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The lichen is a microbial consortium that mainly consists of fungi and either algae
(Viridiplantae) or cyanobacteria. This structure also contains other bacteria, fungi, and
viruses. However, RNA virus diversity associated with lichens is still unknown. Here,
we analyzed RNA virus diversity in a lichen dominated by fungi and algae using
dsRNA-seq technology and revealed that partitiviruses were dominant and active
in the microbial consortium. The Partitiviridae sequences found in this study were
classified into two genera, which have both plant- and fungi-infecting partitiviruses. This
observation suggests that the lichen provides an opportunity for horizontal transfer of
these partitiviruses among microbes that form the lichen consortium.
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INTRODUCTION

The lichen is a symbiotic microbial consortium that is mainly composed of a fungus (mycobiont)
and photosynthetic partner (photobiont), either green algae (Viridiplantae) or cyanobacteria, or
both, that harbor chlorophyll. The phototrophic partner feeds organic compounds to the fungus.
In contrast, the fungus protects minute photosynthetic cells from environmental stresses, such as
drought and nutrient deficiencies, and provides a suitable environment for photosynthesis and
gas exchange (White and Torres, 2009). In general, these organisms form delicate structures and
stratification of the lichen thallus with other microorganisms including endophytic fungi, other
algae, and bacteria. For example, a typical foliose lichen thallus reveals four zones of interlaced
fungal filaments (Moore et al., 2020). The uppermost zone, called the cortex, is formed by densely
interwoven hyphae forming an outer protective tissue layer. The algal cells occur in a zone beneath
the cortex embedded in a dense hyphal tissue. The third zone, called the medulla, is formed by
loosely interwoven fungal hyphae without algal cells. The lower surface of the thallus is called
the lower cortex and may consist of densely packed fungal hyphae. It is noteworthy that an
endosymbiotic interaction was recently reported; green algal cells can enter fungal cells under
certain conditions (Du et al., 2019). Given that pathogenic and mutualistic biotrophic interactions
between plants and fungi are common on Earth (Kohler et al., 2015), the plant– and green algae–
fungal interaction has a long history (Remy et al., 1994; Honegger et al., 2013; Lutzoni et al., 2018;
Nelsen et al., 2020).
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RNA viruses associated with lichen have been reported.
Partial sequences of Cytorhabdovirus (family Rhabdoviridae)
and Apple mosaic virus (family Bromoviridae) were detected
by RT-PCR from lichens (Petrzik et al., 2013). In addition,
Chrysothrix chrysovirus 1 (family Chrysoviridae) and Lepraria
chrysovirus 1 (family Chrysoviridae) were identified from
Chrysothrix chlorina and Lepraria incana lichens, respectively,
and the former was observed in accompanying endolichenic
fungus in the lichen by in situ hybridization (Petrzik et al.,
2019). Although these studies revealed the presence of RNA
viruses in lichens, the RNA viral community in lichens is
still unknown. In this study, we identified viruses related
to the family Partitiviridae. Partitiviridae are bisegmented
dsRNA viruses that infect plants, fungi, or protozoa. Five viral
genera (Alphapartitivirus, Betapartitivirus, Gammapartitivirus,
Deltapartitivirus, and Cryspovirus) have been established in
this family. Among them, host of Gammapartitivirus and
Deltapartitivirus are identified as fungi and plant, respectively,
and some of the species in Alphapartitivirus and Betapartitivirus
infect fungi or plant (Nibert et al., 2014).

The metagenomic approach is a powerful tool to understand
RNA virus diversity (Shi et al., 2016, 2018). To date, several
methods to construct (meta)genomic sequencing libraries from
RNA viral genomes have been established and applied to
environmental samples (Culley et al., 2006; Roossinck et al.,
2010; Steward et al., 2013; Urayama et al., 2016, 2018b; Decker
et al., 2019). Among them, fragmented and primer ligated dsRNA
sequencing (FLDS) has remarkable advantages in construction of
complete viral genomes (Urayama et al., 2018a; Fukasawa et al.,
2020; Kadoya et al., 2020). In this study, we applied dsRNA-
seq and ssRNA-seq techniques to elucidate RNA virus diversity
associated with a lichen.

MATERIALS AND METHODS

Sample Collection
Lichen on sand mud in Toiya-machi, Toyama (36.7007◦N and
137.2475◦E) was sampled in February 2019 (Figure 1). Sample
was stored at −80◦C until further analysis. A voucher for this
lichen was not preserved due to stored sample quality.

Extraction and Purification of dsRNA and
ssRNA
The lichen sample was disrupted in liquid nitrogen in a mortar.
For dsRNA extraction and purification, the ISOVIRUS (Nippon
Gene, Tokyo, Japan) kit was used. In brief, total RNA was
extracted in the extraction buffer, and dsRNA was purified
with cellulose resin and eluted by nuclease-free water after
DNase I treatment according to the manufacturer’s protocol.
To obtain total RNA, the TRIzol Plus RNA Purification Kit
(Invitrogen, Carlsbad, CA, United States) was used according
to the manufacturer’s protocol. Total RNA was treated with
DNase I (Invitrogen) and further purified using the RNA
Clean and Concentrator-5 Kit (Zymo Research, Orange, CA,
United States).

FIGURE 1 | The lichen community from which samples were taken in this
study.

cDNA Synthesis and Sequencing Library
Construction
In this study, we applied FLDS to obtain RNA viral sequences.
dsRNA, which is a molecular marker of RNA virus infection,
is used as a template for cDNA synthesis because cellular long
dsRNA is a replicative intermediate of ssRNA virus as well as
genome of dsRNA virus. Simultaneously, full-length cDNA is
synthesized by applying template-switching activity of the reverse
transcriptase with an oligonucleotide primer against adapter-
ligated dsRNA fragments, which enabled us to obtain complete
genome sequences of non-retro RNA viruses.

Sequencing libraries were constructed as described previously
(Urayama et al., 2016, 2018b). dsRNA was converted to cDNA
using the FLDS method. In brief, DNase I and S1 nuclease-treated
dsRNA was fragmented and ligated to a DNA adapter. With an
oligonucleotide primer against the adapter sequence, cDNA was
synthesized by using the SMARTer RACE 5′/3′ Kit (Takara Bio,
Kusatsu, Japan). ssRNA was applied to the SMARTer Universal
Low Input RNA Kit (Takara Bio) for cDNA synthesis.

Illumina sequence libraries were constructed from the double-
stranded cDNAs. Double-stranded cDNAs were fragmented
using Covaris S220 (settings: run time 55 s, peak power
175.0 W, duty factor 5.0% and 200 cycles/burst), and fragmented
cDNAs were applied to KAPA Hyper Prep Kit Illumina
platforms (Kapa Biosystems, Woburn, MA, United States).
The quality and quantity of the Illumina libraries were
evaluated using the KAPA library quantification kit (Kapa
Biosystems) and applied to the Illumina MiSeq platform
(Illumina, San Diego, CA, United States) according to the
manufacturer’s protocol (600-cycle kit to perform 300-bp paired-
end sequencing).
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Data Processing
Raw sequencing reads for dsRNA-seq were processed as
described previously (Urayama et al., 2018b). rRNA reads
in trimmed reads were identified by SortMeRNA (Kopylova
et al., 2012) and removed. Potential genome segments were
extracted from contigs, and putative RNA virus genomes were
reconstructed (Urayama et al., 2020). RNA viral genes in potential
genome segments and contigs were identified based on sequence
similarity to known RNA viral proteins in the NCBI non-
redundant (nr) database using BLASTX (Camacho et al., 2009)
with an e-value ≤ 1 × 10−5. Sequences that matched a known
RNA-dependent RNA polymerase (RdRp) gene by BLASTX
with an e-value ≤ 1 × 10−5 were collected from RNA virus
contigs and segments. In addition, a conserved domain database
(CDD) search was also used. Nucleotide sequences encoding
the RdRp gene were clustered at 90% identity using VSEARCH
(Rognes et al., 2016).

Raw sequencing reads from ssRNA-seq were processed as
described previously (Urayama et al., 2018b). Small subunit
(SSU) rRNA sequences were mapped using phyloFlash (Gruber-
Vodicka et al., 2019) with the option-skip_spades and -id 98.
For detailed identification of major organisms, we also used
EMIRGE (Miller et al., 2011) and BLASTN (Camacho et al.,
2009) programs.

Phylogenetic Analyses
Amino acid sequences of putative RdRp genes obtained in
this study and their relatives in the NCBI nr database were
aligned by using MUSCLE (Edgar, 2004) in MEGA6 (Tamura
et al., 2013). To exclude ambiguous amino acid positions, the
alignment was trimmed by trimAl (option: −gt 1) (Capella-
Gutiérrez et al., 2009). Phylogenetic trees were constructed using
RAxML (Stamatakis, 2014). The number of bootstrap replicates
was 1000. The model of amino acid substitution was selected by

Aminosan (Tanabe, 2011), as judged by the Akaike information
criterion (Sugiura, 1978). MEGA6 was used to illustrate the
resulting phylogeny.

Accession Numbers
Sequences obtained in this study are available in the GenBank
database repository (accession nos. DDBJ: BLWB01000001–
BLWB01000058 and LC533392–LC533410) and Short Read
Archive database (accession no. DDBJ: DRA009807).

RESULTS

Diversity of Cellular rRNAs in Lichen
To reveal the composition of active microorganisms in the lichen
sample, total ssRNA-seq reads were mapped on SSU rRNA
sequences in the Silva database (SILVA SSU version 138) (Quast
et al., 2012) using phyloFlash (Gruber-Vodicka et al., 2019), and
their relative abundances were determined (Figure 2). The most
abundant rRNA phylotype (43%) belonged to Lecanoromycetes
(Fungi), the largest class of lichenized fungi (Miadlikowska
et al., 2006), and the second abundant class was lichen-forming
algae Trebouxiophyceae (Viridiplantae) (Muggia et al., 2018)
that consisted of two phylotypes (17% total). These results were
consistent with our morphological observation that the collected
sample was a lichen. In addition to these two dominant classes,
rRNA sequences from other fungi and moss were also detected
(Figure 2). Classification of sequencing reads obtained by total
RNA-seq is shown in Table 1.

Reconstruction of RNA Virus Genomes
Following the de novo assembly and reconstruction of
the full-length genome segments, a total of 65 RdRp-
encoding operational taxonomic units (OTUs) (>1.5 kb,

FIGURE 2 | Relative abundance of sequence reads mapped on SSU rRNA sequences classified by using phyloFlash.
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TABLE 1 | Classification of sequencing reads obtained by FLDS and total
RNA-seq.

dsRNA ssRNA

Number of
reads

Reads (%) Number of
reads

Reads (%)

Trimmed 3,955,680 100.0 1,139,888 100.0

rRNA 158,014 4.0 1,069,362 93.8

Major RNA viruses 3,340,351 84.4 2,107 0.2

Others 457,315 11.6 68,419 6.0

<90% identity between these sequences) were identified
from the dsRNA-seq library (Supplementary Table 1 and
described below) using BLASTX against the NCBI nr
database and CDD search program. Notably, only one
sequence encoding RdRp (>1.5 kb) was identified from
the ssRNA-seq library, which was from Lichen partiti-
like RNA virus 1 (LpaRV1) (described below). Taxonomic
lineages of BLASTX top hit sequences (e-values ranging
from 2 × 10−30 to 0) suggested that 17 of 65 OTUs were
related to Partitiviridae. In addition, viruses related to seven
dsRNA virus families (Amalgaviridae, Botybirnaviridae,
Chrysoviridae, Endornaviridae, Megabirnaviridae,
Picobirnaviridae, and Totiviridae), three ssRNA virus families
(Gammaflexviridae, Hypoviridae, and Narnaviridae), and one
unclassified RNA virus family (Polymycoviridae) were also
identified (Figure 3).

Among the 65 OTUs, seven full-length genome segments,
whose both ends were determined to be termini based on
read mapping information (Urayama et al., 2018b), showed
relatively high average read coverage (>1000×) (Figure 4A)
and occupied 94% average read coverage of RdRp-encoding
OTUs in the dsRNA-seq library. In the ssRNA-seq library,
the seven segments also occupied 87% average read coverage
of RdRp-encoding OTUs (Figure 4A). Therefore, the viruses
that harbored the seven dominant RdRp sequences were
defined as the dominant RNA viral population in the lichen

sample, and further analyses were focused on these viruses.
Classification of sequencing reads obtained by FLDS is shown
in Table 1.

The putative complete genome sets encoding these seven
dominant RdRp sequences were reconstructed (Figure 4B and
Supplementary Table 2). Terminal sequences of genome
segments are shared among segments in a single virus
genome in some RNA viral lineages (Hutchinson et al.,
2010). Thus, we reconstructed putative genome sets based on
the terminal sequences of the full-length genome segments
obtained by the dsRNA-seq FLDS method. As a result, 84%
of the trimmed dsRNA reads (Table 1; Supplementary
Table 2) were mapped to theses major RNA viral genomes.
Based on the taxonomical classification of the top hit RNA
viruses in BLASTX search using entire genome segments
as query sequences, these viruses were named as LpaRV1–
6 and Lichen RNA virus 1 (LRV1). However, we could
not distinguish the genome sets of LpaRV3–6 because the
genome segments encoding their RdRps share terminal
sequences. Notably, LRV1 genome sequences were not
found among ssRNA reads, although LpaRV1–6 were also
detected (Figure 4A).

LpaRVs and LRV1
LpaRV1–6 genomes consist of two to four genome segments
encoding RdRp, coat protein (CP), and additional unknown
proteins. The genome structures of LpaRV1–6 resemble those
of partitiviruses, which are known to have a bisegmented
genome encoding RdRp and CP in each segment (Nibert
et al., 2014). Phylogenetic analysis of the RdRp sequences
also suggested that LpaRV1–6 are members of the family
Partitiviridae (Figure 5). To date, five genera and unidentified
clades are classified into Partitiviridae (Nibert et al., 2014).
The phylogenetic analysis of RdRp suggested that five LpaRVs
(1, 2, 4, 5, and 6) are members of genus Alphapartitivirus
and LpaRV3 belongs to genus Betapartitivirus. Both genera
harbor viruses that infect either plants or fungi (Figure 5;
Nibert et al., 2014). It is noteworthy that LpaRV1 and LRV1

FIGURE 3 | Richness of OTUs based on the taxonomic lineage of top hit sequences in BLASTX.
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FIGURE 4 | Overview of major RNA viruses identified in the lichen sample.
(A) Average coverage of major RdRp-encoding segments in dsRNA-seq (left
axis, black bar) and ssRNA-seq (right axis, gray bar) libraries. (B) Organization
of reconstructed major RNA viral genomes. Domains identified by CDD search
are shown in open reading frames (box). Sequence logos represent sequence
similarities for the 5′ or 3′ terminal region of the predicted genome segments.

located within a clade of fungus-infecting clade. Because
our sample included a lot of other organisms (Figure 2),
it was difficult to pinpoint the host organism, but our
phylogenetic data suggested that these two viruses are infecting
the fungi.

The published top hit sequence of LRV1 in the BLASTX
search was Fusarium graminearum virus 4 (FgV4), which was
shown to be closely related to Partitiviridae but not classified
into the family (Yu et al., 2009). The phylogenetic analysis
of partitiviruses and related viruses in this study revealed
that LRV1 and FgV4 form a clade with two uncharacterized
putative fungal RNA viruses, but the phylogenetic relationship
among Partitiviridae, Picobirnaviridae (outgroup), and the

LRV1-FgV4 cluster was not clarified. Therefore, we could
not provide family-level classification of LRV1 as in the
case of FgV4.

DISCUSSION

In this study, all dominant and putatively active RNA viruses
were classified into the family Partitiviridae or its relative
group. Among non-retro RNA viruses, only Partitiviridae and
Endornaviridae harbor the genera including plant and fungal
viruses. Although a single partitivirus that can infect both
plant and fungal hosts has never been reported, recent studies
revealed that a few viruses belonging to another RNA virus
family can infect both plant and fungal hosts. For instance,
cucumber mosaic virus, a positive-sense ssRNA virus belonging
to the genus Cucumovirus in the family Bromoviridae, was
discovered to infect both plants and fungi (Andika et al., 2017).
Genome replication of a few plant viruses in Tombusviridae
and Bromoviridae in a fungus (Panavas and Nagy, 2003;
Panavas et al., 2005; Inaba and Nagy, 2018) and vice versa
(Nerva et al., 2017) under experimental conditions was also
reported. These observations suggested that the partitiviruses
found in the lichen in this study might have the ability
to replicate in both plants and fungi constituting symbiotic
consortium of the lichen. To confirm this hypothesis, we need
to conduct laboratory experiments to detect viral replication
in algae cells after the infection of virus particles isolated
from fungi.

It has been suggested that horizontal virus transfer among
diverse hosts is one of the important driving forces of
RNA virus evolution (Dolja and Koonin, 2017). In addition,
Dr. Roossinck indicated that “a majority of virus families
with members that infect fungi have counterparts that infect
plants, and in some cases the phylogenetic analyses of these
virus families indicate transmission between the plant and
fungal kingdoms” (Roossinck, 2018). The strong interaction
between land plants and fungi found in the symbiotic
consortium of the lichen may provide an opportunity for
horizontal virus transfer. In this point of view, in other fungal
symbioses such as mycorrhizal fungi and their host plants, and
endophytic fungi and their host plants, a similar horizontal
virus transmission may occur between the symbionts. Although
we could not delineate the host of each virus using our
metagenomic approach, the phylogenetic information of RNA
viruses associated with the lichen suggested that multiple viruses
infect across higher taxonomic range between plants and fungi
and impact fungi–Viridiplantae (including land plant and green
algae) interaction.

Fragmented and primer ligated dsRNA sequencing
provides novel insights into the RNA viromes associated
with lichen. Microbial consortium of lichen would be
a model system to understand virus–host coevolution.
Comparison with the RNA viromes associated with
the related lichens with different algae may also reveal
more information about the specificity and diversity
of RNA viruses and host organisms. We are also
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FIGURE 5 | Maximum-likelihood tree of RdRp domains from representative members of the family Partitiviridae and related sequences (including LpaRV1–6 and
LRV1) based on amino acid residues. Numbers indicate the percentage bootstrap support from 1000 RAxML bootstrap replicates. We used RAxML with the
RTREV+I+G+F model. Colors of virus names indicate the classification of the host organism: green, plant; brown, fungi; black, others or unclear. Pink color
represents the newly derived sequences from the lichen. All weakly supported clades (i.e., those with bootstrap support <50%) were collapsed.
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interested in the impacts of those RNA viruses on the delicate
structure formation of the lichen thallus and on the symbiotic
relationship between fungi and algae.
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