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Abstract: Psychrobacter marincola KMM 277T is a psychrophilic Gram-negative bacterium that has
been isolated from the internal tissues of an ascidian Polysyncraton sp. Here, we report the structure
of the capsular polysaccharide from P. marincola KMM 277T and its effect on the viability and colony
formation of human acute promyelocytic leukemia HL-60 cells. The polymer was purified by
several separation methods, including ultracentrifugation and chromatographic procedures, and the
structure was elucidated by means of chemical analysis, 1-D, and 2-D NMR spectroscopy techniques.
It was found that the polysaccharide consists of branched hexasaccharide repeating units containing
two 2-N-acetyl-2-deoxy-d-galacturonic acids, and one of each of 2-N-acetyl-2-deoxy-d-glucose,
d-glucose, d-ribose, and 7-N-acetylamino-3,5,7,9-tetradeoxy-5-N-[(R)-2-hydroxypropanoylamino]-
l-glycero-l-manno-non-2-ulosonic acid. To our knowledge, this is the first finding a pseudaminic
acid decorated with lactic acid residue in polysaccharides. The biological analysis showed that the
capsular polysaccharide significantly reduced the viability and colony formation of HL-60 cells.
Taken together, our data indicate that the capsular polysaccharide from P. marincola KMM 277T is
a promising substance for the study of its antitumor properties and the mechanism of action in
the future.
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1. Introduction

Many marine bacteria can produce extracellular polysaccharides (EPSs). Bacterial EPSs usually
occur in two forms: As capsular polysaccharides (CPSs), if they are associated with the cell surface,
and medium-released polysaccharides (MRPs), if they are completely released in the environment [1].
The presence of these biopolymers indicates their specific properties and functions that are beneficial
to microorganisms; they play an essential role in protecting the bacterial cell from harsh environmental
conditions (salinity, temperature, and the availability of nutrients), in surface adhesion (usually
through the biofilms formation), intercellular signal transduction, and in resisting the host’s immune
response. All these features help to survive and protect their producers from the complex marine
environment [1,2].

Bacterial EPSs are bioglycans, mainly consisting of different monosaccharides or its derivatives.
In addition, various types of organic and inorganic substituents (amino acids, acetates, pyruvates,
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lactates, phosphates, and sulfates) can decorate the main linear or branched polysaccharide chain [1,2].
Such a high degree of variability implies the existence of a huge number of bacterial polysaccharides,
in which structural changes are almost unlimited.

In recent decades, the growing demand for natural carbohydrate polymers for industrial use has
led to significant interest in polysaccharides produced by microorganisms. Additionally, EPSs from
marine bacteria have prominent biological activity, including immunomodulatory, antiviral, as well as
antitumor activities [3–5].

The genus Psychrobacter belongs to the class Gammaproteobacteria and includes both psychrophilic
and psychrotolerant, halotolerant, and Gram-negative bacteria, which are associated primarily with the
Antarctic and marine habitats [6]. Members of Psychrobacter have been isolated from various sources,
including the Antarctic sea ice, permafrost, marine sediments, deep and surface seawater, fish, and marine
invertebrates. Several species have also been isolated from food, clinical sources, poultry, and livestock [7].
At the time of writing, the genus Psychrobacter comprises 41 validly described species [8].

The structure of polysaccharides associated with the cell wall of bacteria of the genus Psychrobacter
has not been studied intensively. To date, only two O-specific polysaccharide structures from P. muricolla
2pST [9] and P. cryohalolentis K5T [10], and two capsular polysaccharide structures from P. arcticus
273-4 [11] and P. maritimus 3pS [12] have been reported.

In this paper, we report on the isolation, purification, and structure of the CPS produced by
P. marincola KMM 277T, isolated from the homogenized internal tissues of an ascidian Polysyncraton
sp. [13]. It was found that the CPS is a branched high-molecular-weight polymer that effectively
inhibits the viability and colony formation of HL-60 cells.

2. Results

2.1. Isolation, Purification, and General Characterization of the CPS

An experiment using transmission electron microscopy showed the presence of a capsular structure
around P. marincola KMM 277T cells [13]. The dried bacterial cells were subjected to extraction with
sodium chloride solution followed by enzymatic treatment. The CPS from the resulting material was
purified by ultracentrifugation followed by anion-exchange chromatography and gel filtration. Analysis
of the CPS revealed no contaminant proteins and fatty acids. The size exclusion chromatography (SEC)
analysis showed that the CPS forms a single symmetrical peak and has a molecular weight of about
106.9 kDa (Figure 1a). The electrophoretic profile of the CPS showed a broad smear, limited from 55
(top) to 26 kDa (Figure 1b).
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Figure 1. (a) HPSEC elution profile of the CPS from P. marincola KMM 277T and dextran standards 
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Figure 1. (a) HPSEC elution profile of the CPS from P. marincola KMM 277T and dextran standards
(insert); (b) Alcian blue-stained electrophoregram of the CPS from P. marincola KMM 277T.
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Monosaccharide analysis using GC-MS of the acetylated alditols and acetylated methyl glycosides
(Figure 2) disclosed the presence of ribose, glucose, glucosamine, and galactosamine uronic acid, all with
the D configuration [14,15]. Further study of the CPS by NMR spectroscopy revealed the presence
of one more component, 7-N-acetylamino-3,5,7,9-tetradeoxy-5-N-[(R)-2-hydroxypropanoylamino]-
l-glycero-l-manno-non-2-ulosonic acid (see below). The R configuration of lactic acid (R-Lac) was
determined by GC of the acetylated (S)-2-butyl ester as described [16]. Methylation analysis
of the CPS resulted in the identification of 3,5-di-O-methyl-d-ribose (derived from 2-substituted
d-ribofuranose residue), 3,4,6-tri-O-methyl-d-glucose (derived from 2-substituted d-glucopyranose
residue), and 2-deoxy-4,6-di-O-methyl-2-(N-methylacetamido)-d-glucose (derived from 3-substituted
d-glucosamine residue).
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Figure 2. GC profile of the acetylated methyl glycosides derived from the CPS.

The 13C NMR spectrum of the CPS (Figure 3a) displayed, inter alia, signals of six anomeric
carbons at δC 105.1, 104.1, 102.2, 101.0 (quaternary carbon, data of the DEPT-135 experiment), 100.0,
and 96.8; five nitrogen-bearing carbons at δC 55.9, 54.7, 52.1, 49.5, and 49.1; three hydroxymethyl
groups (data of the DEPT-135 experiment) at δC 64.5 and 61.7 (double intensity); methylene carbon
(data of the DEPT-135 experiment) at δC 36.2; two methyl groups at δC 20.9 and 17.5; four methyl
groups of N-acetyl substituents at δC 23.4–23.8; and numerous carbonyl carbons at δC 173.1–178.9.
These data demonstrated a hexasaccharide repeating unit of the CPS and suggested the presence of an
amide-linked R-Lac residue (characteristic signals at δC 178.9, 69.2, and 20.9).

Accordingly, the 1H NMR spectrum of the CPS (Figure 3b) revealed, inter alia, signals of five
protons in the anomeric region at δH 5.63–4.59, one methylene group at δH 2.53 and 1.74, four N-acetyl
groups at δH 2.08–1.90, and two methyl groups at δH 1.38 (H-3 of R-Lac residue, 3J2,3 6.2 Hz) and 1.16.
The last signal together with signals of the methylene group and data of the 13C NMR spectrum indicated
the presence of 5,7-amino-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (pseudaminic acid,
Psep) residue (the full identification was achieved on the basis of 3JH,H coupling constant values and 1H
and 13C NMR chemical shifts obtained for the low molecular weight derivative, see below). A relatively
large difference (0.78 ppm) between the chemical shifts of H-3ax and H-3eq was typical for the axial
orientation of the carboxyl group of 3-deoxynon-2-ulosonic acids [17], and therefore the Psep residue
was β-linked. In addition, the presence of the signal at δH 5.63 together with the signals at δC 83.0 and
84.4 in the 13C NMR spectrum of the CPS corresponded to the 2-substituted β-d-ribofuranose residue
(β-d-Ribf ) and was in accordance with the data of the methylation analysis [18].
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Figure 3. (a) 13C NMR spectrum of the CPS from P. marincola KMM 277T; (b) 1H NMR spectrum of the
CPS from P. marincola KMM 277T.

Unfortunately, the poor quality of the two-dimensional (2-D) NMR spectra (signal densities were
broad and mostly lost in the baseline noise) prevented any conclusive structural assignment by the
application of 2-D techniques. In this connection, the CPS was subjected to a mild acid degradation
and three components, one high molecular weight polysaccharide (HMP) and two oligosaccharides
(OS-1 and OS-2), were isolated by gel filtration.

2.2. Structural Elucidation of the CPS

The 13C NMR spectrum of the HMP (Figure 4) contained signals of two anomeric carbons at δC
103.3 and 99.5, thus indicating a disaccharide repeating unit; two nitrogen-bearing carbons at δC 55.5
and 49.0; one hydroxymethyl group (data of the DEPT-135 experiment) at δC 61.3; one carboxyl carbon



Mar. Drugs 2020, 18, 268 5 of 17

at δC 174.6; carbons of two N-acetyl groups at δC 23.4 (CH3, double intensity), 175.1 and 175.4 (CO);
and other carbons at δC 70.1–81.1.
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The 1H NMR spectrum of the HMP revealed the characteristic signals of two protons in the
anomeric region at δH 5.38 and 4.60, two N-acetyl groups at δH 2.04 and 1.94, and other sugar ring
protons in the region of δH 3.42–4.50.

The 1H and 13C NMR spectra of the HMP were assigned by 1H,1H-COSY, 1H,1H-TOCSY,
1H,1H-ROESY, 1H,13C-HSQC, and 1H,13C-HMBC experiments, and the chemical shifts are presented
in Table 1.

The 1H,1H-COSY, and 1H,1H-TOCSY spectra revealed proton spin systems for one sugar residue
having the galacto configuration (H-1 up to H-4, and H-4/H-5 correlations) and one having the gluco
configuration (correlations between all ring proton). The sugar residue with the galacto configuration
was identified as d-GalpNAcA (A) based on H-2/C-2 correlation at δH/δC 4.29/49.0 in the 1H,13C-HSQC
spectrum, and H-5/C-6 correlation at δH/δC 4.23/174.6 in the 1H,13C-HMBC spectrum. The sugar
residues with the gluco configuration were identified as d-GlcpNAc (B) based on H-2/C-2 and H-6/C-6
correlations at δH/δC 3.78/55.5 and δH/δC 3.91, 3.78/61.3, respectively, in the 1H,13C-HSQC spectrum.
The 1JC1–H1 coupling constant values determined from the gated-decoupling spectrum of the HMP
showed that d-GalpNAcA was α-linked (>170 Hz), whereas d-GalpNAcA was β-linked (<165 Hz).

Table 1. 1H and 13C NMR data for the HMP, (δ, ppm).

Sugar Residue H-1
C-1

H-2
C-2

H-3
C-3

H-4
C-4

H-5
C-5

H-6
C-6

→3)-α-d-GalpNAcA-(1→
A

5.38
99.5

4.29
49.0

3.95
77.1

4.50
70.1

4.23
72.0 174.6

→3)-β-d-GlcpNAc-(1→
B

4.60
103.3

3.78
55.5

3.71
81.1

3.68
72.0

3.42
76.6

3.91, 3.78
61.3

Chemical shifts of the N-acetyl groups are δH 2.04–1.94 and δC 23.4 (CH3), and 175.4–175.1 (CO).

Linkage analysis of the HMP was performed using the 1H,1H-ROESY (Figure 5a),
and 1H,13C-HMBC experiments (Figure 5b). The 1H,1H-ROESY spectrum revealed the following
cross-peaks: H-1 α-d-GalpNAcA (A)/H-3 β-d-GlcpNAc (B) at δН/δН 5.38/3.71, and H-1 β-d-GlcpNAc
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(B)/H-3 α-d-GalpNAcA (A) at δН/δН 4.60/3.95. Accordingly, the 1H,13C-HMBC spectrum displayed the
following cross-peaks: H-1 α-d-GalpNAcA (A)/C-3 β-d-GlcpNAc (B) at δН/δC 5.38/81.1, and H-1
β-d-GlcpNAc (B)/C-3 α-d-GalpNAcA (A) at δН/δC 4.60/77.1. These data showed that both
monosaccharide residues were 3-substituted.
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Based on the data obtained, it was concluded that HMP consists of disaccharide repeating units
with the following structure:

→3)-α-d-GalpNAcA-(1→3)-β-d-GlcpNAc-(1→

In turn, the 13C NMR spectrum of the OS-1 (Figure 6) contained signals of four anomeric carbons
at δC 101.4, 101.0, 96.4, and 93.8; three nitrogen-bearing carbons at δC 54.7, 51.9, and 49.0; two
hydroxymethyl groups (data of the DEPT-135 experiment) at δC 64.1 and 61.5; methylene carbon (data
of the DEPT-135 experiment) at δC 35.7; two methyl groups at δC 20.9 and 17.2; three carboxyl carbons
at δC 178.9, 173.4, and 172.8; carbons of two N-acetyl groups at δC 23.6, 23.3 (CH3) and 175.9, 174.9 (CO);
and other carbons at δC 66.6–79.3.
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Figure 6. 13C NMR spectrum of the OS-1. Numerals refer to carbons in sugar residues denoted by
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The 1H NMR spectrum of the OS-1 revealed the characteristic signals of three protons in the
anomeric region at δН 5.13 (3J1,2 5.7 Hz), 5.06 (3J1,2 3.7 Hz), and 4.80 (3J1,2 8.3 Hz); one methylene group
at δН 2.52 (3J3eq,4 4.8 Hz) and 1.76 (3J3ax,4 12.9 Hz); two methyl groups at δН 1.38 (3J2,3 7.0 Hz) and 1.17
(3J8,9 6.5 Hz); two N-acetyl groups at δН 2.05 and 1.95; and other protons at δН 3.51–4.55.

The 1H and 13C NMR spectra of the OS-1 were assigned by 2D NMR experiments, and the
chemical shifts are presented in Table 2.

Based on the 3JH,H coupling constant values and 1H and 13C NMR chemical shifts, spin systems
for one residue of each of β-d-Ribp (C, major form at the reducing end), β-d-GalpNAcA (D), α-d-Glcp
(E), β-Psep (F), and R-Lac were identified. In detail, the β-d-GalpNAcA was confirmed based
on H-2/C-2 correlation at δH/δC 4.05/51.9 in the 1H,13C-HSQC spectrum, and H-5/C-6 correlation
at δH/δC 4.39/172.8 in the 1H,13C-HMBC spectrum. The β-Psep was confirmed by H-3ax/C-1,
H-3ax/C-2, and H-3eq/C-2 correlations at δН/δC 1.76/173.4, 1.76/101.4, and 2.52/101.4, respectively,
in the 1H,13C-HMBC spectrum (Figure 6). The 1H,13C-HSQC spectrum showed cross-peaks of H-5
and H-7 of β-Psep with nitrogen-bearing carbons at δH/δC 4.22/49.0 and 4.06/54.7, respectively. The 1H
and 13C NMR chemical shifts of the β-Psep and 3JH,H coupling constants (3J3ax,4 12.9 Hz, 3J4,5 4.2 Hz,
3J5,6 2.1 Hz, 3J6,7 10.3 Hz) were consistent with a l-glycero-l-manno configuration and differed from the
spectral parameters of the other known stereoisomers [17].

The position of substitution and the sequence of the sugar residues in the OS-1 were established
using the 1H,13C-HMBC experiment (Figure 7). The 1H,13C-HMBC spectrum displayed the following
inter-residue cross-peaks: C-2β-Psep/H-2α-d-Glcp at δC/δH 101.4/3.94, H-1α-d-Glcp/C-3β-d-GalpNAcA
at δН/δC 5.06/77.3, and H-1 β-d-GalpNAcA/C-2 β-d-Ribp at δН/δC 4.80/79.3. These data indicated that
β-d-Ribp and α-d-Glcp were 2-substituted, β-d-GalpNAcA was 3-substituted, and β-Psep had no
substitution and was at the non-reducing end of the OS-1. In addition, the correlation between H-5 of
β-Psep and C-1 of R-Lac at δН/δC 4.22/178.9 in the 1H,13C-HMBC spectrum indicated the location of
R-Lac at position 5 of β-Psep.
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Table 2. 1H and 13C NMR data for the OS-1 and OS-2, (δ, ppm).

Sugar Residue H-1
C-1

H-2
C-2

H-3eq,ax
C-3

H-4
C-4

H-5
C-5

H-6a,b
C-6

H-7
C-7

H-8
C-8

H-9
C-9

OS-1

→2)-β-d-Ribp
C

5.13
93.8

3.77
79.3

4.17
67.8

3.83
68.6

3.87,
3.71
64.1

→3)-β-d-GalpNAcA-(1→
D

4.80
101.0

4.05
51.9

3.97
77.3

4.55
66.6

4.39
74.7 172.8

→2)-α-d-Glcp-(1→
E

5.06
96.4

3.94
74.7

3.71
72.1

3.51
70.3

3.60
73.5

3.81, 3.78
61.5

β-Psep5(R-Lac)7Ac -(2→
F 173.4 101.4

2.52,
1.76
35.7

3.97
67.3

4.22
49.0

3.84
74.6

4.06
54.7

4.17
69.2

1.17
17.2

R-Lac-(1→ 178.9 4.26
69.3

1.38
20.9

OS-2

→2)-β-d-Ribp
C

5.13
93.8

3.78
79.3

4.18
67.8

3.83
68.7

3.87,
3.71
64.1

→3)-β-d-GalpNAcA-(1→
D

4.79
101.1

4.08
51.8

3.98
76.2

4.53
66.5

4.33
75.1 173.2

→2)-α-d-Glcp-(1→
E

5.13
96.7

3.56
72.4

3.65
74.0

3.44
70.4

3.60
73.7

3.81, 3.78
61.5

Chemical shifts of the N-acetyl groups are δH 2.05–1.95 and δC 23.6–23.3 (CH3), and 175.9–174.9 (CO).
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Thus, it was concluded that OS-1 was a tetrasaccharide with the following structure:

β-Psep5(R-Lac)7Ac-(2→2)-α-d-Glcp-(1→3)-β-d-GalpNAcA-(1→2)-β-d-Ribp

Studies using 1-D and 2-D NMR spectroscopy (Table 2) showed that OS-2 differed from the OS-1
in the absence of acid-labile β-Psep5(R-Lac)7Ac residue and had the following structure:

α-d-Glcp-(1→3)-β-d-GalpNAcA-(1→2)-β-d-Ribp

All the data obtained indicated that the backbone of CPS consisted of disaccharide repeating units
(according to the structure of the HMP) to which the tetrasaccharide side branch (according to the
structure of the OS-1) was attached via a glycosidic bond formed by the β-d-Ribf residue (according to
the 1H, 13C NMR and methylation analysis data for the CPS).

Attempts to obtain a product with improved spectroscopic properties by selective cleavage of
β-Psep5(R-Lac)7Ac residue during hydrolysis of the CPS with acetic acid led to the simultaneous
cleavage of the glycosidic bond formed by the β-d-Ribf residue. The β-Psep5(R-Lac)7Ac and sidechain
were only partially removed, creating complex heterogeneity in the polymer and making it difficult
to study.

In order to determine the location of the sidechain, the CPS was subjected to Smith degradation,
and the modified CPS (MPS) was isolated by gel-filtration. As expected, 2-substituted α-d-Glcp residue
was oxidized and its glycosidic linkage was then cleaved selectively under mild acid conditions,
whereas the other sugar residues and their linkages mostly remained unaffected. The structure of the
MPS was established using 2-D NMR spectroscopy, as described above for the HMP and OS-1 (Table 3).

Table 3. 1H and 13C NMR data for the MPS, (δ, ppm).

Sugar Residue H-1
C-1

H-2
C-2

H-3
C-3

H-4
C-4

H-5
C-5

H-6
C-6

→3)-α-d-GalpNAcA-(1→
A

5.19
100.4

4.26
49.6

3.96
77.0

4.56
75.7

4.19
72.1 n.d

→3)-β-d-GlcpNAc-(1→
B

n.d
104.1

n.d
55.9

n.d
81.9

3.50
72.1

3.38
77.0

3.93, 3.75
61.9

→2)-β-d-Ribf -(1→
C

5.55
105.3

4.16
84.4

4.11
72.1

3.98
83.0

3.77,
3.65
64.7

β-d-GalpNAcA-(1→
D

4.92
102.6

4.03
53.5

3.88
71.4

4.25
70.6

4.61
75.7 n.d

Chemical shifts of the N-acetyl groups are δH 2.04–1.90 and δC 23.5 (CH3), and 176.4–174.8 (CO). n.d., not determined.

The 13C NMR spectrum of the MPS (Figure 8a) contained signals of four anomeric carbons
at δC 105.3, 104.1, 102.6, and 100.4; three nitrogen-bearing carbons at δC 55.9, 53.5, and 49.6;
two hydroxymethyl groups (data of the DEPT-135 experiment) at δC 64.7 and 61.9; two carboxyl
carbons at δC 174.0 and 173.5; carbons of N-acetyl groups at δC 23.5 (CH3) and 176.4–174.8 (CO); and
other carbons at δC 70.6–84.4. The signals of β-Psep5(R-Lac)7Ac and α-d-Glcp were absent. Significant
downfield displacement of the signal for C-4 of α-d-GalpNAcA at δC 75.7, as compared with its
position in the 13C NMR spectrum of the HMP, was due to glycosylation of this sugar residue at
O-4. This finding was confirmed by the presence of a correlation between H-1 of β-d-Ribf and H-4 of
α-d-GalpNAcA at δН/δН 5.55/4.56 in the 1H,1H-ROESY spectrum (Figure 8b).



Mar. Drugs 2020, 18, 268 10 of 17

Mar. Drugs 2020, 18, x 10 of 17 

 

 

(a) 

 

(b) 

Figure 8. (a) 13C NMR spectrum of the MPS; (b) Part of 1H, 1H-ROESY spectrum of the MPS. Numerals 

refer to protons and carbons in sugar residues denoted by capital letters as described in Table 3. N-

Ac stands for the N-acetyl group. 

Taken together, these data led to the determination of the structure of the branched high-

molecular-weight CPS from the marine bacterium P. marincola KMM 277T: 

→3)-β-D-GlcpNAc-(1→3)-α-D-GalpNAcA-(1→ 

                                                           4 

                                                           ↑ 

                                                           1 

          β-Psep5(R-Lac)7Ac-(2→2)-α-D-Glcp-(1→3)-β-D-GalpNAcA-(1→2)-β-D-Ribf 

 

Figure 8. (a) 13C NMR spectrum of the MPS; (b) Part of 1H, 1H-ROESY spectrum of the MPS. Numerals
refer to protons and carbons in sugar residues denoted by capital letters as described in Table 3. N-Ac
stands for the N-acetyl group.

Taken together, these data led to the determination of the structure of the branched high-molecular-
weight CPS from the marine bacterium P. marincola KMM 277T:

→3)-β-d-GlcpNAc-(1→3)-α-d-GalpNAcA-(1→
4
↑

1
β-Psep5(R-Lac)7Ac-(2→2)-α-d-Glcp-(1→3)-β-d-GalpNAcA-(1→2)-β-d-Ribf
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2.3. In Vitro Effect of the CPS on Cell Viability, and Colony Formation of Cancer Cells

MTS assay is often used to determine whether test molecules in vitro affect proliferation and cell
viability. In the present study, the determination of the cell viability effect of the CPS from the marine
bacterium P. marincola KMM 277T was performed on human colorectal adenocarcinoma HT-29, Burkitt’s
lymphoma Raji, acute monocytic leukemia THP-1, and acute promyelocytic leukemia HL-60 cells.

It was shown that the CPS had weak cytotoxic activity (Figure 9) against HT-29 and THP-1 cells,
the inhibition was less than 20% at concentrations of up to 100 µg/mL after 72 h of treatment. At a
concentration of 200 µg/mL, the CPS showed inhibition of cells by 31% and 45%, respectively. However,
the experiment under the same conditions indicated that the CPS significantly inhibited the viability of
Raji and HL-60 cells. At a concentration of 200 µg/mL, the CPS showed inhibition of 73% and 70%,
respectively; moreover, in the case of HL-60 cells, the half-maximal inhibitory concentration (IC50) was
97.3 µg/mL.
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Figure 9. The viability of HT-29, THP-1, Raji, and HL-60 cells treated with the CPS using the MTS assay.
Data are represented as the means ± SD as determined from triplicate experiments. *p < 0.05.

The soft agar colony formation assay, which measures the ability of cells to proliferate in semi-solid
matrices, provides a tool to test the effects of novel compounds on cell proliferation and migration. In
the next step of our study, we determined the inhibition of colony formation of the HL-60 cells using
the soft agar assay (Figure 10). HL-60 cells were treated with the CPS at concentrations of 25–200 µg/mL
and incubated for 10 days. It was shown, that the CPS also effectively inhibited the colony formation
of the studied cells in a dose-dependent manner with the inhibition concentration (INCC50) of 31.0
µg/mL. It is important to note that in this test, the CPS acted at concentrations three times less than in
the MTS assay. At concentrations of 100–200 µg/mL, no colonies were detected.
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Thus, we demonstrated that the CPS from P. marincola KMM 277T was influenced both on
cell viability and colony formation of human acute promyelocytic leukemia HL-60 cells in a
dose-dependent manner.

3. Discussion

In this study, we determined the structure of the CPS isolated from the marine Gram-negative
bacterium P. marincola KMM 277T and showed that it is presented as a branched high molecular
weight polymer. As far as we know, this structure has not been previously detected in bacterial
polysaccharides [19]. The hexasaccharide repeating unit of the CPS from P. marincola KMM
277T contains two 2-N-acetyl-2-deoxy-d-galacturonic acids, 2-N-acetyl-2-deoxy-d-glucose, d-glucose,
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d-ribose, and a novel constituent component of bacterial glycopolymers – 7-N-acetylamino-
3,5,7,9-tetradeoxy-5-N-[(R)-2-hydroxypropanoylamino]-l-glycero-l-manno-non-2-ulosonic acid.

Previously, various pseudaminic acid derivatives have been found in numerous carbohydrate-
containing biopolymers associated with bacterial cell walls [17,20]. Among marine Gram-negative
bacteria, pseudaminic acid derivatives were found in polysaccharides from Pseudoalteromonas distincta
KMM 638 [21], P. atlantica IAM 14165 [22], and Cellulophaga fucicola NN015860T [23]. It is important
to note that another member of the Psychrobacter genus, P. arcticus 273-4, produces a CPS containing
5,7-di-N-acetyl-pseudaminic acid [11]. In both cases, pseudaminic acid derivatives occupy a lateral
position, and perhaps this is important for bacterial survival and niche adaptation [11]. In addition, a
polysaccharide with a similar architecture consisting of a disaccharide backbone and a rather long
tetrasaccharide sidechain has been described for P. cryohalolentis K5T [10].

Cancer remains one of the leading causes of death worldwide and represents a diverse group of
diseases characterized by the uncontrolled proliferation of anaplastic cells. The search for compounds
with antitumor activity is of great interest in connection with an increase in the number and high
mortality in cancer patients. The anticancer effect has previously been demonstrated for several
polysaccharides obtained from marine and extremophilic bacteria [1,24,25]. A study of the biological
activity of the CPS from P. marincola KMM 277T showed that it has a selective effect on the cell viability
and colony formation of HL-60 cells.

The inhibitory effect on HL-60 cells has also been shown for other polysaccharides of marine
origin. For example, the sulfated polysaccharide from a brown alga Ecklonia cava suppressed the
proliferation of cancer cells with an IC50 of 100.0 µg/mL [26]. The fucoidan fraction purified from
Sargassum polycystum induced apoptosis via the mitochondria-mediated pathway in HL-60. It is
interesting to note that in the cell viability test, fucoidan showed an antiproliferative effect with an IC50

of 84.6 µg/mL [27]. Apoptosis induction of HL-60 cells has also been demonstrated for polysaccharides
from Fucus vesiculosus [28], Sargassum coreanum [29], and Hydroclathrus clathratus [30]. Among marine
microorganisms, inhibitory activity against HL-60 cells has been shown for exopolysaccharide from
endogenous fungus Alternaria sp. SP-32. The polysaccharide consisting of a mannan core and a
galactoglucan chain exhibited cytotoxicity to HL-60 cells with an IC50 of 143.0 µg/mL [31]. Regarding
the inhibition of clonogenicity of the HL-60 cell line using the soft agar assay, a polysaccharide from
Ganoderma lucidum was studied. The polysaccharide, which is β-d-glucan, did not have a carcinogenic
effect even at a high dose of 400 µg/mL [32].

These data indicate that the CPS from P. marincola KMM 277T is comparable in its effect to such
well-known molecules as fucoidans and is a promising substance for further studies of its antitumor
properties and mechanism of action.

4. Materials and Methods

4.1. Isolation and Purification of the CPS

P. marincola KMM 277T was obtained from the Collection of Marine Microorganisms (KMM) of
the G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of
Sciences (Vladivostok, Russia). The bacteria were cultivated as described [33]. Dry bacterial cells (5.4 g)
were suspended in 150 mL of 0.15 M NaCl and heated at 80 ◦C with stirring for 30 min. The cell pellet
was collected by centrifugation (5000 rpm, 25 min, 4 ◦C) and the isolation procedure was repeated
two more times. Supernatants were combined, dialyzed (MWCO 12,000 Da), and lyophilized to give
crude CPS (935 mg). The freeze-dried material (340 mg) was resuspended in 30 mL of digestion buffer
containing TRIS/EDTA (0.01 M/0.001 M) and 0.01 M MgCl2. After the addition of 4 mg of RNAse
and DNAse (Sigma), the solution was incubated for 16 h at 37 ◦C, followed by 60 ◦C for 2 h after the
addition of 2 mg of proteinase K (Sigma). After dialysis against distilled water (MWCO 12000 Da),
it was lyophilized to give enzymatic-treated CPS (193 mg). The material was resuspended in 6 mL of
water and centrifuged at 105,000× g for 4 h. The freeze-dried supernatant (116 mg) was purified by
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anion-exchange chromatography on a column (10 × 1.5 cm) of Toyopearl DEAE-650M in a stepwise
gradient of NaCl (0.125, 0.25, 0.5, 1, and 2 M). The resulting main CPS fraction (70 mg, 0.25 M NaCl)
was dialyzed and lyophilized. Finally, the polysaccharidic material was loaded on Toyopearl HW-55
column (120 × 1.5 cm) eluted with ammonium hydrogen carbonate (0.05 M), yielding 42 mg of pure
CPS. Elution was monitored with a differential refractometer (Knauer, Germany).

4.2. Determination of the Molecular Weight and Electrophoretic Analysis of the CPS

Molecular weight of the CPS was analyzed using HPLC (Agilent 1100 Series, Hamburg, Germany),
equipped with a successively connected columns of Shodex Asahipak GS-520 HQ and GS-620 HQ
(7.5 mm × 300 mm) at 50 ◦C with elution by 0.15 M NaCl (0.4 mL/min). Columns were calibrated using
standard dextrans of 6, 12, 40, 70, and 100 kDa (Sigma, St. Louis, MO, USA). Electrophoresis of the
CPS preparation was performed in 15% (w/v) polyacrylamide gel according to Laemmli protocol [34],
and bands were visualized by alcian blue. The Protein Plus molecular weight marker (Bio-Rad,
Hercules, CA, USA) was used as the standard.

4.3. Compositional Analysis of the CPS

Monosaccharide composition was analyzed as the alditol acetates obtained by hydrolysis of the
CPS with 2 M CF3COOH (120 ◦C, 2 h) and as the acetylated methyl glycosides obtained by methanolysis
of the CPS with 2 M acetylchloride in methanol (120 ◦C, 4 h) by GC on an Agilent 6850 chromatograph
(Santa Clara, CA, USA) equipped with an HP-5 MS capillary column using a temperature program
from 150 (3 min) to 230 ◦C (10 min) at 3 ◦C min−1. GC-MS was performed on a Hewlett Packard 5890
chromatograph (USA) equipped with a HP-5MS column and connected to a Hewlett Packard 5973
mass spectrometer (USA). The absolute configurations of monosaccharides were determined by GC of
the acetylated (S)-2-butyl or (S)-2-octyl glycosides as described [14,15]. The absolute configuration of
lactic acid was determined as described [16]. Methylation analysis of the CPS was performed according
to the Hakomori method [35]. Fatty acid analysis was performed by GC of methyl derivatives after
methanolysis of the CPS with 2 M acetylchloride in methanol (120◦ C, 4 h). Proteins were analyzed by
the conventional method [36].

4.4. Partial Acid Hydrolysis and Smith Degradation of the CPS

The CPS sample (30 mg) was hydrolyzed with 0.1 M HCl (1 mL) for 1 h at 100 ◦C. After acid
removal, the product was fractioned by gel-permeation chromatography on TSK HW-40 in aq 0.1%
AcOH to give the HMP (9.2 mg), OS-1 (4 mg), and OS-2 (6 mg). Elution was monitored with a
differential refractometer.

The CPS sample (30 mg) was oxidized with 0.1 M NaIO4 (3 mL) in the dark at 20 ◦C for 72 h. After
reduction with an excess of NaBH4 and dialysis MWCO 3500 Da), the product was hydrolyzed with
1% CH3COOH at 100 ◦C for 3 h and fractionated by gel-permeation chromatography on TSK HW-50 in
aq 0.1% AcOH to give the MPS (9.2 mg). Elution was monitored with a differential refractometer.

4.5. NMR Spectroscopy

1H and 13C NMR spectra of the CPS and its derivatives were recorded on a Bruker Avance-III
(700.13 MHz for 1H and 176.04 MHz for 13C) spectrometer (Germany) at 37 ◦C using acetone (δC 31.45,
δH 2.225) as the internal standard. 2-D NMR experiments were performed as described [33].

4.6. Biological Activity

4.6.1. Cell Culture

HT-29 (ATCC# HTB-38), THP-1 (ATCC# TIB-202), HL-60 (ATCC# CCL-240), and Raji (ATCC#
CCL-86) cells were grown in McCoy’s 5a Medium Modified and RPMI 1640, respectively, supplemented
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with 10% (v/v) heat-inactivated fetal bovine serum (FBS), 2 mM l-glutamine, and 1% penicillin-
streptomycin at 37 ◦C in a humidified atmosphere containing 5% CO2.

4.6.2. Cell Viability Assay

The cells (6 × 103 cells/well) were cultured for 12 h in 96-well plates in the corresponding medium
(100 µL/well) at 37 ◦C in 5% CO2. After that, 100 µL of fresh medium containing the different
concentrations (25–200 µg/mL) of the CPS were added, and the cells were incubated for an additional
72 h. Then, 20 µL of MTS reagent were added into each well, and incubated for 4 h [37]. Absorbance
was measured at 490/690 nm. The results are expressed as the percentage of inhibition that produced a
reduction in absorbance by the CPS treatment compared to the non-treated cells. Cisplatin was used as
a positive control.

4.6.3. Soft Agar Assay

To estimate the effect of the CPS on colony formation (phenotype expression), the soft agar assay
was performed on HL-60 cells as described [38]. Cells (2.0 × 104/mL) were grown in 1 mL of 0.3% basal
medium Eagle’s agar containing 10% FBS. The culture was maintained at 37 ◦C in a 5% CO2 incubator
for 10 days and the cell colonies were scored using an EVOS XL Core Cell Imaging System (Thermo
Fisher Scientific, Waltham, MA. USA) and the ImageJ software.

4.6.4. Data Analysis

All assays were performed in three biological and two technical replicates. Results are expressed
as the mean ± standard deviation (SD). Statistical differences were evaluated using the Student’s t-test
and were considered significant at p ≤ 0.05.
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