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Abstract
Obtaining useful estimates of wildlife abundance or density requires thoughtful atten-
tion to potential sources of bias and precision, and it is widely understood that ad-
dressing incomplete detection is critical to appropriate inference. When the underlying 
assumptions of sampling approaches are violated, both increased bias and reduced 
precision of the population estimator may result. Bear (Ursus spp.) populations can be 
difficult to sample and are often monitored using mark-recapture distance sampling 
(MRDS) methods, although obtaining adequate sample sizes can be cost prohibitive. 
With the goal of improving inference, we examined the underlying methodological 
assumptions and estimator efficiency of three datasets collected under an MRDS pro-
tocol designed specifically for bears. We analyzed these data using MRDS, conven-
tional distance sampling (CDS), and open-distance sampling approaches to evaluate 
the apparent bias-precision tradeoff relative to the assumptions inherent under each 
approach. We also evaluated the incorporation of informative priors on detection pa-
rameters within a Bayesian context. We found that the CDS estimator had low appar-
ent bias and was more efficient than the more complex MRDS estimator. When 
combined with informative priors on the detection process, precision was increased by 
>50% compared to the MRDS approach with little apparent bias. In addition, open-
distance sampling models revealed a serious violation of the assumption that all bears 
were available to be sampled. Inference is directly related to the underlying assump-
tions of the survey design and the analytical tools employed. We show that for aerial 
surveys of bears, avoidance of unnecessary model complexity, use of prior informa-
tion, and the application of open population models can be used to greatly improve 
estimator performance and simplify field protocols. Although we focused on distance 
sampling-based aerial surveys for bears, the general concepts we addressed apply to a 
variety of wildlife survey contexts.
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1  | INTRODUCTION

Obtaining useful estimates of wildlife abundance or density requires 
thoughtful attention to potential sources of bias and precision af-
fecting the population estimator (Williams, Nichols, & Conroy, 2002). 
For instance, properly accounting for bias associated with incom-
plete detection of individuals has been consistently difficult to ad-
dress when surveying wildlife populations. This difficulty has led to 
the development and implementation of a wide range of survey tools 
such as distance sampling, mark–recapture, occupancy, and double 
observer approaches (e.g., Buckland et al., 2001; MacKenzie et al., 
2002; Nichols et al., 2000; Rosenstock, Anderson, Giesen, Leukering, 
& Carter, 2002; Williams et al., 2002). Each of these techniques ad-
dresses specific sources of incomplete detection, although the detec-
tion process consists of four individual detection components: ps (the 
probability that the home range of an animal overlaps the sampled 
space), pp (the probability that the animal is present within the survey 
area during the survey period), pa (the probability that the animal is 
available to be detected given that it is present within the sampled 
area), and pd (the probability that the animal is detected given that it 
is present and available; see Nichols, Thomas, & Conn, 2009; Schmidt, 
McIntyre, & MacCluskie, 2013). Many commonly implemented field 
sampling techniques focus on correcting for pd < 1.0, and although 
ps is typically addressed through design (Nichols et al., 2009), pa and 
pp are less often estimated explicitly or dealt with through design 
considerations. Instead, inference is often based on the assumption 
that all individuals are present and available to be detected, although 
temporary emigration (Kendall, Nichols, & Hines, 1997) or incomplete 
availability (Schwarz & Arnason, 1996; Wilson, Schmidt, Thompson, 
& Phillips, 2014) can cause bias relative to the population of interest. 
Avoidance of these sources of bias is important if results are to be in-
terpretable, and hence useful for addressing research or management 
questions.

Situations where pp and pa approach 1.0 certainly exist, although 
this requires careful assessment within each survey context. For ex-
ample, if the species of interest has a small home range and exhib-
its slow movement rates relative to the survey period and study area 
size, assuming pp ≈ 1.0 might be reasonable. Conversely, highly mobile 
species (e.g., passerine birds) may move to areas outside of a particu-
lar sample unit on any particular visit (Schmidt et al., 2013). Similarly, 
highly visible species in open habitats may meet the assumption of 
pa ≈ 1.0 (e.g., Dall’s sheep; Schmidt, Rattenbury, Lawler, & MacCluskie, 
2012), whereas in other cases, behavior or individual characteristics 
could be expected to cause pa ≈ 0 for some individuals during part of 
the survey period (e.g., diving cetaceans; Laake, Calambokidis, Osmek, 
& Rugh, 1997). When it is unreasonable to assume that all individuals 
are present and available, pp and pa must be addressed directly through 
careful attention to design and/or analysis; otherwise inference is lim-
ited to some unknown proportion of the population, despite correct-
ing for pd < 1.0. Although partially corrected population indices can be 
useful in some contexts (e.g., Johnson, 2008), inference to the entire 
study population is generally of primary interest to scientists and man-
agers. When assumptions related to pp and pa cannot be met through 

design modifications (e.g., use of radiotelemetry), analytical solutions 
become necessary to achieve estimates that are interpretable and sup-
port comparisons across time or space.

In addition to addressing bias in the overall detection process, con-
sideration must be given to important tradeoffs among bias, precision, 
and survey costs (both logistical and monetary) within the context of 
an estimator’s total error (i.e., total error = 

√

bias
2
+varience; Reynolds, 

2012). Designs employing mark–recapture methods are often pre-
ferred in wildlife work, in part because pd, pp, and pa can be estimated 
directly, thereby minimizing bias. However, the costs of capturing and 
marking sufficient numbers of animals may not always be practical, 
particularly when inference over large areas is required (Pollock et al., 
2002). The expense of the marking efforts can limit feasible sample 
sizes, reducing estimator precision and increasing total error relative 
to an approach that does not attempt to discern the different sources 
of detection bias. In many contexts, methods based on detections 
of unmarked individuals (e.g., occupancy surveys; MacKenzie et al., 
2006; distance sampling; Buckland et al., 2001, 2004) are simpler and 
cheaper to implement than other approaches, leading to larger sample 
sizes, fewer parameters to be estimated, and potentially smaller total 
error. For example, conventional distance sampling (CDS) only requires 
a single visit and relies on the assumption that pa = 1.0 (although see 
Amundson, Royle, & Handel, 2014), whereas multiple visit approaches 
(e.g., occupancy surveys) can be used to incorporate pa < 1 directly. A 
primary consideration when assessing the appropriateness of any par-
ticular survey approach is the relative balance it provides between bias 
and precision for feasible sample sizes and, specifically, the magnitude 
of bias it may be susceptible to while meeting precision objectives.

Although realized sample sizes are influenced by factors such 
as design requirements, cost, and animal density, model fitting in a 
Bayesian analytical framework provides another option for increas-
ing estimator efficiency (precision) after data have been collected. 
Borrowing information across surveys through the use of informed 
priors (Gelman, Carlin, Stern, & Rubin, 2004; King, Morgan, Giminez, 
& Brooks, 2010; Link & Barker, 2010) provides a means for greatly 
increasing precision without increasing required sample sizes for “new 
data” (e.g., McCarthy & Masters, 2005; Schmidt & Rattenbury, 2013). 
Similarly, open N-mixture models (Dail & Madsen, 2011) and recent ex-
tensions thereof (e.g., Kery & Royle, 2016; Schmidt, Johnson, Lindberg, 
& Adams, 2015; Sollmann, Gardner, Chandler, Royle, & Sillett, 2015; 
Zipkin et al., 2014) could be used to extract additional information 
from data collected on populations over time or assess assumptions 
regarding components of the detection process (i.e., pp and pa; Kery 
& Royle, 2016). These open formulations use repeated survey data to 
directly estimate parameters of population dynamics (e.g., survival and 
recruitment) and could be used to further reduce total estimator error.

The challenges associated with designing efficient and effective 
abundance surveys are well illustrated by the problem of how best 
to monitor bear populations. Bears are notoriously difficult and ex-
pensive to monitor (Reynolds, Thompson, & Russell, 2011) because 
they are often secretive and solitary, occur at relatively low densities, 
and are difficult to detect (i.e., noncontrasting coloration). Mark-
resight techniques using radio-marked bears and aerial surveys have 
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been used extensively to estimate bear abundance (e.g., Miller et al., 
1997), although the capture and handling requirements often limit the 
scale of such studies. Mark-resight approaches based on individual 
characteristics have also be used successfully (Schmidt, Rattenbury, 
Robison, Gorn, & Shults, 2017), as have DNA mark–recapture tech-
niques (Boulanger et al., 2008; Gardner, Royle, & Wegan, 2009; 
Gardner, Royle, Wegan, Rainbolt, & Curtis, 2010; Kendall et al., 2008; 
Solberg, Bellemain, Drageset, Taberlet, & Swenson, 2006). As a poten-
tially cheaper alternative for estimating bear abundance at large spatial 
scales, double-observer mark–recapture distance sampling (MRDS) 
approaches have been developed, implemented, and modified over 
time (Becker & Christ, 2015; Becker & Quang, 2009; Quang & Becker, 
1997; Walsh et al., 2010). The MRDS approach currently represents 
one of the more commonly employed survey techniques for assessing 
bear populations at large spatial scales, particularly in remote areas. 
However, this approach requires large sample sizes that can be cost 
prohibitive, limiting utility for long-term monitoring of bear popula-
tions (e.g., Reynolds et al., 2011).

Here, we explore the application of alternative analytical tools in 
the interest of cost reduction and improved inference for bear datasets 
collected under the MRDS approach.

We used three brown bear datasets to examine methodological 
and analytical assumptions, detect and reduce apparent bias, increase 
precision, and simplify field methods. Our specific objectives were to 
(1) explore the tradeoff between apparent bias and precision between 
the MRDS method and a simpler CDS framework for aerial bear survey 

data, (2) investigate the potential for improved inference through the 
use of informed priors on the detection process, and (3) explicitly 
test the assumption pa = 1.0 through application of open-distance 
sampling models.

2  | MATERIALS AND METHODS

2.1 | Study area

The study area consisted of portions of Lake Clark National Park and 
Preserve [LACL] and Katmai National Park and Preserve [KATM] in 
southwestern Alaska, USA (Figure 1; Table 1). The maritime climate 
is characterized by cool wet summers. Winter months tend to be 
drier on average, but deep snow accumulates on the higher, glaciated 
peaks. Habitat consists of glaciated mountains, sparsely vegetated 
alpine plateaus, alder slopes, and forested bottomlands. Brown bears 
also use coastal sedge meadows and beaches. Bear densities in these 
coastal areas are approximately 10-fold higher than in interior areas 
(Miller et al., 1997).

2.2 | Data collection

Staff from the U.S. National Park Service and the Alaska Department 
of Fish and Game used an MRDS approach (Becker & Christ, 2015; 
Becker & Quang, 2009) to survey brown bears in LACL in 2003, KATM 
in 2004–2005, and in the Katmai National Preserve [KATM.PR] in 

F IGURE  1 Location of the three 
survey units: Lake Clark National Park 
and Preserve (LACL), Katmai National 
Park and preserve (KATM), and Katmai 
National Preserve (KATM.PR). Map inset 
A depicts all of the transects surveyed in 
KATM (light gray). The darker gray lines 
depict transects that were surveyed on 
18 May 2005, an example of a single day 
when survey transects were spatially 
distributed throughout the study area. The 
areas lacking transects represent areas not 
considered to be bear habitat. Map inset 
B shows the location of the study areas 
within Alaska, USA
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2009 (see Table 1, Figure 1). We considered these datasets to be 
well-suited for our work because they were collected using a MRDS 
approach specifically developed for bears (Becker & Quang, 2009) 
and included sufficient sample sizes for analysis. The KATM survey 
was conducted over two consecutive spring periods to meet sample 
size objectives; population closure between years was assumed for 
the purposes of analysis. Transects were surveyed for brown bears 
from tandem-seat, fixed-wing aircraft flown at approximately 100 m 
above the ground. The pilot and observer independently searched for 
bears on the uphill side (or a random side in flat areas) of the aircraft. 
Detected groups were not immediately announced, allowing the other 
observer an opportunity to detect the group independently. To main-
tain observer independence, a curtain was installed in the aircraft to 
ensure the detection of a bear group by one observer did not alert 
the other observer to its presence. After a detected group had passed 
from the observable space, the detection was announced and the de-
tection history (i.e., pilot only, observer only, both pilot and observer) 
was recorded. The location and size of the group were recorded, and 
the distance of the group from the line was later calculated using GIS. 
Further details on survey methodology can be found in Becker and 
Quang (2009) and Walsh et al. (2010).

2.3 | Data analysis

In order to assess the underlying assumptions of the sampling de-
sign and analytical tools for data of this type, we used four basic ap-
proaches to analyze these three datasets: (1) MRDS following the 
basic approach of Becker and Christ (2015), (2) CDS following the ap-
proach of Schmidt et al. (2012), (3) CDS modified to include informed 
priors on the detection process (i.e., Schmidt & Rattenbury, 2013), and 
(4) open CDS models accounting for pa < 1.0 (Sollmann et al., 2015). 
Comparing estimators with different assumptions facilitated their as-
sessment in the context of the bias-variance tradeoff and total esti-
mator error. Although we did not assess absolute bias, we expected a 
comparison of different approaches with the well-established MRDS 
approach for estimating bear abundance would provide a reasonable 
assessment of the “apparent bias” for each estimator. A comparison 
of the MRDS and CDS results provided an assessment of the appar-
ent bias due to incomplete detection at the apex of the detection 

function. The addition of informed priors allowed insight into the role 
of sample size on estimator precision. Finally, the open-distance ap-
proach directly assessed the assumption of pa = 1.0 inherent in the 
other approaches. The results and implications based on these analy-
ses were then used to develop broad recommendations for improving 
future aerial line transect surveys of bears.

2.3.1 | Becker-Christ (“B-C”) approach

Histograms of the observed distances collected under the MRDS 
bear survey protocol are typically “humped,” increasing to an apex at 
some distance from the line and then decreasing thereafter (Becker & 
Quang, 2009). This distribution violates the typical assumption of CDS 
that numbers of detections decrease monotonically with increasing 
distance from the transect (Buckland et al., 2001). Initially such data-
sets were analyzed using a gamma-shaped detection function (Becker 
& Quang, 2009; Walsh et al., 2010), which can accommodate humped 
detection data. However, this formulation was found to violate the 
assumption of full independence, producing negative bias in the re-
sulting estimators (Benson, 2010). Recently, the gamma-function was 
replaced with a two-piece normal distribution assuming point inde-
pendence at the apex of the detection curve (i.e., Borchers, Laake, 
Southwell, & Paxton, 2006), thereby correcting for the negative bias 
in the original model formulation (Becker & Christ, 2015). Hereafter 
we refer to this analytical approach as the “B-C approach.” Because 
the B-C approach and its earlier variants have routinely been applied 
to datasets similar to ours, we used estimates based on it as a baseline 
for comparison with the other approaches in the context of apparent 
bias and precision.

We obtained the two piece normal source code for the B-C ap-
proach from the original publication (Becker & Christ, 2015) and 
used it to estimate the number of bears in LACL, KATM, and KATM.
PR. Effective search distance (ESD: how far out the observers were 
searching at the time the bear was detected) is a covariate thought 
to be necessary to account for heterogeneity that would affect the 
mark–recapture part of the MRDS approach (Becker & Christ, 2015). 
We found that both ESD and equal search-distance categories were 
highly correlated with distance; therefore, we did not include ESD in 
our analysis. We modified the input code to fit the intercept model 

LACL KATM KATM.PR

Year 2003 2004/2005 2009

Survey dates May 18–29 May 21–30/16–26 May 18-June 6

Study area 4,677 km2 18,150 km2 1,254 km2

Area surveyed 7,116 km2 11,939 km2 3,266 km2

Number of transects 660 639 288

Target length 20 km 25 km 15 km

Truncation distance 600 m 800 m 800 m

Number of groups detected 227 384 89

Number of groups for CDS 
post-truncation

195 316 68

TABLE  1 Details of survey effort for 
each of the three example brown bear 
datasets collected in southwestern Alaska, 
USA
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for each dataset (i.e., no covariates were included on the detection 
process). Doing so simplified direct comparisons among the different 
analytical frameworks.

2.3.2 | CDS approach

The B-C approach generally requires much larger sample sizes (i.e., 
≥150 detections; Walsh et al., 2010; Thompson, Peirce, & Mangipane, 
2010) than a standard CDS approach (60–80 detections; Buckland 
et al., 2001) for model fitting. We suspected that fitting the mark–
recapture model and the complicated detection function might be 
partially responsible for the larger sample size requirements because 
of the addition of several more model parameters. In addition, past 
results have shown that marginal detection probabilities at the apex 
of the detection function are quite high for both the pilot and the 
observer (Becker & Christ, 2015; Becker & Quang, 2009; Walsh et al., 
2010), suggesting that joint pd at the apex may approach 1.0 in many 
cases. To test these hypotheses, we created a dataset appropriate 
for a CDS analysis by left-truncating each dataset at the apex of the 
composite detection curve estimated using the B-C approach above, 
which left a monotonically declining subset of distances from that 
point (Figure 2). We also discarded the capture history information as-
sociated with each detection, which is the equivalent of the pilot and 
observer working together as a team to detect bear groups. We then 
fit each reduced dataset in a CDS framework (Buckland et al., 2001), 
assuming a half-normal detection function and the basic Bayesian hi-
erarchical model described by Schmidt et al. (2012) (see Supporting 
Information). We used the Gelman–Rubin diagnostic (Brooks & 
Gelman, 1998) and a visual inspection of the chains to assess conver-
gence. For simplicity, we did not include covariates on the detection 
process, but instead relied on the “pooling robustness” characteris-
tics of the CDS approach to unmodeled heterogeneity in detection 
(Buckland et al., 2001; Marques, Thomas, Fancy, & Buckland, 2007). 
Group size was assumed to be Poisson distributed, and we used 
minimally informative priors on all model parameters. Using this basic 
model structure, we then estimated the total number of bears within 
each study area. We compare these results to those based on the B-C 
approach with respect to apparent bias and precision of the resulting 
estimators.

2.3.3 | Bayesian approach: Informed priors

To investigate the influence of sharing detection information among 
surveys, we used an informed prior on the scale parameter, σ, of the 
detection function to refit the less data-rich LACL and KATM.PR data-
sets (Table 1) in the same CDS framework. For the prior in each analy-
sis, we used the posterior distribution of σ from the CDS analysis of 
the KATM dataset, similar to what has been done in other distance 
sampling contexts (see Schmidt & Rattenbury, 2013). The remaining 
model parameters were given minimally informative priors. We com-
pare these results to those of the previous analyses in the context of 
the bias-variance tradeoff.

F IGURE  2 Histograms of detection distances and two-piece 
normal detection functions for Katmai National Park and Preserve in 
2004–2005 (A), Lake Clark National Park and Preserve in 2003 (B), 
and Katmai National Preserve in 2009 (C). The vertical line represents 
the estimated apex of the detection function based on the B-C 
approach. The CDS approaches include only the data to the right of 
the vertical line
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2.3.4 | Open-distance model

We also suspected violation of the assumption that all bears were 
available to be sampled (Becker & Quang, 2009). Variation in factors 
such as viewing angle, coloration, or cover type may render some pro-
portion of individuals “unavailable” for sampling during a particular 
survey of each transect (e.g., Wilson et al., 2014). Such incomplete 
availability can be considered to be a form of temporary emigration 
where an individual bear has effectively “emigrated” from the visible 
space at a particular point in time. The recent development of open-
distance sampling models (Sollmann et al., 2015) offered an opportu-
nity to directly address this problem by allowing the population to be 
“open” to temporary emigration (i.e., variation in pa) between survey 
days. Essentially, during each survey day, a different proportion of the 
bears occurring in the survey area could be available for detection 

depending on factors such as survey conditions and bear behavior. 
Open-distance models use variation among repeated surveys to es-
timate pa and produce estimates of the entire population exposed to 
sampling over the survey period. Because the study areas were large 
relative to bear movement rates, pp was presumed to be approxi-
mately 1.0. If closure was not maintained at the level of the study area 
(i.e., pp < 1.0), then estimates of pa would reflect the combination of 
incomplete pp and pa.

In order to test the assumption of pa ≈ 1.0, we selected a subset 
of the KATM data from 6 days when sampled transects were spa-
tially distributed throughout the study area (Figure 1). This reduced 
dataset consisted of 168 detections on 323 transects, providing a set 
of six representative samples of the population in the study area for 
analysis. We fit a version of the temporary emigration open-distance 
model described by Kery and Royle (2016) to these data within the 
framework of Schmidt et al. (2012). Under the open model, individu-
als are allowed to become temporarily unavailable for sampling during 
a particular survey day. Because the Schmidt et al. (2012) model is 
formulated to estimate the inclusion probability of individual groups 
within transects, rather than counts of groups within transects (see 
Supporting Information), we modeled temporary immigration as vari-
ation in the inclusion probability of bear groups among the six sur-
vey days. Because individual transects were not resampled through 
time, we conditioned inclusion probability on availability, which varied 
by date rather than individual transect. Because the transects were 
well distributed throughout the study area, we could then reasonably 
assume that the daily survey data adequately represented the study 
population available for sampling each day. Assuming population clo-
sure at the level of the study area, variation in detection among survey 
dates would then reflect variation in pa. In addition, under this formu-
lation, incomplete detection of available bears at the apex of the de-
tection function would be incorporated into the availability parameter. 
The resulting estimator of population size represents the superpopu-
lation (i.e., Schwarz & Arnason, 1996) of bears exposed to sampling 
during the six sampling days, whereas estimators for the KATM data 
based on both the basic CDS and the B-C approaches represent the 
population of bears available to be sampled throughout the duration 
of the survey (21 days total).

3  | RESULTS

The B-C approach resulted in the least precise estimators of bear abun-
dance for each of the three areas (Figure 3). Precision was especially 
low (i.e., CV = 22%) for the KATM.PR dataset where <50% of the rec-
ommended number of detections had been recorded. Estimators using 
the CDS approach were approximately 30–40% more precise (based 
on reduction in CVs) and exhibited little apparent bias (Figures 3 and 
4). In comparing the point estimates between the two methods, we 
found little evidence that discarding the mark–recapture information 
in the CDS approach caused appreciable or consistent apparent bias 
relative to the B-C results (i.e., −7%, −9%, +2% for the datasets from 
LACL, KATM.PR, and KATM, respectively; Figure 4). Error bars around 

F IGURE  3 Comparison of estimates producing using the Becker-
Christ (B-C) approach (black diamonds) versus the conventional 
distance sampling (CDS) approach (gray diamonds) for three datasets: 
Lake Clark National Park and Preserve in 2003 (LACL), the Katmai 
Preserve in 2009 (KATM.PR), and the entire Katmai National Park 
and Preserve in 2004–2005 (KATM). Estimates for LACL and 
KATM.PR from a Bayesian CDS analysis with an informed prior on 
sigma (scale parameter) based on the KATM results are represented 
by gray triangles. The estimates labeled KATM_6day_subset 
represent those based on a subset of the data including only days 
when survey coverage was representative. The gray circle in panel 
B represents the estimated superpopulation of bears exposed to 
sampling during the six survey days based on the open-distance 
approach. Percentages represent approximate CVs for each estimate. 
Error bars are 95% CIs (B-C) or 95% CrIs (CDS)
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estimates overlapped substantially in all cases. Precision was further 
increased using an informed prior on the scale parameter of the detec-
tion function, σ, based on the KATM results, for the LACL and KATM.
PR CDS analyses, producing estimates 50–60% more precise than 
when analyzed independently under the B-C approach (Figures 3 and 
4). Apparent bias was negligible, suggesting that the detection process 
was very similar among the three survey areas.

Surprisingly, the results based on the open-distance model showed 
that pa was approximately 65% on average for the 6-day KATM dataset, 
suggesting that pa << 1.0, which in turn implied substantial underesti-
mation of population abundance under the B-C and CDS approaches 
(Figure 3). The resulting estimate from the open-distance approach is 
interpreted as the superpopulation of individuals occurring within the 
study area that are exposed to sampling over the course of the survey, 
arguably the true population of interest. The precision of the super-
population estimator was low (CV = 24%), likely because information 
from only 6 days was available to estimate the additional parameter 
for pa in this example. Overall our combined results suggested that 
incomplete detection at the apex caused little apparent bias, whereas 
pa << 1.0 can represent a large source of negative apparent bias under 
the standard MRDS design when unaddressed. Any apparent bias re-
maining in the CDS analyses caused by excluding the mark–recapture 
information was included in the estimates of pa and would not have 
biased the resulting superpopulation estimators.

4  | DISCUSSION

This work was motivated by a desire to develop logistically feasible 
and cost-efficient survey and analytical methodologies that would 
yield reasonably unbiased and precise estimators of abundance of 

brown bears in Alaska. The MRDS protocol is commonly employed 
when assessing bear populations in large landscapes; however, obtain-
ing the recommended number of bear group detections for model fit-
ting in the B-C analytical framework is often cost prohibitive. This led 
us to reevaluate model complexity in the context of the assumptions 
inherent in the B-C approach. We found that this well-established 
and widely implemented approach for estimating bear abundance 
was suboptimal in the context of apparent bias and estimator effi-
ciency. Our findings are especially important given the potential for 
long-term reductions in cost and effort under simplified protocols (see 
“Step 10” in Reynolds, Knutson, Newman, Silverman, & Thompson, 
2016). Although the B-C approach formally accounted for the entirety 
of the complex detection process inherent in the bear survey data, 
the additional model complexity did not improve inference relative 
to much simpler approaches requiring estimation of many fewer pa-
rameters. A simpler CDS approach consistently produced estimators 
with higher precision and little apparent bias as compared to the B-C 
approach, whereas the open-distance model indicated a potentially 
severe violation of the assumption of pa ≈ 1.0. These findings sug-
gested that in the future aerial line-transect surveys, the collection of 
mark–recapture information on individual groups is unnecessary, and 
these surveys should be redesigned to facilitate the estimation of pa. 
Any incomplete detection at the apex of the detection function would 
be directly incorporated into estimates of pa under the open-distance 
framework. Together these modifications would improve estimator 
efficiency and greatly simplify field efforts, making bear surveys of 
this type much more feasible to implement.

All survey designs require explicit assumptions about the detec-
tion process, although these assumptions can go unrecognized or 
ignored. A variety of survey techniques, including distance sampling 
approaches, address perception bias while generally assuming all indi-
viduals are present and available for sampling. These assumptions are 
critical, and their violation can result in improper inference (Nichols 
et al., 2009; Schmidt et al., 2013). In the context of long-term monitor-
ing of bear populations, these sources of bias can have important con-
sequences for confounding trend estimators (Kery, Royle, & Schmid, 
2005; Pollock et al., 2002). Violations of the assumption of pa = 1.0 
is known to cause large negative bias in a variety of settings (e.g., 
Bailey, MacKenzie, & Nichols, 2014; Efford & Dawson, 2012; Kendall 
& White, 2009; Wilson et al., 2014). In the case of occupancy mod-
els, such bias alters survey inference to some form of “use” (Mordecai, 
Mattsson, Tzilkowski, & Cooper, 2011; Schmidt, Flamme, & Walker, 
2014), the utility of which must be carefully considered relative to sur-
vey objectives. Careful attention to the role of each component of the 
detection process is critical to proper inference and is an important 
consideration when designing bear surveys.

Field data on bear populations are generally expensive to collect, 
and sample size requirements play a large role in assessing whether a 
given survey approach is practical in the context of study objectives 
(e.g., Reynolds et al., 2011). Our work suggested that critical assess-
ments of design assumptions and the application of new analytical tools 
can result in dramatic reductions in both the cost and effort involved 
with spatially extensive bear surveys, while also revealing hidden 

F IGURE  4 Comparison of the potential apparent bias (variation 
in estimated abundance) and estimator precision (represented as the 
coefficient of variation) for the Katmai Preserve in 2009 (triangles), 
Lake Clark National Park and Preserve in 2003 (squares), and the 
entire Katmai National Park and Preserve in 2004–2005 (diamonds) 
based on three different analytical approaches. Black symbols 
represent the Becker-Christ approach, gray symbols represent 
the conventional distance sampling approach, and open symbols 
represent the conventional distance sampling approach incorporating 
an informed prior on the scale parameter of the detection function
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biases. We found that modification of model structure and revised 
treatment of the detection process increased precision by ≥50% using 
reduced versions of the same datasets, under the standard assump-
tion of pa ≈ 1.0. Based on these findings, future bear surveys could 
be simplified logistically (e.g., mark–recapture data need not be col-
lected), and basic sample size requirements may be reduced. However, 
to address large apparent bias due to pa < 1.0, design changes may 
also require some reallocation of effort. For example, future surveys 
may be improved by selecting transects from throughout the survey 
area each day so that incomplete availability can be assessed directly 
through the use of open-distance approaches. Although simulations 
may be needed to identify appropriate sample sizes under an adjusted 
protocol, we expect that overall cost could be reduced substantially.

Estimator bias caused by imperfect detection continues to attract 
considerable attention from ecologists and biometricians, but estima-
tor precision is an equally important consideration. As we have shown, 
increased model complexity can reduce precision; therefore, additional 
structure should be considered in terms of its effect on total error, not 
just bias alone. The shape of the histogram of detection distances and 
the presumption of a lack of complete detection at the apex led to 
the development of complex models of the detection process for bear 
survey data (i.e., Becker & Christ, 2015; Becker & Quang, 2009). These 
added components initially appeared reasonable; however, the simpler 
CDS approach substantially reduced total error despite a simplification 
of some assumptions. This highlights the importance of reassessing as-
sumptions or considering alternative approaches as field and analytical 
techniques are developed through time in the context of their influ-
ence on total estimator error rather than focusing disproportionately 
on a single component of estimator quality.

Sample size demands are directly related to estimator precision, 
although the use of informed priors in a Bayesian framework may be 
advantageous (Gelman et al., 2004; King et al., 2010; Link & Barker, 
2010). Despite the possible benefits of sharing information among 
surveys, the use of informed priors remains uncommon in wildlife sur-
veys, possibly due to concerns that objectivity may be compromised 
(Morris, Vesk, McCarthy, Bunyavejchewin, & Baker, 2015). We found 
that sharing information on a common detection process dramatically 
increased the precision of our estimates of bear abundance with little 
effect on apparent bias. The use of informed priors on detection pa-
rameters has been found to have similar advantages in other distance 
sampling applications (i.e., Schmidt & Rattenbury, 2013) and would 
likely be useful for bear surveys in particular because the basic field 
methodology has been standardized and can be repeated in both time 
and space. Unless survey conditions are expected to be highly variable, 
we argue that the use of prior information on the detection process 
should be a default approach to increase the precision of estimators 
bear abundance collected using distance sampling protocols.

Assessing assumptions regarding each component of the detec-
tion process is often difficult without ancillary data. Recent develop-
ments of open population models for unmarked individuals (i.e., Dail 
& Madsen, 2011) provide a suite of tools that may be used to assess 
some of these assumptions directly as has been done in a mark–
recapture framework (e.g., Kendall et al., 1997; Schwarz & Arnason, 

1996). We used open-distance models to assess pa and found that a 
large proportion of bears were likely unavailable during the average 
survey day. We expect other similar applications (e.g., dynamic occu-
pancy models) might prove equally useful in assessing assumptions 
for other survey types. When wildlife surveys are repeated over time 
(e.g., annually) for monitoring purposes, open population models may 
also be used to extract information on population dynamics (Dail & 
Madsen, 2011; Schmidt et al., 2015; Zipkin et al., 2014), further in-
creasing their value for science and management. We expect this class 
of models will be useful in increasing the amount of available informa-
tion on bear populations, as well as a variety of other species.

ACKNOWLEDGMENTS

E. Becker, L. Butler, A. Crupi, C. Dovichin, L. Fairchild, J. Irvine, 
E. Groth, T. Hamon, K. Loveless, B. Mangipane, D. Mayers, K. Mocnik, 
T. Olsen, Judy Putera, R. Sellers, and B. Strauch helped with survey 
planning and data collection. The LACL and KATM datasets were col-
lected in cooperation with Alaska Department of Fish & Game, and 
the U.S. Fish and Wildlife Service, Becharof National Wildlife Refuge. 
We thank our pilots for collecting the data safely and effectively. 
M. MacCluskie and A. Miller provided comments on an earlier draft 
of this manuscript. Funding was provided by the U.S. National Park 
Service through the Central Alaska and Southwest Alaska Inventory 
and Monitoring Networks. Any use of trade names is for descriptive 
purposes only and does not imply endorsement by the U.S. govern-
ment. The findings and conclusions in this article are those of the au-
thors and do not necessarily represent the views of the U.S. Fish and 
Wildlife Service or the U.S. National Park Service.

CONFLICT OF INTEREST

None declared.

DATA ACCESSIBILITY

All data used for the applied example will be made available at: https://
irma.nps.gov/DataStore/.

REFERENCES

Amundson, C. L., Royle, J. A., & Handel, C. M. (2014). A hierarchical model 
combining distance sampling and time removal to estimate detection 
probability during avian point counts. Auk, 131, 476–494.

Bailey, L. L., MacKenzie, D. I., & Nichols, J. D. (2014). Advances and ap-
plications of occupancy models. Methods in Ecology and Evolution, 5, 
1269–1279.

Becker, E. F., & Christ, A. M. (2015). A unimodal model for double observer 
distance sampling surveys. PLoS ONE, 10, e0136403.

Becker, E. F., & Quang, P. X. (2009). A gamma-shaped detection function for 
line-transect surveys with mark-recapture and covariate data. Journal 
of Agricultural, Biological, and Environmental Statistics, 14, 207–223.

Benson, A.-M. (2010) Use of gamma-shaped detection function for estimating 
abundance of animals: the importance of independent data. MS thesis, 
University of Alaska Fairbanks, Fairbanks.

https://irma.nps.gov/DataStore/
https://irma.nps.gov/DataStore/


4820  |     SCHMIDT et al.

Borchers, D. L., Laake, J. L., Southwell, C., & Paxton, C. G. M. (2006). 
Accommodating unmodeled heterogeneity in double-observer dis-
tance sampling surveys. Biometrics, 62, 372–378.

Boulanger, J., Kendall, K. C., Stetz, J. B., Roon, D. A., Waits, L. P., & Paetkau, 
D. (2008). Multiple data sources improve DNA-based mark-recapture 
population estimates of grizzly bears. Ecological Applications, 18, 
577–589.

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring conver-
gence of iterative simulations. Journal of Computational and Graphical 
Statistics, 7, 434–455.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. 
L., & Thomas, L. (2001). Introduction to distance sampling. Oxford, UK: 
Oxford University Press.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., 
& Thomas, L. (2004). Advanced distance sampling. Oxford, UK: Oxford 
University Press.

Dail, D., & Madsen, L. (2011). Models for estimating abundance from re-
peated counts of an open metapopulation. Biometrics, 67, 577–587.

Efford, M. G., & Dawson, D. K. (2012) Occupancy in continuous habitat. 
Ecosphere, 3, art32.

Gardner, B., Royle, J. A., & Wegan, M. T. (2009). Hierarchical models for 
estimating density from DNA mark-recapture studies. Ecology, 90, 
1106–1115.

Gardner, B., Royle, J. A., Wegan, M. T., Rainbolt, R. E., & Curtis, P. D. (2010). 
Estimating black bear density using DNA data from hair snares. Journal 
of Wildlife Management, 74, 318–325.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data 
analysis, 2nd ed. Boca Raton, FL: Chapman and Hall.

Johnson, D. H. (2008). In defense of indices: The case of bird surveys. The 
Journal of Wildlife Management, 72, 857–868.

Kendall, W. L., Nichols, J. D., & Hines, J. E. (1997). Estimating temporary 
emigration using capture-recapture data with Pollock’s robust design. 
Ecology, 78, 563–578.

Kendall, K. C., Stetz, J. B., Roon, D. A., Waits, L. P., Boulanger, J. B., & 
Paetkau, D. (2008). Grizzly bear density in Glacier National Park, 
Montana. Journal of Wildlife Management, 72, 1693–1705.

Kendall, W. L., & White, G. C. (2009). A cautionary note on substituting 
spatial subunits for repeated temporal sampling in studies of site occu-
pancy. Journal of Applied Ecology, 46, 1182–1188.

Kery, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology: 
Analysis of distribution, abundance and species richness in R and BUGS, 
Vol. 1. San Diego, CA: Academic Press.

Kery, M., Royle, J. A., & Schmid, H. (2005). Modeling avian abundance 
from replicated counts using binomial mixture models. Ecological 
Applications, 15, 1450–1461.

King, R., Morgan, B. J. T., Giminez, O., & Brooks, S. P. (2010). Bayesian anal-
ysis for population ecology. Boca Raton, FL: Chapman and Hall/CRC 
Press.

Laake, J. L., Calambokidis, J., Osmek, S. D., & Rugh, D. J. (1997). Probability 
of detecting harbor porpoise from aerial surveys: Estimating g (0). The 
Journal of wildlife management, 61, 63–75.

Link, W. A., & Barker, R. J. (2010). Bayesian inference with ecological applica-
tions. Burlington, MA: Elsevier Academic Press.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., & 
Langtimm, C. A. (2002). Estimating site occupancy rates when detec-
tion probabilities are less than one. Ecology, 83, 2248–2255.

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & 
Hines, J. E. (2006). Occupancy estimation and modeling: Inferring patterns 
and dynamics of species occurrence. Burlington, MA: Academic Press.

Marques, T. A., Thomas, L., Fancy, S. G., & Buckland, S. T. (2007). Improving 
estimates of bird density using multiple-covariate distance sampling. 
Auk, 124, 1229–1243.

McCarthy, M. A., & Masters, P. (2005). Profiting from prior information in 
Bayesian analyses of ecological data. Journal of Applied Ecology, 42, 
1012–1019.

Miller, S. D., White, G. C., Sellers, R. A., Reynolds, H. V., Schoen, J. W., Titus, 
K., … Schwartz, C. C. (1997). Brown and black bear density estimation 
in Alaska using radiotelemetry and replicated mark-resight techniques. 
Wildlife Monographs, 133, 3–55.

Mordecai, R. S., Mattsson, B. J., Tzilkowski, C. J., & Cooper, R. J. (2011). 
Addressing challenges when studying mobile or episodic species: 
Hierarchical Bayes estimation of occupancy and use. Journal of Applied 
Ecology, 48, 56–66.

Morris, W. K., Vesk, P. A., McCarthy, M. A., Bunyavejchewin, S., & Baker, P. 
J. (2015). The neglected tool in the Bayesian ecologist’s shed: A case 
study testing informative priors’ effect on model accuracy. Ecology and 
Evolution, 5, 102–108.

Nichols, J. D., Hines, J. E., Sauer, J. R., Fallon, F. W., Fallon, J. E., & Heglund, 
P. J. (2000). A double-observer approach for estimating detection prob-
ability and abundance from point counts. Auk, 117, 393–408.

Nichols, J. D., Thomas, L., & Conn, P. B. (2009). Inferences about landbird 
abundance from count data: Recent advances and future directions. 
In D. L. Thompson, E. G. Cooch, & M. J. Conroy (Eds.), Modeling demo-
graphic processes in marked populations (pp. 201–235). New York, NY: 
Springer.

Pollock, K. H., Nichols, J. D., Simons, T. R., Farnsworth, G. L., Bailey, 
L. L., & Sauer, J. R. (2002). Large scale wildlife monitoring stud-
ies: Statistical methods for design and analysis. Environmetrics, 13,  
105–119.

Quang, P. X., & Becker, E. F. (1997). Combining line transect and double 
count sampling techniques for aerial surveys. Journal of Agricultural, 
Biological, and Environmental Statistics, 2, 230–242.

Reynolds, J. H. (2012). An overview of statistical considerations in long-
term monitoring. In R. A. Gitzen, J. J. Millspaugh, A. B. Cooper, & D. S. 
Licht (Eds.), Design and analysis of long-term ecological monitoring studies 
(pp. 23–53). New York, NY: Cambridge University Press.

Reynolds, J. H., Knutson, M. G., Newman, K. B., Silverman, E. D., & 
Thompson, W. L. (2016) A Road Map for designing and implement-
ing a biological monitoring program. Environmental Monitoring and 
Assessment (July) 188:399–424.

Reynolds, J. H., Thompson, W. L., & Russell, B. (2011). Planning for suc-
cess: Identifying effective and efficient survey designs for monitoring. 
Biological Conservation, 144, 1278–1284.

Rosenstock, S. S., Anderson, D. R., Giesen, K. M., Leukering, T., & Carter, 
M. F. (2002). Landbird counting techniques: Current practices and an 
alternative. Auk, 119, 46–53.

Schmidt, J. H., Flamme, M. J., & Walker, J. (2014). Habitat use and popu-
lation status of Yellow-billed and Pacific loons in western Alaska, USA. 
Condor, 116, 483–492.

Schmidt, J. H., Johnson, D. S., Lindberg, M. S., & Adams, L. G. (2015). 
Estimating demographic parameters using a combination of known-
fate and open N-mixture models. Ecology, 96, 2583–2589.

Schmidt, J. H., McIntyre, C. L., & MacCluskie, M. C. (2013). Accounting for 
incomplete detection: What are we estimating and how might it affect 
long-term passerine monitoring programs? Biological Conservation, 160, 
130–139.

Schmidt, J. H., & Rattenbury, K. L. (2013). Reducing effort while improving 
inference: Estimating Dall’s sheep abundance and composition in small 
areas. Journal of Wildlife Management, 77, 1048–1058.

Schmidt, J. H., Rattenbury, K. L., Lawler, J. P., & MacCluskie, M. C. (2012). 
Using distance sampling and hierarchical models to improve esti-
mates of Dall’s sheep abundance. Journal of Wildlife Management, 76, 
317–327.

Schmidt, J. H., Rattenbury, K. L., Robison, H. L., Gorn, T. S., & Shults, B. S. 
(2017). Using non-invasive mark-resight and sign occupancy surveys to 
monitor low-density brown bear populations across large landscapes. 
Biological Conservation, 207, 47–54.

Schwarz, C. J., & Arnason, A. N. (1996). A general methodology for the anal-
ysis of capture-recapture experiments in open populations. Biometrics, 
52, 860–873.



     |  4821SCHMIDT et al.

Solberg, K. H., Bellemain, E., Drageset, O.-M., Taberlet, P., & Swenson, J. E. 
(2006). An evaluation of field and non-invasive genetic methods to esti-
mate brown bear (Ursus arctos) population size. Biological Conservation, 
128, 158–168.

Sollmann, R., Gardner, B., Chandler, R. B., Royle, J. A., & Sillett, T. S. (2015). 
An open-population hierarchical distance sampling model. Ecology, 96, 
325–331.

Thompson, W. L., Peirce, K., & Mangipane, B. A. (2010) Protocol for monitor-
ing brown bears ─ Version 1.0: Southwest Alaska Inventory and Monitoring 
Network. Natural Resource Report NPS/SWAN/NRR—2010/275. 
National Park Service, Fort Collins, CO. Retrieved from http://sci-
ence.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/ 
wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_ 
2166736.pdf

Walsh, P., Reynolds, J., Collins, G., Russell, B., Winfree, M., & Denton, J. 
(2010). Application of a double-observer aerial line-transect method 
to estimate brown bear population density in southwestern Alaska. 
Journal of Fish and Wildlife Management, 1, 47–58.

Williams, B. K., Nichols, J. D., & Conroy, M. J. (2002). Analysis and manage-
ment of animal populations. San Diego, CA: Academic Press.

Wilson, T. L., Schmidt, J. H., Thompson, W. L., & Phillips, L. M. (2014). Using 
double-observer aerial surveys to monitor nesting bald eagles in Alaska: 

Are all nests available for detection? Journal of Wildlife Management, 78, 
1096–1103.

Zipkin, E. F., Thorson, J. T., See, K., Lynch, H. J., Campbell Grant, E. H., 
Kanno, Y., Chandler, R. B., Letcher, B. H., & Royle, J. A. (2014). Modeling 
structured population dynamics using data from unmarked individuals. 
Ecology, 95, 22–29.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-
porting information tab for this article.

How to cite this article:  Schmidt JH, Wilson TL, Thompson 
WL, Reynolds JH. Improving inference for aerial surveys of 
bears: The importance of assumptions and the cost of 
unnecessary complexity. Ecol Evol. 2017;7:4812–4821.  
https://doi.org/10.1002/ece3.2912

http://science.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_2166736.pdf
http://science.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_2166736.pdf
http://science.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_2166736.pdf
http://science.nature.nps.gov/im/units/swan/assets/docs/reports/protocols/wildlife/ThompsonW_2010_SWAN_BrownBearProtocolSOPs_2166736.pdf
https://doi.org/10.1002/ece3.2912

