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Mitochondrial dysfunction is a common and prominent feature of prion diseases
and other neurodegenerative disorders. Mitochondria are dynamic organelles that
constantly fuse with one another and subsequently break apart. Defective or superfluous
mitochondria are usually eliminated by a form of autophagy, referred to as mitophagy,
to maintain mitochondrial homeostasis. Mitochondrial dynamics are tightly regulated
by processes including fusion and fission. Dysfunction of mitochondrial dynamics can
lead to the accumulation of abnormal mitochondria and contribute to cellular damage.
Neurons are among the cell types that consume the most energy, have a highly
complex morphology, and are particularly dependent on mitochondrial functions and
dynamics. In this review article, we summarize the molecular mechanisms underlying the
mitochondrial dynamics and the regulation of mitophagy and discuss the dysfunction
of these processes in the progression of prion diseases and other neurodegenerative
disorders. We have also provided an overview of mitochondrial dynamics as a
therapeutic target for neurodegenerative diseases.

Keywords: prion diseases, neurodegenerative diseases, mitochondrial dysfunction, mitochondrial dynamics,
mitophagy, therapeutic target

INTRODUCTION

Prion diseases comprise a group of infectious neurodegenerative disorders, including bovine
spongiform encephalopathy, scrapie, chronic wasting disease, kuru, Creutzfeldt-Jakob disease,
Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. These diseases all share
the same pathological characteristics of spongiform degeneration, neuronal death and astrocytic
and microglial proliferation (Zhu et al., 2014; Ji et al., 2017; Shah et al., 2017a).The underlying
cause of prion disease is the conformational conversion of a cellular prion protein (PrPC) to a
misfolded isoform (PrPSc), which has a higher proportion of beta-sheets in place of the normal
alpha-helices in PrPC and is protease-resistant (Prusiner, 1998; Wang et al., 2015). All prion
diseases are associated with the accumulation and aggregation of misfolded PrPSc in the central
nervous system (CNS), which leads to neuroinflammation and neurodegeneration (Prusiner, 2001;
White et al., 2003; Shah et al., 2017b).

There is growing evidence that mitochondrial damage has key roles in the pathogenesis
of prion diseases and other neurodegenerative disorders (Hur et al., 2002). For example,
the structural and functional abnormalities of mitochondria have been described in neurons
infected with a prion strain (Choi et al., 1998; Sisková et al., 2010; Faris et al., 2017). Mitochondria
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are highly dynamic organelles and constantly undergo fission
and fusion to regulate their morphology, size and number
(Chen and Chan, 2009; Wang et al., 2009a; Toyama et al.,
2016). These dynamic processes are critical for modulating
mitochondrial distribution, mitophagy and cell death
(Detmer and Chan, 2007; Suen et al., 2008; Itoh et al.,
2013). Defects in mitochondrial dynamics can lead to the
accumulation of abnormal mitochondria and contribute
to cellular dysfunction. Many neurodegenerative diseases
are associated with alterations in mitochondrial fusion and
fission, which is largely attributable to the high metabolic
rate and complex morphology of neurons (Chen and Chan,
2009; Su et al., 2010; Wilson et al., 2013; Zorzano and Claret,
2014).

MECHANISMS OF MITOCHONDRIAL
DYNAMICS: FUSION AND FISSION

Imbalances between mitochondrial fission and fusion have
been proposed to cause neurodegenerative diseases; acute
readjustment of such imbalances can have beneficial effects on
mitochondrial structure and function and positively influences

cell survival in various disease models (Chen and Chan, 2009;
Itoh et al., 2013; Sebastián et al., 2017).

Two adjacentmitochondria can fuse to form amore elongated
mitochondrion through the activity of mitochondrial fusion
proteins, including the conserved dynamin-related GTPases,
mitofusins (Mfns) and optic atrophy 1 (OPA1; Tamura et al.,
2011; Itoh et al., 2013). There are two forms of Mfn: Mfn1 and
Mfn2, which localize to the outermembrane ofmitochondria and
form homo- and hetero-oligomeric complexes that catalyze outer
membrane fusion. OPA1 localizes to the inner membrane and
interacts with Mfns to form intermembrane protein complexes,
which couple and fuse the outer and inner membranes (Figure 1;
Cipolat et al., 2004; Song et al., 2009). Ablation of either Mfns or
OPA1 in mammalian cells inhibits mitochondrial fusion, causing
similar mitochondrial fragmentation phenotypes (Chen et al.,
2003).

Mitochondrial fission can generate two metabolically
different types of mitochondrion: one with an increased
membrane potential and a high probability of subsequent fusion,
and another exhibiting reduced membrane potential, which is
less likely to re-fuse with the mitochondrial network and more
likely to be targeted by autophagy (Figure 1; Twig et al., 2008).
Mitochondrial fission is also regulated by the evolutionarily

FIGURE 1 | Mechanisms involved in mitochondrial fusion and fission. (1) Mitochondrial fusion is regulated by mitofusins (Mfns; Mfn1, Mfn2) and optic atrophy 1
(OPA1). The Mfn1 and Mfn2 localize to the outer membrane and form homo- and hetero-oligomeric complexes that catalyze outer membrane fusion. The
OPA1 localizes to the inner membrane and interacts with Mfns to form intermembrane protein complexes that couple the fusion of the outer membrane to the inner
membrane. (2) Mitochondrial fission is regulated by dynamin-related protein 1 (Drp1). In the process of fission, Drp1 is recruited to the mitochondrial outer membrane
from the cytosol by various receptors (mitochondrial fission factor (Mff), mitochondrial dynamics protein 49 (Mid49), Mid51, and mitochondrial fission protein 1 (Fis1))
and oligomerizes to form spiral filaments around mitochondrial tubules, which mediate mitochondrial fission. Endoplasmic reticulum (ER) tubules also wrap around
the mitochondria to mark the sites of mitochondrial division, and a population of Drp1 oligomers assembles on the ER, from where they can transfer to the
mitochondria and contribute to mitochondrial fission. Subpopulations of Mff and Fis1 also localize to the ER. The FUN14 domain containing 1 (FUNDC1) is an outer
mitochondrial membrane (OMM) protein that accumulates at ER–mitochondria contact sites and specifically recruits Drp1 to drive mitochondrial fission in response
to hypoxic stress. (3) Finally, mitochondrial fission can generate two metabolically different types of mitochondrion, one with an increased membrane potential and a
high probability of subsequent fusion, and a second type with decreased membrane potential, which is more likely to be targeted by autophagy.
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conserved dynamin-related GTPase, dynamin-related protein 1
(Drp1) in mammals and Dnm1p in yeast (Kageyama et al., 2011;
Reddy et al., 2011). Drp1 is a soluble cytosolic protein, which
during the process of fission, is recruited to the mitochondrial
outer membrane by different receptors, including mitochondrial
fission factor (Mff), mitochondrial dynamics protein 49
(Mid49), Mid51, and mitochondrial fission protein 1 (Fis1),
and oligomerizes into spiral filaments that wrap spirally
around the constriction points of dividing mitochondria to
mediate mitochondrial fission (Smirnova et al., 2001; Figure 1).
After the completion of mitochondrial fission, Drp1 spirals
disassemble from the mitochondria and become available for
future rounds of the process (Itoh et al., 2013; Richter et al.,
2015).

Interestingly, many studies have reported contact between
the mitochondria and the endoplasmic reticulum (ER), with a
key role for this structure in mitochondrial fission (Friedman
et al., 2011; Hoppins and Nunnari, 2012; Ji et al., 2017).
ER tubules may play an active role in defining the position
of mitochondrial division sites (Friedman et al., 2011), as
mitochondrial division occurs at positions where the ER
tethers to mitochondria (Figure 1). ER tubules wrap around
the mitochondria throughout the entire fission event and
mark sites where Drp1 is recruited (Friedman et al., 2011;
Murley et al., 2013). Recently, Ji et al. (2017) have found
that a population of Drp1 oligomers assembles on the ER,
and from there they transfer to mitochondria. Furthermore,
these investigators have reported that the subpopulations
of Mff and Fis1 are present on the ER, demonstrating that
the ER can function as a platform for Drp1 oligomerization
and that ER-associated Drp1 contributes to mitochondrial
division (Ji et al., 2017). Additionally, an outer mitochondrial
membrane (OMM) protein, FUN14 domain containing 1
(FUNDC1), accumulates at ER–mitochondria contact
sites and specifically selects Drp1 to drive mitochondrial
fission in response to hypoxic stress (Figure 1). Moreover,
knockdown of FUNDC1 prevents the translocation of
Drp1 to mitochondria and causes mitochondrial elongation,
indicating that FUNDC1 regulates mitochondrial dynamics at
ER-mitochondrial contact sites under hypoxic conditions (Wu
et al., 2016).

DYSFUNCTION OF MITOCHONDRIAL
DYNAMICS IN NEURODEGENERATIVE
DISEASES

Mitochondria are dynamic organelles that constantly
fuse with one another and subsequently break apart (in
other words, undergo fission) to maintain mitochondrial
homeostasis (Cagalinec et al., 2013). Fusion events serve
to mix and unify mitochondrial compartments, enabling
protein complementation, mitochondrial DNA repair and
the equal distribution of metabolites, whereas fission acts to
facilitate equal segregation of mitochondria into daughter
cells during cell division and modulates the distribution of
mitochondria along the cytoskeletal tracks. Additionally, fission

may help to isolate the damaged segments of mitochondria,
thus promoting their autophagic degradation (Twig et al.,
2008; Chen and Chan, 2009). Neurons are among the most
energy-consuming cell types and have a highly complex
morphology; consequently, these cells are particularly dependent
on mitochondrial function, including mitochondrial dynamics
(Itoh et al., 2013; Rambold and Pearce, 2018). Therefore,
defects in mitochondrial dynamics may lead to neuronal
dysfunction. A lack of mitochondrial fusion in neurons leads
to an increased mitochondrial diameter, due to swelling and
aggregation of these organelles, preventing their entry into
the distal, smaller diameter branches of neurites and resulting
in the degeneration of mitochondria in axons and dendrites
(Chen et al., 2007). Furthermore, a lack of mitochondrial
fission may inhibit the isolation of damaged segments of
mitochondria and their autophagic degradation, potentially
promoting neuronal apoptosis (Suen et al., 2008). Dysregulation
of the fusion and fission of mitochondria is associated with
several neurodegenerative diseases, including prion diseases,
Alzheimer’s disease (AD), Parkinson’s disease (PD) and
Huntington’s disease (HD; Lin and Beal, 2006; Choi et al.,
2014).

Prion Diseases
Morphological and functional abnormalities of mitochondria
are observed in CNS tissue in various prion diseases and
in prion-infected experimental animals (Choi et al., 1998;
Sisková et al., 2010; Park et al., 2011). Increased levels
of the glutathione oxidized form and the elevated calcium
content can be detected in the mitochondria of scrapie-
infected mice, whereas mitochondrial membrane potential and
ATP/ADP ratio are decreased in these animals (Lee et al.,
2000). Prion peptides (PrP106–126) can perturb ER calcium
homeostasis and subsequently induce the accumulation of
reactive oxygen species (ROS). These processes facilitate the
depolarization of the mitochondrial membrane, thus activating
the mitochondria-mediated apoptotic pathway (Ferreiro et al.,
2008). These findings indicate that mitochondrial dysfunction
may contribute to the neurodegeneration observed in prion
diseases. Additionally, several researchers have suggested that
the mitochondrial fusion and fission are differentially modulated
in prion diseases. For example, Choi et al. (2014) have
shown that Mfn1 was upregulated in whole brains from
ME7 scrapie-infected mice, and that expression levels of
Fis1 and Mfn2 were elevated in the hippocampus and striatum.
Furthermore, Drp1 expression was significantly reduced in
the hippocampus, particularly in the cytosolic fraction, but
not in the mitochondrial fraction, and the total number of
mitochondria in neurons was significantly decreased, with a
number of enlarged and degenerated mitochondria observed
in the ME7 mouse model. These observations imply that
imbalances in mitochondrial fusion and fission may contribute
to the enlargement and degeneration of mitochondria that
occur in the hippocampus of scrapie-infectedmice. Furthermore,
there is a significant decrease in Drp1 in scrapie-infected
mice in the terminal stages of disease (139A, ME7 and
S15), levels of OPA1 showed a tendency to decrease, and
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abnormalities of Drp1 and OPA1 were primarily localized to
neurons. Collectively, these processes lead to the depression
of mitochondrial dynamics and subsequent neuronal apoptosis
(Yang et al., 2016).

Accumulating clinical and experimental evidence indicates
that the excessive fission leads to mitochondrial fragmentation,
with concomitant morphological changes and loss of functions
(Kim et al., 2016). Li et al. (2018) have suggested that,
although cellular Drp1 protein levels were decreased in
prion-infected neuronal cells both in vitro and in vivo, the
mitochondrial Drp1 levels increased in these prion models,
thus the elevated mitochondrial Drp1 levels contributed to
extensive mitochondrial fragmentation and dysfunction, as well
as neuronal death and decreased synaptic plasticity (Smirnova
et al., 2001).

Alzheimer’s Disease
AD is a progressive neurodegenerative disease and one of
the most common forms of dementia in adults (Peric and
Annaert, 2015). Afflicted brains are characterized by the
extracellular deposition of amyloid plaques composed chiefly of
amyloid-beta (Aβ)-derived APP, followed by the accumulation
of intraneuronal neurofibrillary tangles of hyperphosphorylated
tau, which is associated with synapse and neuron loss
(Hardy and Selkoe, 2002; Blennow et al., 2006). Abnormalities
in the mitochondrial structure and function are reported
in the brains of AD patients and associated with disease
progression (Baloyannis et al., 2004). Overproduction of
Aβ induces mitochondrial fragmentation and dysfunction,
including increased ROS production, reduced ATP generation
and lower mitochondrial membrane potential (Wang et al.,
2008). Moreover, AD neurons contain a high proportion of
mitochondria with broken cristae, along with significant changes
in the size and number of mitochondria (Wang et al., 2009b;
Bonda et al., 2010). The balance of mitochondrial fusion and
fission is clearly impaired in AD neurons. For example, Wang
and colleagues have observed a reduced expression in the
mitochondrial fusion genes, Mfn1, Mfn2 and OPA1, and an
increased expression in the mitochondrial fission genes, Drp1
and Fis1, in AD brain samples (Wang et al., 2009a). Moreover,
overproduction of Aβ and the subsequent accumulation of
intraneuronal tau leads to elevated Drp1 levels in mitochondria,
thus mediating excessive mitochondrial fragmentation and
synaptic deficiency (Wang et al., 2008; Manczak and Reddy,
2012). Furthermore, in the early stages of AD, Aβ oligomers
induce significantly increased levels of mitochondrial Drp1,
which interacts with Aβ monomers and oligomers to initiate the
mitochondrial fragmentation (Calkins et al., 2011). In the late
stages of the disease, Drp1 interacts with phosphorylated tau,
which may exacerbate mitochondrial fragmentation, ultimately
leading to neuronal damage and cognitive decline (Manczak
et al., 2011; Manczak and Reddy, 2012).

Parkinson’s Disease
PD is the second-most common neurodegenerative disease
in humans and features the degeneration of nigrostriatal
dopaminergic neurons and the accumulation of α-synuclein

(Lang and Lozano, 1998; Kalia and Lang, 2015). Mitochondrial
dysfunction occurs early in the pathogenesis of both sporadic
and familial PD; PD cytoplasmic hybrid (cybrid) cells contain a
significantly increased proportion of mitochondria with swollen
vacuoles, pale matrices and few remaining cristae (Trimmer
et al., 2000). Furthermore, the balance of mitochondrial fusion
and fission is disrupted in several models of PD (Santos
and Cardoso, 2012). An increase in phospho-Drp1 levels
was observed in peripheral blood mononuclear cell samples
from sporadic PD patients, highlighting an increased level
of mitochondrial fragmentation. Additionally, Parkinsonism-
inducing neurotoxins and 1-methyl-4-phenylpyridinium
ion (MPP+), which are widely used to induce PD-like
degeneration, trigger Drp1 translocation to the mitochondria
and mitochondrial fragmentation, leading to dopaminergic cell
death (Santos et al., 2015). Kamp et al. (2010) have demonstrated
that α-synuclein can induce mitochondrial fragmentation by
directly binding to the OMM and inhibiting mitochondrial
fusion. Furthermore, these investigators found that α-synuclein
does not interact directly with proteins involved inmitochondrial
fusion or fission; rather it prevents lipid fusion events in proteins
related to mitochondrial fusion. This led to the proposal that
the influence of α-synuclein on mitochondrial dynamics is
based on its interaction with membrane lipids (Kamp et al.,
2010).

Huntington’s Disease
HD is an autosomal dominant condition caused by trinucleotide
expansion within a single gene, huntingtin (HTT) and is
characterized by choreoathetotic movements and progressive
emotional and cognitive disturbances (Walker, 2007; Ross
and Tabrizi, 2011). There is substantial evidence from the
experimental models of HD that its pathogenesis is related to
mitochondrial dysfunction (Knott and Bossy-Wetzel, 2008; Chen
and Chan, 2009; Su et al., 2010). Abnormalities in mitochondrial
dynamics have been observed in HD brain samples, with a
significant increase in the fission protein, Drp1 and decrease in
the fusion protein Mfn1. Furthermore, an imbalance between
the mitochondrial fusion and fission results in alterations of
mitochondrial morphogenesis, which can negatively impact
important cellular mechanisms and exacerbate neuronal death
(Kim et al., 2010). Further, mutant HTT protein (mHTT) triggers
mitochondrial fission prior to the emergence of neurological
deficits and mHTT aggregates (Shirendeb et al., 2011, 2012;
Reddy, 2014). Song and colleagues have found that mHTT
interacts abnormally with Drp1, which, in turn, increases
its enzymatic activity. Reduction of Drp1 GTPase activity
can rescue mHTT-mediated mitochondrial fragmentation and
defects in anterograde and retrograde mitochondrial movement
and neuronal death, suggesting that Drp1 may represent a
suitable target for HD therapy (Song et al., 2011).

Collectively, these findings demonstrate the important
functional connection between mitochondrial dynamics (fusion
and fission) and neurodegeneration in neurons. Indeed, the
correct balance between the mitochondrial fusion and fission
is clearly crucial for both brain development and neuronal
function.
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MITOCHONDRIAL DYNAMICS REGULATE
MITOCHONDRIAL QUALITY THROUGH
MODULATION OF MITOPHAGY

Dysfunctional mitochondrial dynamics are a pivotal factor
leading to the accumulation of defective mitochondria (Sebastián
et al., 2017). A growing body of evidence from a number of
neurodegenerative diseases clearly supports a major contribution
from defective mitochondria to neuronal loss and the release
of ROS, which are typically generated by mitochondrial
respiration. ROS can cause oxidative damage to nucleic acids,
lipids, carbohydrates and proteins (Trushina and McMurray,
2007; Reddy, 2010). Damaged mitochondria also release high
levels of calcium and cytochrome C (cytC) into the cytosol,
thereby triggering the cellular apoptosis (Suen et al., 2008).
Evidently, the removal of damaged mitochondria by mitophagy
(a selective form of autophagy devoted to the clearance of
defective mitochondria) is essential for mitochondrial quality
control and mitochondrial homeostasis (Ashrafi and Schwarz,
2013).

The mean diameter of an autophagosome is approximately
0.2–1 µm; however, the mean length of a mitochondrion, under
normal conditions, ranges from several to tens of microns.
Thus, before a damaged mitochondrion gets engulfed by an
autophagosome, it must be fragmented and then segregated
from the mitochondrial network (Mao and Klionsky, 2013; Wu
et al., 2016). Hence, mitochondrial fission appears to be essential
for mitophagy (Barsoum et al., 2006). Twig et al. (2008) have
demonstrated that mitochondrial fission is required for the
segregation of less active or damaged mitochondria from the
mitochondrial network, and involves FIS1, OPA1 and Drp1;
thus, a reduction of fission or an increase of fusion could
inhibit mitophagy. Mitochondrial network fragmentation occurs
prior to mitophagy, which is strictly coupled with mitochondrial
dynamics (Rodolfo et al., 2018).

The link between mitochondrial dynamics and mitophagy
is supported by experiments conducted under nutrient-
deprivation conditions. Starvation-induced mitochondrial
elongation protects mitochondria from autophagic turnover in
mouse embryonic fibroblasts, which may permit the maximal
mitochondrial ATP production crucial for the metabolic
function of cells. This effect appears to be mediated by the
downregulation of Drp1 by post-translational modification
of two Drp1 phosphorylation sites, leading to unopposed
mitochondrial fusion (Gomes et al., 2011; Rambold et al.,
2011). Drp1 is also described as necessary for the mediation of
various forms of mitophagy. For example, Zuo et al. (2014) have
reported that during the early stage of ischemic-hypoxic stress
in the rat brain, Drp1-dependent mitophagy was triggered to
remove the damaged mitochondria. Inhibition of Drp1 using
a pharmacological inhibitor or small interfering RNA resulted
in the accumulation of damaged mitochondria, mainly through
selective blocking of mitophagy. Further studies demonstrated
that the decrease in mitophagy induced by inhibition of Drp1
contributed to features of apoptosis mediated by damaged
mitochondria, such as ROS generation, cytC release and
activation of caspase-3 (Zuo et al., 2014).

Several specific proteins contribute to the regulation of
mitophagy to ensure the selective sequestration of dysfunctional
mitochondria in autophagosomes and the subsequent
degradation of these structures. Both parkin-dependent and
parkin-independent pathways of mitophagy operate in mammals
(Jin and Youle, 2013; Kageyama et al., 2015).

The PINK1/Parkin-Dependent Mitophagy
Pathway
Mammalian mitophagy is mediated by PTEN-induced kinase 1
(PINK1) and the E3 ubiquitin ligase, parkin, which are both parts
of the same pathway that functions to eliminate dysfunctional
mitochondria by autophagy (Eiyama and Okamoto, 2015). The
loss of either protein in flies leads to mitochondrial dysfunction,
and the loss of flight muscles, along with dopaminergic neurons
(Park et al., 2006; Yang et al., 2006). The PINK1 is a
serine/threonine kinase that contains a mitochondrial targeting
sequence to facilitate its correct localization and is maintained
at very low levels in healthy mitochondria by rapid proteolytic
turnover. When a subset of mitochondria become damaged,
PINK1 proteolysis is prevented and it accumulates on their
outer membranes (Narendra et al., 2010; Youle and Narendra,
2011). The accumulation of PINK1 on the surface of damaged
mitochondria induces the translocation of parkin from the
cytosol to the damaged mitochondria, followed by the initiation
of mitophagy (Figure 2; Pickrell and Youle, 2015).

Parkin is a cytosolic E3 ubiquitin ligase that mediates
the formation of two types of polyubiquitin chains: lysine
K48 linkage, which is involved in the proteasomal degradation
of substrates; and K63 linkage, which is involved in autophagic
degradation (Ashrafi and Schwarz, 2013). Once recruited to the
mitochondria, the parkin’s E3 ubiquitin ligase activity appears
to increase (Matsuda et al., 2010). Parkin may promote the
K63-linked polyubiquitination of mitochondrial substrates
and recruit the ubiquitin-binding autophagic components,
sequestosome 1 (p62/SQSTM1) and histone deacetylase 6
(HDAC6), which are required for the clearance of damaged
mitochondria. Sequestosome 1 binds the key autophagosome
component, microtubule-associated protein 1A/1B light
chain 3 (LC3), whereas HDAC6 activates the actin-remodeling
machinery to promote autophagosome–lysosome fusion, thereby
enhancing the autophagic activity (Figure 2; Lee et al., 2010;
Geisler et al., 2010).

Additionally, activating signaling via the K63-linked
ubiquitination of mitochondrial substrates, parkin also
causes the formation of K48-linked ubiquitin chains on
the mitochondrial outer surface, leading to proteasome-
mediated substrate degradation (Figure 2). Parkin is also
thought to ubiquitinate Mfn1 and Mfn2, marking them for
proteasomal degradation, which may inhibit the re-fusion
of damaged and healthy mitochondria, thereby segregating
impaired mitochondria for mitophagy. These post-translational
modifications of Mfn1 and Mfn2 are reduced following either
PINK1 or parkin silencing (Tanaka et al., 2010; Gegg et al.,
2013). Furthermore, Mfn2 appears to function upstream of
parkin translocation and, aside from its role in mitophagy,
downstream of parkin; Mfn2 mediates the recruitment of parkin
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FIGURE 2 | Regulation of mitophagy. Damaged mitochondria release reactive oxygen species (ROS), Ca2+ and cytochrome C (cytC) into the cytosol, thereby
triggering apoptosis. The accumulation of PTEN-induced kinase 1 (PINK1) on the surface of damaged mitochondria then recruits parkin from the cytosol to defective
mitochondria and induces the formation of K48-linked ubiquitin chains on the Mfns, Mfn1 and Mfn2, marking them for degradation by the proteasome, consequently
inhibiting re-fusion of damaged and healthy mitochondria. Parkin also promotes the K63-linked polyubiquitination of mitochondrial substrates, thereby, recruiting
P62 and histone deacetylase 6 (HDAC6) for the clearance of defective mitochondria. The P62 binds light chain 3 (LC3) to form autophagosomes, whereas
HDAC6 activates the actin-remodeling machinery, which promotes autophagosome–lysosome fusion, thereby, enhancing the autophagy activity and degrading the
damaged mitochondria.

to damaged mitochondria and subsequently binds to parkin
in a PINK1-dependent manner. In the absence of Mfn2, the
PINK1/parkin-dependent pathway of mitophagy is interrupted,
resulting in abnormal accumulation of mitochondria in mouse
cardiomyocytes and neurons; hence, Mfn2 functions as a
mitochondrial receptor for parkin (Chen and Dorn, 2013).

The PINK1/Parkin-Independent Mitophagy
Pathway
Although the PINK1/parkin pathway has a dominant role in
mitophagy, it is not involved in hypoxia-induced mitophagy
since parkin knockdown does not prevent mitochondrial
degradation by autophagy in response to hypoxia. In mammals,
hypoxia-induced mitophagy is primarily mediated by FUNDC1.
The FUNDC1 is a mitophagy receptor that accumulates at
ER-mitochondrial contact sites by interacting with calnexin,
subsequently binding to Drp1 to mediate mitochondrial
fission. Ruptured mitochondria then recruit the UNC-51-like
kinase 1 (ULK1) complex to initiate mitophagy and mediate

mitochondrial elimination by binding to LC3 under hypoxic
conditions (Wu et al., 2014, 2016). Apart from FUNDC1, other
protein regulators, including Nix, cardiolipin and activating
molecule in Beclin-1-regulated autophagy (AMBRA1), also
contribute to the flagging and recognition of mitochondria in the
PINK1/parkin independent pathway (Chu et al., 2013; Sandoval
et al., 2015; Strappazzon et al., 2015).

Impairment of Mitophagy in
Neurodegenerative Diseases
Mitophagy is crucial to the elimination of damagedmitochondria
and ensures the integrity and functionality of the mitochondria
network. Defects in both autophagy and mitophagy have
been reported as important in the onset and progression of
neurodegenerative diseases (Martinez-Vicente, 2017; Rodolfo
et al., 2018). In parkin-dependent mitophagy, mutations in
PINK1 and parkin result in mitophagy impairment, which
is related to PD (Youle and Narendra, 2011; Pickrell and
Youle, 2015). Although there is an increased recruitment of
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parkin to damaged mitochondria in AD neurons, defective
lysosomes in autophagic vacuoles are responsible for the
aberrant accumulation of defective mitochondria during
disease progression (Ye et al., 2015; Bordi et al., 2016). In
HD, defective recognition of cargo during autophagy and the
inhibition of autophagosome transport toward lysosomes result
in impaired removal of damaged mitochondria, indicating
that the mitophagy process is compromised (Martinez-Vicente
et al., 2010; Wong and Holzbaur, 2014). Additionally, many
antiapoptotic factors, such as Mcl-1 and Bcl-XL, along with
deubiquitinases, including ubiquitin-specific protease 30
(USP30), USP15 and USP8, can antagonize the activity of parkin,
thereby, inhibiting parkin-mediated mitophagy (Bingol et al.,
2014; Cornelissen et al., 2014; Hollville et al., 2014; Durcan et al.,
2015).

CONCLUSION AND FUTURE
PERSPECTIVES

Mitochondrial dysfunction is a prominent feature of several
neurodegenerative diseases. Mitochondria can influence
neuronal function, not only through ATP production, but
also through the regulation of calcium homeostasis, synapse
function, ROS generation and cell signaling and survival
(Hoekstra et al., 2011). Mitochondrial dynamics (fusion/fission),
along with clearance events, are important for the functional
state of mitochondria. Constant fusion and fission enable the
exchange between mitochondria, and the clearance of defective
organelles prevents the accumulation of damaged mitochondria.
Consequently, abnormalities in these processes may have
deleterious effects on mitochondrial structure, function and cell
survival. Based on these observations, we hypothesize that acute
readjustment of dysregulated mitochondrial dynamics could be
a target for protective strategies in the context of its detrimental
stimulation.

Abnormal mitochondrial fission can trigger apoptosis
by promoting the release of cyt C from mitochondria to
the cytoplasm (Suen et al., 2008). The inhibitor, mdivi-1,
can effectively downregulate apoptosis by reducing the
mitochondrial outer membrane permeabilization, which
is directly regulated through attenuation of mitochondrial
fission dynamics. This raises the possibility that mdivi-1
represents a novel class of therapeutic agent applicable to
many neurodegenerative diseases (Cassidy-Stone et al., 2008).
Additionally, apoptotic fission is, at least in part, mediated by
the translocation of Drp1 from the cytosol to the mitochondria.
The polypeptide, PPD1, can delay apoptosis by blocking
Drp1 translocation to the mitochondria, thus preventing their
fragmentation and cyt C release (Cereghetti et al., 2010).
Recently, Li et al. (2018) have found that inhibition of Drp1 may
represent a novel and effective strategy for the treatment of
prion diseases. These investigators found that the suppression
of Drp1 expression inhibited prion-induced mitochondrial
fragmentation and ameliorated PrP106–126-induced neurite loss
and synaptic abnormalities in primary neurons. Moreover, RNAi
targeting Drp1 could also improve the neuronal cell viability
and reduce the neuron apoptosis (Li et al., 2018). In the AD,

inhibition of excessive Drp1-mediated mitochondrial fission
may represent a new therapeutic strategy, since Drp1 inhibition
can ameliorate Aβ-mediated mitochondrial dysfunction and
synaptic depression in neurons and significantly reduce the Aβ

deposition in the brains of AD mice. Moreover, heterozygote
Drp1 knockout mice exhibit no effects in terms of mitochondrial
and synaptic viability (Manczak et al., 2012; Baek et al., 2017).

Disrupted mitochondria contain oxidized proteins and
damaged mitochondrial DNA, factors that are detrimental to
cells. To limit the impairment caused by defective mitochondria,
cells activate a protective mechanism through which damaged
mitochondria are eliminated by mitophagy (Kim et al., 2007).
Many studies have revealed a protective role for mitophagy
in several deleterious situations, indicating that mitophagy is
a good candidate target for therapeutic intervention (Santos
et al., 2011). Rapamycin is capable of preventing apoptosis
in rotenone-challenged neurons, and this protective effect is
due to enhanced mitophagy since the level of mitochondrial
colocalization with lysosomes is increased, and the mitochondria
could be found within autophagy double-membrane structures
during the autophagy process (Pan et al., 2009). Additionally,
the PINK1/parkin pathway clearly has a critical role in the
degradation of damaged mitochondria by mitophagy (McBride,
2008), with loss-of-function mutations in either PINK1 or parkin
leading to an autosomal recessive form of PD, accompanied
by the accumulation of dysfunctional mitochondria in neurons
as a consequence of impaired mitophagy (Narendra et al.,
2008). In Drosophila, the overexpression of PINK1 or parkin
in PINK1 knockout flies reverses dopaminergic neuron
degeneration and mitochondrial dysfunction to levels similar
to those observed in parkin mutant flies and can be rescued by
the overexpression of parkin (Yang et al., 2006). These findings
indicate that interventions that stimulate mitophagy to maintain
mitochondrial fidelity could represent a novel approach to delay
neurodegenerative processes in PD (Gao et al., 2017).

In conclusion, the machinery regulating mitochondrial
dynamics may represent a novel therapeutic target in
neurodegenerative diseases, and comprehensive clinical studies
are now required to investigate the potential of mitochondrial
dynamics as a therapeutic target.
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