this
step of differentiation. For example, Wnt/beta-catenin signaling
is known to stimulate the formation of dopaminergic neurons
(Ding et al., 2011). To get mature neural cell types, the presence
of specific factors is necessary (Table 1). Yet, as for NPCs, the
purity of neural cell population remains problematic (Pankratz
et al., 2007). An additional consideration is that techniques for
neural induction depend on the cell line used and the experimen-
tal practice (Schwartz et al., 2008; Suter and Krause, 2008; Daadi
and Steinberg, 2009).

Two cell culture protocols are commonly used: suspension cul-
tures and adherent cultures. In suspension, hPSCs form a cell mass.
The most promising for 3D culture is in suspension. Adherent cul-
ture seems to provide better condition to obtain a homogenous
cell population. An homogenous individual cell exposition to mor-
phogens is not warranted due to the numerous cell layers. Thus,
the concentration gradient can lead to the generation of cells at
different developmental stages and subsequently the formation of
multilayered structures that contain a heterogenous population of
cells, including neural progenitors. The disadvantages of this pro-
tocol are: (1) the size of the cell mass varies, even with the same
initial cell number and (2) there is variability in the percentage
of each cell types generated and in the layer organization. In con-
trast, the adherent monolayer culture system allows a uniform cell
exposition to morphogens and provides a more homogenous cell
population. Static monolayer culture model does not mimic the
in vivo microenvironment (Wilby et al., 1999) and none of the
monolayer protocols used for cell differentiation yield structures

and organization similar to those generated in suspension cultures
or those with engineered neural tissues (ENTs).

ENGINEERED NEURAL TISSUES
The aim of hPSCs-derived neural tissue culture is to provide mod-
els for very early stage of nervous system development (neural tube
and post neural tube early stages) and diseases, to provide models
for toxicity and drug screening, and to explore the mechanism of
action of different molecules. Three-dimensional cultures would
allow for the study of interactions between various neural cell
types and some intrinsic properties could be more readily com-
pared with CNS physiological properties. To provide a relevant
model for CNS modeling, the 3D culture system must adhere to
three criteria: (1) to contain most CNS-related cell types (oligo-
dendrocytes, neurons, astrocytes, microglia, endothelial cells, and
meningeal fibroblasts); (2) to be biologically relevant (the in vitro
system cell components must show similar behavior to those
in vivo); (3) to recapitulate some of the developing or mature CNS
features, including early neural tube organization. hPSC-derived
ENTs have been produced by several laboratories with varying
protocols and results (Wang et al., 2011). Amongst them, the use
of air–liquid interface cell cultures device allows a 3D organization
guided by endogenous developmental cues (Preynat-Seauve et al.,
2009). Scaffolds with different materials like cellulose nanofibers,
SiO2, PLGA nanofibers or silicon can also been used with or with-
out coating. Some coatings increase neural differentiation. Some
frequently used coating are the laminin to support neural adhe-
sion, the poly-l-lysine, or the alginate gel to induce slow drug
release (Leach et al., 2010). All of these in vitro models recapitulate,
at least partly, in vivo nervous system development.

Tissue engineering may provide advanced in vitro models for
drug testing in combination with non-destructive techniques for
long-term studies. Cell proliferation, migration, differentiation,
and synaptogenesis could be followed in ENTs and give precious
information. ENTs could reduce time, cost, and number of animals
necessary for pre-clinical studies. However, the tissue thickness
and variety of cell types found in the hPSC-derived culture may
be challenging. It is difficult to monitor cell morphology and phe-
notype during cell differentiation process in ENTs. Compared to
cell derived in a monolayer, hPSCs derived in 3D cultures could
provide a more elaborate system for developmental neurotoxicity
testing. The research aim will determine the choice between the
two culture methods (Figure 2).

HUMAN CELL LINES AND IN VITRO MODELS
Until recently, the human in vitro models available were limited
to the use of transformed cell lines (like SH-SY5Y cells) or of
primary cells obtained from aborted fetuses’ tissues or from resec-
tion during brain surgery. Transformed or primary cell lines used
have obvious limits (Table 2). (A). Transformed cell lines derived
from tumors and do not represent normal neural cells (Breier
et al., 2010). Human primary cell lines raise ethical problems,
are difficult to obtain, and, in the case of adult brain biopsies,
contain very few neural progenitors, neurons whose developmen-
tal processes is achieved, and many reactive astrocytes. On the
other hand, fetal biopsies contain more neural progenitors, which
is advantageous for culture systems. Biopsies from patients with a
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FIGURE 2 | Main biomedical applications and advantage of 2D cultures

and 3D cultures. (A) hPSCs, H9 cell line on MEFs. (B) Monolayer of
neurons obtained from differentiated hESC (H9 cell line). (C) Engineered
neural tissue obtained from the differentiation of H9 on a semi-permeable
membrane.

neurodegenerative disease or with epilepsy offer the opportunity
to study real diseased human neurons (Radio and Mundy, 2008).
Since recent developments of hIPS, especially hIPS from dis-
eased humans, ethical problems are solved and hPSCs can now be
considered a valuable tools for drug screening (Danovi et al., 2010).

NPCS derived from the H9 hESC line are commercially avail-
able (“Embryonic neural Stem-A” cells, Millipore, Inc.). Other
neural stem cell lines are widely used by the research community
such as ReNcell VM derived from the ventral mesencephalon or
ReNcell CX derived from the cerebral cortex (ReNeuron group).
To facilitate screening developments, these cells are defined by
marketing features such as ideal culture and differentiation con-
ditions, genomic stability, and phenotype expressed before and
after differentiation. The recent production of hIPS from diseased
patient represents a major advance for in vitro neurodegenera-
tive disease models. The generation of in vitro assays with hPSCs
facilitates early assessment of tested chemicals at a high through-
put. Such assays become an area of interest for supporting “the
3 R’s rule” (reduction, refinement, replacement) to alleviate ani-
mal use in biological research (Moors et al., 2009). The exist-
ing range of fundamental research protocols available to explore
neural functioning allows investigation of all disease aspects. These

protocols allow researchers to explore cellular phenotype (histo-
logical analysis),neuronal activity (electrophysiology,patch clamp,
calcium imaging currents), connectivity (synapse maturation),
circuitry (Rabies virus tracing, co-culture between neurons and
glia), and cell migration (bioimaging).

DRUG AND TOXICITY SCREENING WITH hPSCs
The aim of drug screening is to find the most efficient molecule
for a particular application, while avoiding deleterious effects. For
efficient drug screening toxicity assessment, in vitro 3D culture
models should yield a significant throughput. Because of their
size and cell heterogeneity, these models are available only for
the low-throughput approach. Considering the currently available
protocols, it would be difficult to obtain the number of cultures
required for regular use on 1536-well plates (Bal-Price et al., 2010).

The toxic properties of a large number of chemicals remain
unknown, in particular in the CNS. hPSC-derived 3D systems
could help to study the 1200 compounds known to be neurotoxic
to humans or animals (non-confidential Toxic Substances Control
Act, TSCA; Coecke et al., 2007). High-content/high-throughput
screening (HCS/HTS) approaches to identify chemicals that may
be toxic for nervous system cells are increasingly used (Lein et al.,
2007; Breier et al., 2008). Present HCS/HTS approaches use imag-
ing of biochemical or morphological endpoints in cells, such as
neurite outgrowth, neurite number, average length, cell size, and
shape, and nucleus/cytoplasm ratio (Pal et al., 2011). The use
of hPSCs models in neurotoxicology and drug screening is an
emerging field but that needs further expansion.

Although hPSCs are a reproducible and renewable source of
cells, they do not offer all the main features required for screen-
ing, which are as follows: (1) It should be easy to produce the cell
number needed to conduct HCS/HTS assays in multi-well plates;
(2) Cell genotype and phenotype should be stable; (3) The prolif-
eration, migration, and differentiation features of cells should be
well-characterized and reproducible; (4) The relative percentage
of neurons, astrocytes, and oligodendrocytes obtained during the
differentiation should be standardized such that toxicity-induced
changes in the proportions of each can be reliably detected (Breier
et al., 2010). hPSCs do not satisfy to all of these characteris-
tics. The major problems for their use in screening are: (1) The
maintenance of stem cell colonies is an intensive and expensive
labor; (2) Exact medium composition is rarely known because of
commercial protections; (3) The time needed to accomplish neu-
ronal differentiation is very long; (4) The conditions required for
specific neuronal differentiation are not fully elucidated; (5) The
neural progeny is asynchronous: mature and immature neural cell
types are present in the final cell population (Breier et al., 2010;
Azari et al., 2011). The above disadvantages explain why until now
neurons derived from hPSCs have been rarely used to test the effi-
cacy of drugs and their neurotoxicity (Barbaric et al., 2010). Recent
hIPS-derived neuronal modeling establish alternatives tools for
current drug screening platforms, at least as proof-of-principle
(Ebert et al., 2009). Foremost, among hIPS derived from dis-
eased patients’ neural cells make it possible to target the screening
against a specific disease. In some cases, such as with schizophre-
nia, screening could be complicated (Brennand et al., 2011). The
complexity of this disease would require a subgrouping of hIPS
based on pathways that are impacted for each specific patient. On
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Table 2 | Cell types used in biomedical research with their advantages and inconvenients.

Cell types Advantage Disadvantage

Immortalized cell lines Easy to obtain large quantities Different from in vivo cells

Inexpensive Modified cell lines

Relevance limited

Primary cell culture Relevance Hard to obtain

Behavior similar to in vivo Limited quantities

hESC Unlimited quantities Ethical issues

Unmodified cells Expensive

Long differentiation time

Cell lines hard to obtain

hIPS Close to in vivo reality Expensive

Cell lines from patient with specific diseases easy to obtain Not yet proven to have complete equivalence with hESC

Transdifferentiated cells Relevance Limited quantities

Ability to obtain one specific cell type Impact of transdifferentiation not well known

Table 3 | A specific cell type for a specific disease.

Target cell population Markers Potential treatment

NPC Musashi, Nestin, Sox 2, Vimentin, Pax6, Sox1

Astrocytes GFAP, S100, Ran2

Oligodendrocytes O1, O2, MBP, RIP, CNPase, GalC Vascular neuroencephalopaties, multiple sclerosis

GABA neurons GABA, DARPP-32, GAD, VGAT Huntington’s disease

Dopamin neurons DBH, DAT, l-DOPA, TH Parkinson’s disease

Cholinergic neurons Acetylcholinesterase, ACh, ChAT, choline transporter Alzheimer’s disease

Motor neurons ChAT, Chox10, En1, Evx1/2, Islet1/2, Lim3, REG2, Sim1 Amyotrophic lateral sclerosis, spinal cord injury

Auditory neural lineage GATA3, phosphorylated NFH within Somata Hearing loss (cochlear implant; Gunewardene et al., 2011)

Retinal cell lineage Rhodopsin, RBP3 Blindness (Bharti et al., 2011)

GFAP, glial fibrillary acidic protein; MBP, myelin basic protein; GalC, galactocerebroside; DBH, dopamine beta hydroxylase; DAT, dopamine transporter; TH, tyrosine

hydroxylase; SERT, serotonin transporter; Ach, acetylcholine; ChAT, choline acetyltransferase; RBP3, retinol binding protein 3.

the other hand, hIPS could bring the opportunity to identify the
specific molecular factors in each subgroup. In this way, hIPS could
hold the promise of individualized medicine in complex disease
(Brennand et al., 2011; Buxbaum and Sklar, 2011).

hPSCs THERAPIES FOR NEURAL TISSUE REPLACEMENT
Effective treatments do not exist for neurodegenerative diseases.
hPSCs hold enormous promise for cell-replacement based ther-
apies. They are a potentially unlimited source of allogenic or
autologous cells. The main goal of treatment-oriented research
is to obtain appropriate cells able to repopulate diseased tissue
in vivo without deleterious consequences. Cells must be free from
xeno-contamination to avoid risks of zoonosis or activation of
animal retroviruses (Swistowski et al., 2009). Then, appropriate
cell differentiation and selection are critical to obtain enough spe-
cific cells to treat a targeted disease such as Parkinson’s disease or
Alzheimer’s disease (Table 3). (B). The strict phenotype specificity
and purity of transplanted cells is an absolute requirement.

One of the major problems is the teratoma, or overgrowth risk.
It remains to be solved for most of the potential treatments. Fol-
lowing neural differentiation, neural precursors are able to prolif-
erate in an uncontrolled manner, even if all of the undifferentiated

cells are removed. For example, in a recent experiment, grafted
IPS derived to striatal spiny neurons overgrew and lead to dele-
terious side effects after 13 weeks. The overgrowth problem was
due to some nestin-positive NPCs and not to the presence of
undifferentiated ESCs (Aubry et al., 2008). Three different ways
have been investigated to increase transplantation efficiency as
well as to avoid overgrowth or teratoma formation: (1) Cell sort-
ing to isolate a specific population; (2) hPSC lines modified with
an inducible suicide gene under the control of a promoter element
used to maintain “stemness” (Schuldiner et al., 2003); (3) Targeted
anti-human hPSC antibodies that induce apoptosis of undifferen-
tiated hPSC (Choo et al., 2008; Tan et al., 2009; Lim et al., 2011).
Finally, as with all transplantations, the risk of rejection must be
considered (Preynat-Seauve and Krause, 2011).

With the aim to develop knowledge and potential thera-
pies, many IPS lines have been produced from patient suffering
from a variety of neurological diseases like HD, PD (Park et al.,
2008), SMA (Ebert et al., 2009), ALS (Dimos et al., 2008), and
schizophrenia (Chiang et al., 2011). “Proof-of-concept” for cell
replacement therapy has been provided in the following two exam-
ples: PD and spinal cord injury (SCI; Roy et al., 2006; Erceg et al.,
2010).
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PARKINSON’S DISEASE
First described in 1817 by James Parkinson, this degenerative disor-
der results from the death of dopaminergic neurons in the ventral
midbrain substantia nigra (Goto et al., 1990). The prevalence of
Parkinson’s disease (PD) is about 1–2% of the population over
65 years (Alves et al., 2008). Symptoms are severe motor deficits
like muscle rigidity, tremors, and unstable gait and posture. Cur-
rent treatments consists of the administration of drug levodopa
(l-dopa), a dopamine precursor able to cross the blood–brain
barrier and be metabolized into dopamine (Sethi, 2010). Deep
brain stimulations are also used (Tuszynski, 2007). However, these
treatments only alleviate symptoms; they do not correct deficits
and are progressively ineffective with PD progression. Further-
more, long-term use of l-dopa induces dyskinesia (Calabresi et al.,
2010). Research for more efficient alternative treatments are cur-
rently being investigated. Transplantation of neurons from fetal
ventral midbrain to replace lost dopamine neurons shows var-
ied and sometimes no benefit for the patients in clinical trials
(Freed et al., 2001; Olanow et al., 2003). Moreover, due to ethi-
cal concerns and the difficulties in obtaining adequate tissue, this
alternative will likely remain marginal. There has been progress
in other areas though; hPSCs derived to dopaminergic neurons
and then transplanted into a rat model of Parkinson’s disease pro-
duced improvements in motor function (Ben-Hur et al., 2004;
Roy et al., 2006; Chiba et al., 2008). As techniques have pro-
gressed to the point that researchers can obtain pure dopaminergic
neurons from hPSCs (Cho et al., 2008; Swistowski et al., 2010;
Kim, 2011). Moreover, derivation of specific dopaminergic neu-
rons from patient IPS has been achieved and transplantation of
these cells into a rodent PD model showed an alleviation of motor
deficits (Cooper et al., 2010; Hargus et al., 2010). All together,
these studies show that hPSCs are promising candidates for cell
replacement therapy.

SPINAL CORD INJURY
The most advanced hPSC-derived therapy aims to treat SCI. It is
the first treatment to be evaluated in clinical trials (Geron Cor-
poration, 2009). This trial has been halted for economic reasons
by Geron enterprise but continue to be monitored. In United
States, incidence of SCI is estimated to be about 12,000 cases
each year (Qin et al., 2010). After a spinal cord trauma, symptoms
can vary depending on the localization of the damages as well as
various internal and external factors (Jagatsinh, 2009). To treat
motor deficit related to SCI the connection between motor cortex
and muscles must be restored. For this purpose, the transplanta-
tion of motor neurons and oligodendrocytes can be considered.
These two cells types can be derived from hPSCs (Kerr et al.,
2010) and hPSCs induced to motor neurons promote functional
recovery after SCI in a rat model (Rossi et al., 2010). Tissue engi-
neering approaches has been tested to treat SCI. They combine
hPSCs with collagen or fibrin-based scaffold. These scaffolds are
able to deliver growth factors promoting hPSCs differentiation
into oligodendrocytes and neurons. (Hatami et al., 2009; Johnson
et al., 2010). These studies showed that implanted cells increase
locomotor functions and enhance functional recovery in a rat
model of SCI (Kerr et al., 2010; Niapour et al., 2011; Lee et al.,
2012).

OTHER INJURIES AND DISEASES
Another promising trial is for Huntington’s disease (HD), a neu-
rodegenerative genetic disorder that causes dementia and affects
muscle coordination. Prevalence of this disease is about 0.01% of
the population (Warren and Yellowlees, 1990). As for PD, some
studies have investigated the potential of fetal tissue transplan-
tation as treatment and show more encouraging results for HD
treatment than for PD treatment (Frank and Biglan, 2007; Gallina
et al., 2010). Another experiment involved differentiation hIPS
into neural progenitors and transplanting them into a rat model of
HD; grafted animals had better performance than controls (Song
et al., 2007). Unfortunately, in these tests, the mechanism of recov-
ery was not clear: was it due to factors released by the graft or by
the host tissue?

Human pluripotent stem cells were also occasionally used for
traumatic brain injury and Alzheimer’s disease (Molcanyi et al.,
2007; Moghadam et al., 2009). Cell replacement therapy could be
also investigated in some case of severe epilepsies by implanta-
tion of specific GABAergic neurons directly into affected areas.
Most of these studies use mouse models and embryonic stem cells
(mESCs), so much work would need to be repeated with hESC
in pre-clinical testing to determine the viability of such therapies
(Wang et al., 2006; Riess et al., 2007).

CONCLUSION
Despite the recurring front page media stories about hPSCs and
therapeutic promises, we are still many years from clinical applica-
tions. hPSCs provide a renewable source of all somatic cell types,
but important difficulties remain. The main ones stay to isolate and
have a long-term expansion of specific cells. To achieve specific
hPSCs differentiation requires protocols that are often compli-
cated and expensive. Current cell selection protocols have intrinsic
limits and cell cultures may still yield mixed populations contain-
ing neural cells at different developmental stages, which necessarily
limits biomedical applications needing well-defined cells (Ebert
and Svendsen, 2010). The recent development of hIPS allows gen-
eration of patient-specific neural cells and tissue, but we still do
not know if these cells are equivalent to hESC since their respective
potential can differ (Martinez-Fernandez et al., 2011).

The number of genetic mutations that are induced by the return
to pluripotency can hamper future applications. Moreover, in the
case of age-dependent diseases like HD, hIPS-derived cells do
not always exhibit phenotypic differences compared with normal
control cells. Some newer protocols involve culturing cells under
oxidative stress conditions to reveal or accelerate aberrant neu-
ronal phenotypes in late-onset diseases, but their relevance in drug
screening is not yet established (Nguyen et al., 2011; Seibler et al.,
2011). The use of hIPS in modeling diseases like Timothy syn-
drome or Down syndrome is only just beginning, and much work
remains to obtain relevant models (Yazawa et al., 2011). Despites
these limits, hPSCs have the potential to improve our knowledge
in many biomedical domains. For example, hPSCs have obvious
applications in neuroprostethics, leading to a better understand-
ing of the inflammation process following implantation. Also, if
performed early in the drug development process by pharmaceu-
tical companies, relevant toxicological screenings would allow a
substantial decrease in the cost of clinical studies. Moreover, the
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introduction of hIPS adds a “personalized medicine” dimension
to eventual biomedical applications. Considering these potential
advantages, hPSCs are full of promise in the near future.
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