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Implicit learning may be shown by improvements in motor performance, which occur
unconsciously with practice and are typically restricted to the task that was practiced. The
purpose of this study was to examine behaviorally relevant brain activation associated with
change in motor behavior during sequence-specific motor learning of a perceptuomotor
continuous tracking (CT) task in middle-aged adults. To gain further insight into the neural
structures associated with change in motor behavior, overall improvement in tracking
(root mean square error; RMSE) was decomposed into two components—temporal
precision and spatial accuracy. We hypothesized that individual differences in CT task
performance would be evident in unique networks of brain activation that supported
overall tracking behavior as well-temporal and spatial tracking accuracy. A group of
middle-aged healthy individuals performed the CT task, which contains repeated and
random segments for seven days. Functional magnetic resonance imaging (fMRI) data was
collected on the first and seventh day while the participants performed the task. Subjects
did not gain explicit awareness of the sequence. To assess behaviorally-relevant changes
in the blood oxygenation level-dependent (BOLD) response associated with individual
sequence-specific tracking performance, separate statistical images were created for
each participant and weighted by the difference score between repeated and random
performance for days 1 and 7. Given the similarity of performance for random and repeated
sequences during early practice, there were no unique networks evident at day 1. On
Day 7 the resultant group statistical fMRI image demonstrated a positive correlation
between RMSE difference score and bilateral cerebellar activation (lobule VI). In addition,
individuals who showed greater sequence-specific temporal precision demonstrated
increased activation in the precentral gyrus, middle occipital gyrus, and putamen of the
right hemisphere and the thalamus, cuneus, and cerebellum of the left hemisphere.
Activation of this neural network further confirms its involvement in timing of movements
as it has been previously associated with task performance when individuals are instructed
to emphasize speed over accuracy. In the present study, behavioral performance was
associated with neural correlates of individual variation in motor learning that characterized
the ability to implicitly learn a sequence-specific CT task.
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INTRODUCTION
Implicit learning supporting the performance of complex motor
sequences can be achieved in the absence of conscious knowl-
edge of what was learned or that any learning took place (Frensch
and Runger, 2003). Evidence for implicit motor learning comes
from improved performance with skilled practice during sequen-
tial motor tasks (Rauch et al., 1995, 1997; Hazeltine et al.,
1997; Willingham et al., 2002; Reiss et al., 2005). The major-
ity of past work in this field employed the serial reaction time
(SRT) task to examine implicit and explicit learning of sequences
of movement (Nissen and Bullemer, 1987). In the SRT task,
individuals follow visual cues to perform a series of motor
responses; implicit learning is evidenced by faster reaction times

for repeated as compared to random sequences (Schendan et al.,
2003).

Despite extensive study, the neural correlates of implicit motor
sequence learning remain somewhat elusive. A major reason for
conflicting results in functional MRI (fMRI) studies of implicit
learning is differences in experimental designs. For example, SRT
task practice of shorter repeated sequences (less than 12 ele-
ments) can be acquired explicitly (Rauch et al., 1995), which
alters patterns of brain activity (Doyon et al., 2002). In addi-
tion, the neural networks involved in practice phase acquisition
performance differ greatly from those involved in implicit motor
sequence learning when a relatively permanent change in behav-
ior has occurred (Karni et al., 1995). Since the inception of
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the SRT task different variations have evolved, shifting depen-
dent measures associated with learning from gross movement
measures of the speed to more detailed analyses of kinemat-
ics, including measurements of temporal precision and spatial
accuracy (Boyd and Winstein, 2004a). However, different pat-
terns of brain activation are observed when participants learn
inter-movement timing as compared to actual movements asso-
ciated with a series of repeating motor responses (Gobel et al.,
2011). Thus, in the present study we sought to eliminate many
of the sources of variability outlined above by employing a
continuous tracking (CT) task that does not easily stimulate
explicit awareness of the repeated sequence (Boyd and Winstein,
2004b; Boyd et al., 2009), has no delays between stimuli for
movement (Wulf and Schmidt, 1997), is not prone to ceil-
ing effects despite extensive training (Wulf and Schmidt, 1997;
Vidoni and Boyd, 2009) and can be dissociated into two compo-
nents of performance, temporal precision, and spatial accuracy
(Boyd and Winstein, 2004a) in order to differentiate unique
networks of brain activation operating during motor sequence
learning.

The ability to accurately index sequence-specific implicit
motor learning relies heavily upon the design of the sequences to
be learned (Wulf and Schmidt, 1997; Chambaron et al., 2006).
Thus, in the present study we took additional methodological
steps to equate tracking difficulty between the repeated and ran-
dom sequences. We and others have noted variability in the
magnitude of change in performance of the CT task, despite
the provision of equal amounts of practice (Chambaron et al.,
2006). Given this issue in the present study we undertook a new
approach. Rather than considering group sequence-specific learn-
ing effects, we employed a subject-level analysis to ascertain how
individual differences influenced both implicit learning of the
repeated sequence and the neural networks that underpin these
changes in motor behavior.

Thus, the purpose of the present study was to assess indi-
vidual variation in behaviorally relevant brain activation with
changes within the components of sequence-specific performance
during a perceptuomotor task (ie., the CT task). We created
sequence-specific weighted images to evaluate the correlations
between increased brain activation during repeated sequence per-
formance and the behavioral change score at a delayed retention
test. We hypothesize that positive difference scores from repeated
to random performance at retention will be associated with a
distinct behavioral relevant fMRI activation changes in middle-
aged adults following the completion of long-term practice of a
CT task.

METHODS
PARTICIPANTS
Ten right-handed healthy, middle-aged individuals participated
(Mean = 64.7; SD = 8.5 years; six females). None presented with
any evidence of dementia (26 or greater on the Mini-Mental State
exam) (Folstein et al., 1975). Individuals were recruited from the
university and local community. The rights of all participants
were protected by the ethical review board at the University of
British Columbia; each signed an approved institutional informed
consent form prior to enrollment.

Participants were excluded if they had any history of major
psychiatric diagnosis, substance abuse, or neurological disease or
damage. Individuals who were taking any drug known to ham-
per motor learning or cortical plasticity (i.e., anticholinergics,
GABAergics, NMDA receptor blockers as well as alpha and beta
blockers) were not studied. Additional exclusion criteria were
adopted for fMRI scanning (e.g., pregnancy, obesity, metallic
objects in body, claustrophobia).

BEHAVIORAL TASK
A target circle outlined in white was visible on a black background
as it moved up and down on a computer screen for a total of 20 s.
Participants used their non-dominant arm to track the vertical
path of the target with wrist movements that controlled a non-
ferrous joystick (Current Designs1). Participants viewed the target
on a 21′′ monitor and made wrist motions from ∼20◦ of ulnar
deviation to 20◦ of radial deviation with the start position at 90◦.
Participants’ movements were represented as a red filled circle.
Each was instructed to “track the target as accurately as possible
by trying to position the red filled circle inside the white open
target” (Figure 1). Custom software developed on the LabVIEW
platform was programmed to present all stimuli; joystick posi-
tion was sampled at 50 Hz (v. 7.1, National Instruments, Inc.2 Co.,
Austin, TX, USA).

Unknown to the participants a predefined sequence of tracking
pattern was embedded in the task for one segment of each trial,
which remained identical across practice and retention. This pat-
tern was constructed using the polynomial equation, as described
by Wulf and Schmidt (1997) with the following general form:

f (x) = bo + a1 sin(x) + b1 cos(x) + a2 sin(2x) + b2 cos(2x) + · · ·
+a6 sin(6x) + b6 cos(6x)

FIGURE 1 | Overview of experimental task and sample repeated and

random segments. (A) A non-ferrous joystick was used for tracking;
individuals were asked to move the joystick to place the red dot in the
white circle. (B) Sample repeated and random segments from the CT task.

1Current Designs Inc., 3950 Haverford Ave., Philadelphia, PA 19104, USA.
2National Instruments Corporation, 11500 N Mopac Expressway, Austin, TX
78759-3504, USA.

Frontiers in Human Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 169 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wadden et al. Implicit learning weighted fMRI

The repeated sequence was constructed by using the same coeffi-
cients3 for every trial. The other segments of the tracking pattern
were generated randomly using coefficients ranging from 10
to −10. This was calculated for each random segment so that the
minimum and maximum of the segment were equidistant from
the midline. The range of the random segments were restricted to
a produce a range of motion within ±20◦ of movement. A differ-
ent random array of segments was used for every trial; however,
to ensure uniformity, the same random tracking patterns were
practiced by all of the participants. During behavioral practice,
random and repeated segments were linked such that participants
were not aware when they were practicing each type. This was
accomplished by adjusting the ends of each segment to cross the
0 point on the screen where they were linked one to another. In
addition, the slope of the random segment was within 20% of the
repeated segment at the point of transition.

Two screening methods were used in an attempt to equate the
difficulty of the random and repeated segments. First, the range
of motion of the random segment was calculated and the ran-
dom segment was rejected if the range of motion was not within
5% of the range of motion of the repeated segment. Secondly, an
average velocity criterion was developed using performance data
from study participants for different random patterns. Based on
the root mean squared error (RMSE) analysis, which reflects the
overall movement error of tracking, the random patterns were
ranked for each participant and then the ranking averaged across
all subjects. This measure clearly identified segments that subjects
consistently performed well or poorly. The average velocity for
each random segment was calculated. There was a strong pat-
tern showing segments with the lowest RMSE rankings (ranked
as “easy”) also had low average velocity. The average velocity for
the repeated cycle was calculated and compared with the values of
the random segments. The value of the repeated segment average
velocity was well above that of the “easy” random segments. Based
on this analysis, an average velocity minimum was determined
and segments with an average velocity lower than this value were
eliminated from consideration. Both of these screening methods
were employed as post processing. The random segments were
analyzed; both for appropriate range of motion and average veloc-
ity, and segments not meeting these criterions were eliminated
from further analysis.

The order of presentation of random and repeated segments
were counterbalanced such that there was always an equal chance
of performing either type of sequence first. The trajectories of
the target and participants’ movements did not leave a trail on
the screen and thus, participants could not visualize the entire
target pattern (Boyd and Winstein, 2004b). Participants prac-
ticed 50 trials (5 blocks; 10 trials/block) each behavioral day
(i.e., days 2–6) under identical conditions. Participants were not
explicitly informed of the existence of the repeating sequence but
instructed daily to track the target as accurately as possible by
controlling the position of the cursor with the joystick. This pro-
cedure was repeated for 5 days (250 trials total) to ensure adequate
acquisition practice (Boyd and Winstein, 2001).

3bo = 4.37, a1 = −1.0, b1 = −4.6, a2 = −6.1, b2 = 9.6, a3 = −5.2, b3 =
−7.1, a4 = 4.6, b4 = −4.5, a5 = −5.6, b5 = 3.6, a6 = −4.8, and b6 = 8.9.

The same tracking task was used during fMRI acquisition
(days 1 and 7). Participants’ initial behavioral performance and
blood oxygenation level-dependent (BOLD) response at baseline
was assessed on Day 1. A separate retention test on Day 7 fol-
lowing the 5 days of practice was used to assess motor sequence
learning and associated BOLD response. During these 2 days of
fMRI acquisition, participant performed four separate runs of CT
task performance that were comprised of 2 blocks presented in
a block design (40 s rest/150 s stimulation/40 s rest/150 s stimu-
lation/40 s rest) such that each block of stimulation consisted of
either random or repeated sequences with the order of presen-
tation within a scan counterbalanced across scans. During both
behavioral practice and fMRI sessions the beginning and end of
segments were not marked in any way, one segment simply ran
into the next. The visual display was back projected (Panasonic
LCD projector, model PT-L75OU) onto an opaque screen located
above the participants’ head and visible via a reflecting mirror
located in the radio frequency head coil. Before the first fMRI ses-
sion all participants were familiarized with the motor task. Prior
to functional imaging, high-resolution 3D T1 images were col-
lected for anatomic localization and co-registration (170 slices,
1.0 mm thickness, FOV = 256 mm).

MRI DATA ACQUISITION
Functional and anatomical imaging was performed at the UBC
MRI Research Centre on a Philips Achieva 3.0 T whole body MRI
scanner (Phillips Healthcare, Andover, MD) using a sensitivity
encoding head coil (SENSE). Participants lay supine in the scan-
ner with foam padding around their head to limit motion. The
scanner was equipped with a three-axis local gradient radio fre-
quency coil to collect whole brain fMRI (36 axial, 3 mm skip
1.0 mm slices). Functional imaging data were collected as axial
echo-planar images, using a single-shot, blipped gradient-echo
echo-planar pulse sequence (TE = 30 ms, TR = 2.0 s, 90◦ flip
angle, FOV = 256 mm, 64 × 64). Four, 7 min runs of functional
data were collected (210 images). Prior to functional imaging,
high-resolution 3D T1 images were collected for anatomic local-
ization and co-registration (170 slices, 1.0 mm thickness, FOV =
256 mm). Total scan time was ∼45 min.

BEHAVIORAL DATA ANALYSES
Motor performance was evaluated across practice and retention
in two ways. First we considered changes in RMSE, which is
the average difference between the target pattern and participant
movements and reflects overall tracking errors in the kinematic
pattern 4. This overall tracking error score was calculated sep-
arately for random and repeating segments on every tracking
trial and averaged by block. RMSE for repeated sequences reflects
sequence specific motor learning; changes in random sequence
tracking error index non-specific improvements in motor control.

Next, we decomposed movement traces to determine spatial
and temporal tracking accuracy. Spatial accuracy and the time
lag between kinematic patterns and the target were deconstructed

4RMSE = ∑{(xi − Ti)
2/n}1/2 i = 1 xi = participant’s position in degrees at

time 1, Ti = target position at time 1, n = the number of samples for the
participant’s trajectory array.
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using a time series analysis (TSA). Only continuously overlap-
ping sections of target and position data were correlated to avoid
sample size biasing from different temporal shifts across trials
and participants. Correlation coefficients (R2) reflect the spatial
accuracy of tracking performance and the position of highest cor-
relation was taken as the time lag as compared to target motion.
Time lag of tracking represents the temporal distance from the
target. The temporal offset was converted to milliseconds to char-
acterize the temporal precision of tracking. Time lag scores that
shifted from negative numbers to approach 0 (i.e., lower nega-
tive numbers indicate larger time lags while a 0 value represents
no tracking time lag between participant and target) indicate
improved motor performance. Finally, correcting for the con-
tribution of time lag in the overall RMSE scores allowed us to
determine spatial tracking error (Day and Marsden, 1982; Boyd
and Winstein, 2004a,b).

Sequence-specific learning is indicated by superior perfor-
mance (RMSE, temporal precision, and spatial accuracy) of the
repeated than of the random sequence at the delayed retention
test (Verwey et al., 2011).

EXPLICIT TESTING
Evaluation of explicit knowledge proceeded via testing for explicit
recognition memory. We have employed this procedure in past
studies, demonstrating its sensitivity to the acquisition of explicit
awareness of recognition memory (Boyd and Winstein, 2004a;
Boyd et al., 2009; Meehan et al., 2011). Ten-second sequences
that only showed a target cursor were played on a 21′′ computer
screen. After viewing each sequence participants were asked to
rate (yes/no) if they recognized the segment immediately after it
finished playing (i.e., forced choice) (Boyd et al., 2009). In total,
three true and seven novel or foil sequences were displayed. To
be judged as having explicit knowledge participants had to cor-
rectly recognize 2 of 3 true sequences, and 4 of 7 false sequences
as foils. These criteria for having acquired explicit knowledge of
the repeated sequence are based on past published work (Boyd
and Winstein, 2004a; Boyd et al., 2009; Meehan et al., 2011).

fMRI DATA ANALYSIS
All data processing was performed using Analysis of Functional
NeuroImages software (AFNI; Cox, 1996). Data from each par-
ticipant and session was analyzed separately. Functional images
were generated by condition (i.e., Rest, Random, and Repeated).
The functional runs for each day were concatenated into a single
file for data analysis. All functional images were spatially aligned
to correct for head motion. No participant had head motion that
exceeded 2 mm in any direction. A general liner model (GLM)
was constructed using a deconvolution technique (Deconvolution
Analysis FMRI Time Series,” http://afni.nimh.nih.gov/afni, D.
Ward); individual time-course BOLD signal data were fit to the
design matrix. In this fMRI block design, the model included
the boxcar regressor of each condition of the design matrix
(Repeated vs. Rest, Random vs. Rest) convolved with a hemody-
namic response function (HDF). In addition, six predictors of no
interest were included in the model to account for translational
and rotational motion in the x, y, and z planes. Functional data
were spatially smoothed using a 4 mm full-width-half-maximum

Gaussian kernel. Anatomic images were registered in Talairach
space and then co-registered with functional images (Talairach
and Tournoux, 1988). The MRI Atlas of the Human Cerebellum
(Schmahmann et al., 1999) was referenced to identify activation
within the cerebellum.

To evaluate the relationship between sequence-specific motor
learning and brain activation, a group analysis of individual statis-
tical maps correlating brain activation during repeated sequence
performance and behavioral difference score of overall improve-
ment in tracking (RMSE), temporal precision, and spatial accu-
racy were created (Johansen-Berg et al., 2002). To ascertain
this relationship, two separate analyses for Day 1 and reten-
tion (Day7) were performed to determine how the Repeated—
Random BOLD contrast correlated with individual differences
in performance and sequence-specific difference scores for each
three measures (3 separate correlations analysis per day). Firstly,
at the fMRI single-subject level, the Repeated—Random BOLD
contrast from the GLM was produced creating a statistical image
for each participant. Contrasts were performed separately on Day
1 and retention (Day 7) allowing for the direct evaluation of
brain activation that was specific to repeated sequence learning.
Activation observed on Day 1 is not associated with learning
but rather performance measures. Each participant’s statistical
image for the Repeated – Random BOLD contrast was then mul-
tiplied by their corresponding difference score on Day 1 and
retention [(mean repeated – mean random)] for RMSE, tempo-
ral precision, and spatial accuracy (Table 1) (Johansen-Berg et al.,
2002). This created performance-weighted and sequence-specific
weighted images for RMSE, mean temporal precision, and spatial
accuracy difference scores on Day 1 and retention, respectively.
RMSE and spatial accuracy difference scores signs were inverted
during statistical weighting to assess positive correlations between
increased sequence-specific performance and brain activation.
At the group level, the single-subject contrasted images were
summed and divided by the square root of the number of par-
ticipants to create a correlated group statistical image (Johansen-
Berg et al., 2002). Three separate performance-weighted and

Table 1 | Participant characteristics and fMRI-weighted differences

score at retention for performance during CT task inside the MR

scanner.

Participant Age Sex Overall movement Temporal Spatial

error precision accuracy

fMRI weighted difference score

1 54 F 0.702 −0.328 −0.534

2 64 F 0.084 0.116 0.201

3 72 F 0.123 −0.033 −0.141

4 67 F −0.574 0.130 −0.342

5 60 F −0.009 0.358 −0.422

6 51 M −0.061 0.361 −0.206

7 63 M −0.220 0.201 −0.268

8 68 M −1.38 0.036 −0.899

9 80 F −0.347 0.538 −0.676

10 69 M −0.584 0.296 −0.655
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sequence-specific weighted images were generated for each day
(Day 1 and 7) that represent a voxel-wise statistical image with a
correlation at every voxel for brain activation and performance
and sequence-specific difference score (Johansen-Berg et al.,
2002). The initial performance-weighted and sequence-specific
weighted image for RMSE learning analysis was thresholded at
p < 0.005, with a spatial cluster threshold of 200 contiguous
voxels; secondary analysis for the correlated temporal precision
and spatial accuracy images were thresholded more conserva-
tively at p < 0.0005, to minimize family-wise error and control
for multiple comparisons. Day 1 was used to determine activa-
tion associated with performance of the repeated sequence, any
overlapping activation observed between Day 1 and Day 7 was
deemed performance-related activation rather than sequence-
specific motor learning-related activation.

STATISTICAL ANALYSIS
Behavioral data
Changes in tracking (overall movement error, temporal preci-
sion, and spatial accuracy) were analyzed across motor sequence

practice sessions (Day 2–6) and in the MRI scanner (Day1 and
7). To evaluate the performance related changes in sequence spe-
cific learning separate repeated measures for Day (2–6) and Day
(1–7) by Sequence (random, repeated) ANOVAs were conducted
for overall movement error, temporal precision, and spatial accu-
racy of tracking change scores. Mauchly’s test indicated that the
assumption of sphericity had not been violated [χ2

(9) = 0.279,
p > 0.05]. Outliers were deemed and removed if the changes
in tracking were greater than two standards deviations of the
group mean.

RESULTS
BEHAVIORAL DATA
A day by sequence interaction demonstrated that across prac-
tice days more improvement occurred for repeated sequence
as compared to the random sequence for overall movement
error (RMSE) (2–6) [F(1, 4) = 2.61, p = 0.05; η2 = 0.226; δ =
0.675]. However, a main effect of day demonstrated that prac-
tice benefitted tracking performance for both types of sequences
[F(1, 4) = 4.19, p = 0.007; η2 = 0.32; δ = 0.884] (Figure 2A).

FIGURE 2 | (A) Normalized mean RMSE for random and repeated sequences
on practice days. Significant interaction of sequence and time [F(1, 4) = 2.62;
p = 0.05; η2 = 0.22; δ = 0.289]. (B) Normalized mean spatial accuracy for
random and repeated sequences on practice days; main effect of time

[F(1, 4) = 6.01; p = 0.001; η2 = 0.40; δ = 0.97]. (C) Normalized mean
temporal precision for random and repeated sequences on practice days.
Significant interaction of sequence and time [F(1, 4) = 2.836; p = 0.04;
η2 = 0.706; δ = 0.262].
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When decomposed into the components of movement error, a
significant main effect of day for spatial accuracy for both types
of sequences [F(1, 4) = 6.01; p = 0.001; η2 = 0.40; δ = 0.97] was
observed (Figure 2B). Performance in temporal precision showed
a significant interaction as greater improvements in this compo-
nent were observed for repeated sequence tracking across practice
[F(1, 4) = 2.836; p = 0.04; η2 = 0.706; δ = 0.262] (Figure 2C).
There was no significant difference between repeated and random
sequences performance on day 1 or day 7 for any of the measures
of tracking performance (Figure 3).

Participants failed to gain explicit knowledge as shown by their
poor ability to correctly recognize the repeated sequences. Explicit
recognition was at chance; only 55% of sequences were correctly
identified.

fMRI SEQUENCE-SPECIFIC LEARNING-RELATED CHANGE
There was no overlap between behaviorally correlated brain
activation from Day 1 to retention, demonstrating the exis-
tence of a sequence-specific motor network. The correlational
analysis for the positive differences scores at the retention
test produced overall movement error (RMSE) and temporal

precision sequence-specific weighted statistical images. Spatial
accuracy did not show any positive correlations associated with
increase brain activation at the retention test. The positive dif-
ference score in overall tracking performance was evident in
three out of the 10 participants (Table 1). For these individuals,
the RMSE sequence-specific weighted statistical image showed
increased activity of the bilateral cerebellum (lobule VI) that
correlated with positive difference scores at retention (Table 2;
Figure 4). Decomposing overall movement error into its tempo-
ral and spatial components, identified only positive differences

Table 2 | Regional activation for correlational analysis for

sequence-specific weighted image for overall movement error (root

mean square error; RMSE) difference scores (mean repeated − mean

random) at retention.

Brain region Hemisphere Cluster size x y z

POSITIVE CORRELATIONS

Cerebellar lobule VI R 313 37 −56 −25

Cerebellar lobule VI L 306 41 52 −27

FIGURE 3 | (A) Mean RMSE for repeated and random sequences on day 1 and 7. (B) Mean spatial accuracy for repeated and random sequences on day 1 and 7.
(C) Mean temporal precision for repeated and random sequences on day 1 and 7.
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FIGURE 4 | Brain activation associated with overall movement error at retention (p < 0.005).

Table 3 | Regional activation for correlational analysis for

sequence-specific weighted image for temporal precision difference

score (mean repeated − mean random) at retention.

Brain region Hemisphere BA Cluster x y z

size

POSITIVE CORRELATIONS

Precentral gyrus R 6 1723 34 −8 30

Thalamus L 724 −22 −21 8

Middle occipital gyrus R 37 301 37 −61 2

Cuneus L 18 285 −12 −86 16

Putamen R 266 27 3 1

Cerebellar lobule VI L 237 −35 69 −25

in temporal precision (time lag) during the repeated sequence
with positive correlations in the precentral gyrus, middle occipi-
tal gyrus, and putamen of the right hemisphere and the thalamus,
cuneus, and cerebellum of the left hemisphere (Table 3; Figure 5).
These results were related to eight of the 10 subjects, as the posi-
tive difference scores in temporal precision were observed in eight
of the 10 subjects (Table 1). There was no overlapping activation
between Day 1 and Day 7, thus, the activation observed on Day 7
is behaviorally-related to sequence-specific learning.

DISCUSSION
This study confirms past work showing that a broad network of
brain activity supports sequence-specific learning of perceptuo-
motor tasks. Sequence-specific motor learning, as measured by
the difference score in overall tracking error (RMSE) between
repeated and random sequences at retention, was associated with
increased activity in large bilateral clusters within the cerebellum
(lobule VI). However, as this positive difference in behavior was
only evident in three of the 10 subjects. Sequence-specific motor
improvements were largely the result of improved (i.e., shorter)
time lag of tracking (eight of the 10 subjects), denoted following
the decomposition of overall movement error into the tempo-
ral and spatial components. We observed a relationship between
improvements in temporal precision during sequence-specific
motor learning and activation within a specific bihemispheric
network of the brain—the precentral gyrus, middle occipital
gyrus, putamen, thalamus, cuneus, and cerebellum. Limited lit-
erature exists on the long-term neural changes associated with
improvements in the components motor learning in middle-aged
adults, thus, the whole brain correlational analysis employed here

provides a more comprehensive portrait of cortical reorganiza-
tion associated with implicit motor sequence learning.

SEQUENCE-SPECIFIC MOTOR LEARNING AND ASSOCIATED BRAIN
ACTIVATION
The sequence-specific weighted correlational analysis identified
activation within both hemispheres of the cerebellum associated
with sequence-specific motor learning as measured by changes
in RMSE from repeated to random sequence performance.
Activation associated with superior repeated motor learning was
observed in bilateral lobule VI of the cerebellum. Past work sug-
gested that during motor sequence learning, activation within
areas of the cerebellum is dependent on the phase of learning
(Doyon et al., 2002). The improved movement proficiency of
the repeating pattern required bilateral activation of the cere-
bellum as a result of the kinetically demanding nature of the
CT task. Other work supports our interpretation; for example
during performance of an adapted SRT task that defines suc-
cessful performance as acquisition of a rhythmic timing pattern
during finger sequence key pressing rather than improvement
in reaction time, increased activation of the lateral cerebellum
during repeated sequence performance and decreased activa-
tion during random sequence performance are noted (Sakai
et al., 2002). In the random condition the authors hypothe-
sized that the cerebellum becomes disengaged with practice, as
it is impossible to learn a temporal pattern (Sakai et al., 2002).
Activation within the bilateral cerebellum cortex observed in
present study demonstrates the importance of this region in the
acquisition of a movement pattern with an emphasis on timing
criterion.

BEHAVIORAL CHANGES
Practice-related changes were tracked across the five practice days
outside the scanner. Consistent with previous findings, older
adults showed repeated sequence-specific improvements dur-
ing practice of the CT task (Howard and Howard, 1992, 1997;
Boyd et al., 2007, 2009; Seidler et al., 2007). The CT task per-
formed in the current study was a kinetically demanding task
that allowed for the analysis of both spatial and temporal com-
ponents of motor learning. When decomposed into the spatial
and temporal components, spatial accuracy showed improve-
ments for both sequences while temporal precision was supe-
rior for repeated compared to random sequence performance
across practice. When the sequence-specific motor difference
score (repeated minus random) was calculated at retention inside
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FIGURE 5 | Brain activation associated with temporal precision at retention (p < 0.0005).

the scanner, an improvement in temporal precision was observed
in eight of 10 participants, while sequence-specific motor learning
for spatial accuracy was only observed in one of the partici-
pants. A dominant view in cognitive neuroscience suggests that
aging has a negative effect on the speed of motor response times
(Smith and Brewer, 1985; Starns and Ratcliff, 2010; Forstmann
et al., 2011). The middle-aged adults in the present study did not
appear to experience this negative consequence of age. Rather,
they appeared to maintain the ability to increase the speed of
tracking to improve motor performance. In the present study,
learning the motor task did not require the middle-aged adults
to make a decision; rather correctness of performance was based
upon the instructional demands—“track the moving target as
accurately as possible.” Given that CT task target moves at a fixed
speed it appears that our participants chose to focus their efforts
on staying as close to the target as possible which manifested itself
as improved time lag of tracking.

TEMPORAL PRECISION AND ASSOCIATED BRAIN ACTIVATION
The effect of practice is related to changes in the movement struc-
ture of the motor sequence as learner’s transition into the motor
processing phase of learning (Park and Shea, 2005). Improved
time lag during sequence-specific motor learning is indicative
of increased motor processing efficiency. In the present study,
individuals’ ability to generate temporally proficient continu-
ous movements during sequence-specific motor performance was
associated with a network of brain regions. Several of the regions
within this network, which were noted in the present study are
well-known to be integral during motor sequence learning: pre-
motor cortex, putamen, and the cerebellum (Doyon et al., 1998,
2002, 2003, 2009). In addition, these regions have been pre-
viously observed in tasks when individuals were instructed to
emphasize speed over accuracy of performance (Van Veen et al.,
2008). When emphasis is placed on speed, the premotor network
provides top-down control, activating learned motor representa-
tions for response preparation (Van Veen et al., 2008). Change
in activation of the premotor cortex has recently been correlated
with learning scores during a visuomotor sequence-tracking task
(Tomassini et al., 2011). It is possible that as sequence-specific

motor learning was achieved, participants utilized this top-down
control neural network to gain superior temporal acuity (Meehan
et al., 2011). Consistent with previous evidence, the premotor
cortex is involved in the shift from early visual-spatial process-
ing, as seen in feedback-based control, to later motor processing,
or feedforward-based control (Hikosaka et al., 1999). The neu-
ral network active in the present study was largely centered in the
premotor area, which extended to the insula cortex. Activation of
the insular cortex is associated with the involvement movement
preparation and execution (Cross et al., 2007). In the present
study increased activation of this area translated to decreased time
lag as participants demonstrated superior motor planning as of
the acquired kinetic movement pattern of the repeated sequence
(Cross et al., 2007). The middle-aged adults who demonstrated
increased activation of the premotor area, extending to the insula
cortex, showed greater temporal precision resulting in overall
lower tracking error.

The premotor regions with the thalamus and striatum
form the cortico-striato-thalamo-cortical circuits (Middleton and
Strick, 2002), and are known to actively communicate during
speed emphasized tasks (Van Veen et al., 2008). While neither
temporal nor spatial accuracy was given instructional favoritism,
as participants were merely asked to follow the moving target,
individuals who showed greater overall change in ability during
the CT task appeared to prioritize temporal precision. The activa-
tion of the striatum may be reflective of a preference for timing
accuracy over spatial acuity. The basal ganglia operates to gate
information flow from frontal cortex to the motor system; when
emphasis is placed on the speed of response the striatum increases
activation as it receives increasing input from cortical sources
(Forstmann et al., 2011). It is hypothesized that faster responses
are associated with reciprocal communication from the cortex to
the striatum. The striatum receives input from the cortex when
the speed of performance is stressed; this enables a reduction
in the inhibitory regulation the nuclei of the basal ganglia exert
on the cortex leading to faster responses (Smith et al., 1998). In
the present study, middle-aged individuals with higher activation
levels of the putamen demonstrated greater temporal precision
during sequence-specific motor learning at retention. Thus, this
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finding further supports the importance of premotor cortex and
striatum activation in faster motor performance.

Feedforward tracts project from the cortex via pontine nuclei,
decussate and terminate within the lobules of the cerebellum,
forming the cerebo-ponto-cerebellar pathway (Salmi et al., 2010).
This area has been linked structurally and functionally with areas
within the motor and premotor cortex, having reciprocal pro-
jections with these areas of cortex (Kelly and Strick, 2003; Salmi
et al., 2010). In agreement with the findings in the present study,
activation with in the lobules VI of the cerebellum is associated
with sensory-motor processes including temporally precise, visu-
ally guided, feedforward voluntary movements, and corrective
development of motor sequence routines during the performance
of the SRT task (Lehericy et al., 2005; Boyd et al., 2009). However,
when individuals gain expertise or automaticity of movement,
activation of the ipsilateral lobules of the cerebellum decreases
(Jenkins et al., 1994; Doyon et al., 2002; Grafton et al., 2002). Our
study suggests that individuals who performed with greater tem-
poral precision activated the cerebellum to a greater extent than
those who were not as proficient in tracking time lag. A possible
explanation for the conflicting findings may lie in the nature of
the CT task. The CT task relies heavily on visuospatial processing
of a target more along a predefined spatial and temporal trajec-
tory. Thus, continued activation of this area in accompaniment
with premotor cortex and striatum might be important in feed-
forward control of a learned pattern of continuous movements at
a predefined temporal trajectory.

CONCLUSION
During 5-days of practice middle-aged adults showed over-
all improvement in movement error of the CT task and

demonstrated sequence-specific motor learning as shown by
superior repeated sequence performance. The importance
of a subject-level analysis was fundamental in dissociating
behaviorally-related changes of fMRI activation associated pos-
itive differences scores between repeated and random sequence
performance at retention. The decomposition of overall track-
ing accuracy into the spatial and temporal components showed
a behavior-related difference between repeated and random
sequence performance. Sequence-specific motor learning was
greatly reliant upon improvements in temporal precision and
accompanied by activation of a specific neural network—
premotor, thalamus, putamen, and cerebellum. Sequence-specific
motor learning required participants to use top-down control as
demonstrated by activation of the premotor area and the stria-
tum. Activation of the premotor area shows participants were
preparing for the upcoming learned movement pattern, whereas
striatum activation supports the increased speed of movement.
Thus, the observed brain areas associated with behavioral changes
at retention provide insight into the neural correlates associated
with different learning strategies during a CT task in middle-aged
adults.
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