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Abstract

Background The exercise intolerance in chronic heart failure with reduced ejection fraction (HFrEF) is mostly attributed to
alterations in skeletal muscle. However, the mechanisms underlying the skeletal myopathy in patients with HFrEF are not
completely understood. We hypothesized that (i) aerobic exercise training (AET) and inspiratory muscle training (IMT) would
change skeletal muscle microRNA-1 expression and downstream-associated pathways in patients with HFrEF and (ii) AET and
IMT would increase leg blood flow (LBF), functional capacity, and quality of life in these patients.
Methods Patients age 35 to 70 years, left ventricular ejection fraction (LVEF) ≤40%, New York Heart Association functional
classes II–III, were randomized into control, IMT, and AET groups. Skeletal muscle changes were examined by vastus lateralis
biopsy. LBF was measured by venous occlusion plethysmography, functional capacity by cardiopulmonary exercise test, and
quality of life by Minnesota Living with Heart Failure Questionnaire. All patients were evaluated at baseline and after 4months.
Results Thirty-three patients finished the study protocol: control (n = 10; LVEF = 25 ± 1%; six males), IMT (n = 11; LVEF = 31 ±
2%; three males), and AET (n = 12; LVEF = 26 ± 2%; seven males). AET, but not IMT, increased the expression of microRNA-1 (P =
0.02; percent changes = 53 ± 17%), decreased the expression of PTEN (P = 0.003; percent changes = �15 ± 0.03%), and tended
to increase the p-AKTser473/AKT ratio (P = 0.06). In addition, AET decreased HDAC4 expression (P = 0.03; percent changes =�40
± 19%) and upregulated follistatin (P = 0.01; percent changes = 174 ± 58%), MEF2C (P = 0.05; percent changes = 34 ± 15%), and
MyoD expression (P = 0.05; percent changes = 47 ± 18%). AET also increased muscle cross-sectional area (P = 0.01). AET and
IMT increased LBF, functional capacity, and quality of life. Further analyses showed a significant correlation between percent
changes in microRNA-1 and percent changes in follistatin mRNA (P = 0.001, rho = 0.58) and between percent changes in
follistatin mRNA and percent changes in peak VO2 (P = 0.004, rho = 0.51).
Conclusions AET upregulates microRNA-1 levels and decreases the protein expression of PTEN, which reduces the inhibitory
action on the PI3K-AKT pathway that regulates the skeletal muscle tropism. The increased levels of microRNA-1 also decreased
HDAC4 and increased MEF2c, MyoD, and follistatin expression, improving skeletal muscle regeneration. These changes associ-
ated with the increase in muscle cross-sectional area and LBF contribute to the attenuation in skeletal myopathy, and the im-
provement in functional capacity and quality of life in patients with HFrEF. IMT caused no changes in microRNA-1 and in the
downstream-associated pathway. The increased functional capacity provoked by IMT seems to be associated with amelioration
in the respiratory function instead of changes in skeletal muscle.
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Introduction

Chronic heart failure with reduced ejection fraction (HFrEF) is
the major cause of morbidity and mortality in the developed
countries.1 In the last decades, this scenario has also reached
the developing countries, placing the treatment of this
syndrome among the most expensive healthcare costs
worldwide.1

Chronic heart failure is characterized by compensatory
neurohumoral activation: renin angiotensin aldosterone sys-
tem and sympathetic nervous system are substantially acti-
vated in HFrEF. These alterations provoke vasoconstriction
and muscle underperfusion, which chronically contribute
to skeletal muscle metabolic disturbances, including in-
crease in reactive oxygen species, inflammation, shift to-
ward fast-twitch fibres, and imbalance in skeletal muscle
protein degradation and synthesis. All these changes con-
tribute to skeletal myopathy, which results in reduced mus-
cle contraction force and exercise tolerance in patients with
HFrEF.2–5 The investigation of the skeletal myocyte micro
ambient and its mechanism of control is crucial to under-
stand the skeletal myopathy in chronic heart failure and,
of course, to provide knowledge for the treatment of pa-
tients suffering from this syndrome.

MicroRNAs are genetically conserved small non-coding
RNAs, containing about 22 nucleotides that post-transcrip-
tionally control gene expression. Skeletal muscle-enriched
microRNAs (myomiRs) play an important role in the regula-
tion of muscle development, growth, regeneration, and me-
tabolism.6–9 The microRNA-1 and microRNA-133a can
regulate myogenesis by suppressing the predicted target
gene histone deacetylase 4 (HDAC4), which upregulates
myogenic markers as myocyte enhancer factor 2C (MEF2c),
myogenic differentiation factor D (MyoD), and follistatin ex-
pression.10–12 Whether alterations in microRNA-1 and
microRNA-133a and downstream-associated pathways con-
tribute to skeletal myopathy in patients with chronic HFrEF
is unknown.

Exercise-based cardiac rehabilitation has been strongly rec-
ommended in the management of HF patients.13 This inter-
vention improves functional capacity, exercise intolerance,
and quality of life in patients with HFrEF.14 However, it re-
mains unclear whether exercise training impacts the risk of
mortality and hospitalization in this set of patients.15 The clin-
ical improvement in exercise-trained patients with HFrEF has
been associated with changes in neurovascular control,
inflammatory response, and amelioration in skeletal myopa-
thy.5 Aerobic exercise training (AET) has been shown to pro-
voke a remarkable reduction in muscle sympathetic nerve
activity and vasoconstriction.16–25 In skeletal muscle, AET

reduces inflammation, oxidative stress, and energy metabo-
lism and improves the balance between muscle protein syn-
thesis and degradation.3,5,26,27 Moreover, there are data
supporting the notion that AET can increase and/or decrease
skeletal muscle myomiRs and, in consequence, alter skeletal
muscle phenotype in cardiovascular diseases.28–32

Previous studies show that inspiratory muscle training
(IMT) decreases sympathetic nerve activity and improves
muscle blood flow and functional capacity in patients with
HFrEF.33–39 However, the effects of IMT on skeletal muscle
myopathy in patients with HFrEF remain unknown.

In this study, we hypothesized that (i) AET and IMT will
change the expression of skeletal muscle microRNA-1 and
microRNA-133a, and the downstream-associated pathways
in patients with chronic HFrEF and (ii) AET and IMT will in-
crease leg blood flow, functional capacity, and quality of life
in these patients.

Methods

Study population

Patients diagnosed with HF, age 35 to 70 years, reduced left
ventricular ejection fraction (≤40%), New York Heart Associ-
ation functional classes II–III, peak oxygen uptake ≤20
mL/kg/min, body mass index ≤35 kg/m2 treated with guide-
line-directed medical therapy for HFrEF were invited to par-
ticipate in the study. The exclusion criteria were patients
with severe pulmonary, neurologic, or orthopaedic disease,
neoplasia, end-stage renal failure on dialysis, insulin-depen-
dent diabetes mellitus, acute myocardium infarction or heart
surgery in the last 6 months, unstable angina, atrial fibrilla-
tion, current tobacco smoker, pregnancy, and participation
on a formal exercise training programme. Patients that were
hospitalized, or died, during the study protocol were ex-
cluded from the final analysis. The patients were randomized
into three groups: (i) control, (ii) IMT, and (iii) AET. All pa-
tients were evaluated at baseline and after 4 months. The
minimum required attendance in the exercise training ses-
sions for inclusion in the study was 75%. The study was con-
ducted in accordance with the Declaration of Helsinki. The
study was approved by the Research Committee of the
Heart Institute (SDC#3565/10/154) and Human Subject Pro-
tection Committee at the Clinical Hospital of the School of
Medicine of the University of São Paulo (CAPPesq:814-10).
All subjects provided written informed consent prior to par-
ticipation in the study. This trial is registered at ClinicalTrials.
gov (Identifier: NCT01747395).
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Sample size and power calculations

The sample size was calculated based upon a previous
study,18 which demonstrated that to detect an 18% increase
in peak VO2 at least 11 patients would be needed for each
group. We included 30% more patients in each intervention
groups because of dropouts observed in our previous studies.
The alpha error was defined as 0.05 with the power of 80%.

Measures and procedures

Leg blood flow
Leg blood flow (LBF) was measured by venous occlusion
plethysmography as previously described.40 Briefly, the left
leg was elevated above heart level to ensure adequate ve-
nous drainage. A mercury-filled silastic tube attached to a
low-pressure transducer was placed around the calf and con-
nected to plethysmography (Hokanson-AI-6, USA). Sphygmo-
manometer cuffs were placed around the thigh and ankle.
At 20 s intervals, the thigh cuff was inflated above venous
pressure for 10 s. Leg vascular conductance (LVC) was calcu-
lated by dividing LBF by mean arterial pressure, times 100.

Respiratory muscle strength
Respiratory muscle strength was determined by maximal in-
spiratory pressure was assessed by means of a pressure trans-
ducer (MVD500-Globalmed, Brazil) as previously described.41

Functional capacity
Maximal exercise capacity was determined during a cardiopul-
monary exercise testing on a cycle ergometer (Ergoline-
Spirit150, DEU), using a ramp protocol with work rate incre-
ments of 5–10 W every minute until exhaustion as previously
described.16,22,25 Briefly, metabolic parameters, as oxygen up-
take (VO2) and carbon dioxide production, were determined
by means of gas exchange on a breath-by-breath basis in a
computerized system (Sensor Medics, Model-Vmax-229,
USA). Peak VO2 was defined as the maximum attained VO2

at the end of the exercise period when the patient could no
longer maintain the cycle ergometer velocity at 60 rpm. An-
aerobic threshold was determined to occur at the breakpoint
between the increase in the carbon dioxide output and VO2

(V-slope) or at the point in which the ventilatory equivalent
for oxygen and end-tidal oxygen partial pressure curves
reached their respective minimum values and began to rise.
Respiratory compensation was determined to occur at the
point at which ventilatory equivalent for carbon dioxide was
lowest before a systematic increase and when end-tidal car-
bon dioxide partial pressure reaches a maximum value and
begins to decrease.42 In addition, we evaluated the peak
workload (Watts) at end of the exercise.

Quality of life
Quality of life was evaluated by means of Minnesota Living
with Heart Failure Questionnaire (MLHFQ).43

Other measurements
Left ventricular ejection fraction was determined from the
two-dimensional echocardiography by Simpson method
(IE33-Philips Medical Systems, USA). Heart rate, systolic, dia-
stolic, and mean blood pressure were noninvasively evaluated
on a beat-to-beat basis by means of a finger
photoplethysmography (Finometer-Pro, Finapres Medical Sys-
tems, NED).18

Skeletal muscle biopsy
Percutaneous muscle biopsy procedures were performed in
vastus lateralis, approximately at the midway point between
the top edge of the patella and the greater trochanter. The
volunteers assumed a comfortable reclining position with
both legs out stretched. After local asepsis with chlorhexidine
0.5% (alcoholic solution), skin and subcutaneous tissue were
infiltrated with 5–10 mL of 1% lidocaine. After ensuring ade-
quate local anaesthesia, a small incision was made in the skin
and subcutaneous tissue (0.5 cm in length and 1 cm in depth).
The local bleeding was stanched by compression. A 5-mm
modified Allendale-Bergstrom needle was then inserted
through the fascia, and an assistant immediately applied suc-
tion by using a syringe connected to a canister and attached
to the top of the needle. A muscle sample was removed,
and the skin was closed with skin closure tape (Steri-Strip –

3M). A pressure dressing was immediately applied and main-
tained for 24 h.18,44 The muscle sample was immediately fro-
zen in liquid nitrogen and subsequently stored in a freezer at
�80°C.

MicroRNA and mRNA analysis by real-time polymerase chain
reaction
MicroRNA and mRNA levels in the vastus lateralis muscle
were analysed by real-time polymerase chain reaction
method, as previously described.18 Frozen skeletal muscle
samples were homogenized in Trizol, and RNA was isolated
according to the manufacturer’s instructions (Invitrogen Life
Technologies, USA). After extraction, the total RNA concentra-
tion was quantified using NanoDrop Spectrophotometer
(NanoDrop Technologies, USA) and checked for integrity by
EtBr-agarose gel electrophoresis. RNA was primed with 0.5
μg/μL oligo dT (Fermentas/Thermo Scientific Molecular Biol-
ogy, USA) to generate first strand DNA. Reverse transcription
was performed using Revertaid M-MuLV Reverse Transcrip-
tase (Fermentas/Thermo Scientific Molecular Biology, USA).
cDNA for microRNA analysis was synthesized from total RNA
using gene-specific primers according to the TaqMan
MicroRNA Assay protocol (Applied Biosystems, USA).
MicroRNA levels of miRNA-1 (Life Technologies,
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#INV002222) and miRNA-133a (Life Technologies,
#INV002246) were performed using TaqMan MicroRNA Assay
protocol (Applied Biosystems, USA) and normalized by evalu-
ating U6 expression. mRNA levels of the follistatin (#FW:5-
CTGCTGCTCTGCCAGTTCAT-3; RV:5-CCTTGCTCAGTTCGGTCTT
GTA-3#), MEF2c (#FW:5-TTCTCCTCCTAGAGACCGTACCA-3;
RV:5-CGTGGCGCGTGTGTTGT-3#), and MyoD (#FW:5-CCGACG
GCATGATGGACTA-3; RV 5-TGGGCGCCTCGTTGTAGTA-3#)
were performed with a SYBRGreen PCR Master Mix protocol
and normalized by 18S (#FW:5-GTAACCCGTTGAACCCCATT-3;
RV 5-CCATCCAATCGGTAGTAGCG-3#) as an internal control.
Primers were designed using Primer-BLAST. Real-time quanti-
fication was performed using ABI PRISM 7700 Sequence De-
tection System (Applied Biosystem, USA). Results were
quantified as CT values, where CT is defined as the threshold
cycle of the polymerase chain reaction at which the amplified
product is first detected. Relative quantities of microRNA and
target gene were normalized by the values of the reference
gene (ΔCT). Fold changes in microRNA and mRNA expression
were calculated using the differences in ΔCT values between
the two samples (ΔΔCT) and equation 2�ΔΔCT. Results are
expressed as % of pre for each sample.

Expression of protein levels analysis by western blot
The protein levels of phosphatase and tensin homolog (PTEN),
phosphoinositide 3-kinase (PI3K), protein kinase B (AKT),
phospho-AKT (p-AKT), and phospho-HDAC4 (p-HDAC4) in the
vastus lateralis muscle biopsy were analysed by western blot-
ting, as previously described.45,46 Frozen samples were ho-
mogenized in cell lysis buffer (100 mM Tris-HCl, 50 mM
NaCl, 1% Triton X-100) and protease and phosphatase inhibi-
tor cocktail (1:100; Sigma-Aldrich, USA). Vastus lateralis tissue
debris was removed by centrifugation at 3000 × g, 4°C, 10
min. Samples were loaded and subjected to SDS-PAGE on
polyacrylamide gels (8–10%) depending on the protein molec-
ular weight. After electrophoresis, proteins were
electrotransferred to a nitrocellulose membrane (BioRad Bio-
sciences, USA). Equal loading of samples (30 μg) and even
transfer efficiency were monitored with the use of 0.5%
Ponceau staining of the blot membrane. The blot membrane
was then incubated in a blocking buffer (5% nonfat dry milk,
10 mM Tris-HCl (pH 7.6), 150 mM NaCl, and 0.1% Tween
20) for 2 h at room temperature and then incubated over-
night at 4°C with antiPten (Cell Signalling, #9552), anti-PI3K
(Cell Signalling, #4255), anti-AKT (Cell Signalling, #2938),
anti-p-AKTSer473 (Cell Signalling, #9271), and anti-p-
HDAC4Ser632 (Abcam, ab39408) polyclonal antibodies. Binding
of the primary antiPTEN was detected by peroxidase conju-
gated secondary antibodies (Invitrogen, #65-6120), and en-
hanced chemiluminescence reagent (Amersham Biosciences,
USA) and detection were performed in a digitalizing unit by
ChemiDoc (BioRad, USA). The bands were analysed using
ImageJ software (ImageJ Corporation based on NIH image).

Binding of the primary anti-PI3K, anti-AKT, anti-p-AKT, and
anti-HDAC4 was detected by secondary antibody (IRDye
800CW anti-rabbit, LI-COR Biosciences, #926-32211), and de-
tection was performed by LI-COR (LI-COR Biosciences, USA).
The bands were analysed using Image Studio Lite software
(LI-COR Biosciences, USA). The results of protein expression
were normalized by Ponceau staining. They are expressed as
a percentage of pre expression for each sample.

Fibre cross-sectional area analysis by immunohistochemistry
The muscle samples collected at the time of biopsy were
embedded in Tissue-Tek® (Sakura, USA), frozen in
isopentane and then in liquid nitrogen. Muscle fragments
were sectioned in a cryostat (10 μm thick; Leica-CM1850,
Leica Microsystems, DEU). Fixed muscle sections were sub-
mitted to immunohistochemistry for laminin (Abcam,
ab7784) to analyse the cross-sectional area. The muscle sec-
tions were fixed with 4% formalin (Sigma-Aldrich,
HT501128) for 10 min at room temperature, permeabilized
in 0.2% Triton X-100 (Bio-Rad, 01-0407) and 1% bovine se-
rum albumin (Amresco, E588) diluted in phosphate buffer
saline (PBS; Sigma-Aldrich, P4417) for 10 min. Blocking
was performed with 10% goat serum (Sigma-Aldrich,
G9023) in PBS for 45 min. Glass slides were incubated with
a solution containing the primary antibody to laminin (dilu-
tion 1:100) for delimited muscle fibres, with 1.5% goat se-
rum in PBS for 1 h 30 min at room temperature. After
proper washing, the sections were incubated with respec-
tive fluorescent secondary antibodies to laminin (#A-
11008, Invitrogen). The images were captured on a com-
puter attached to a fluorescent microscope and connected
to a photographic system (magnification, 200×) (Leica QWin,
Leica Microsystems, DEU). Skeletal muscle cross-sectional
area of each fibre was evaluated by Image J software (Im-
age J Corporation based on NIH image). The results are
expressed as the mean of the cross-sectional area of all fi-
bres captured for each sample.

Inspiratory muscle training
Inspiratory muscle training (IMT) was conducted for 30 min,
five times a week, for 4 months using a resistive loading de-
vice (POWERbreathe-Plus®, POWERbreathe International Lim-
ited, UK). All patients exercised at 60% percentage of
individual MPI, measured once a week. Patients were
instructed to maintain diaphragmatic breathing at a rate of
15 to 20 breaths/min. Four training sessions per week were
performed at home and one training session at Heart Institute
under supervision.35

Aerobic exercise training
Moderate AET was conducted for 4 months at the Heart Insti-
tute, School of Medicine, University of São Paulo, under su-
pervision. It consisted of three sessions per week. Each
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session included 5 min stretching exercises, 40 min of cycling,
10 min of local strengthening exercises, and 5 min of cool
down. The aerobic exercise was conducted at anaerobic
threshold up to 10% below the respiratory compensation
point. The bicycle workload was increased in 0.25 or 0.5
kpm when exercise training adaptation occurred. Aerobic ex-
ercise duration increased progressively so that all patients
could perform 40 min of cycling at the established intensity.18

Statistical analysis

The data are presented as means ± SE. The Kolmogorov–
Smirnov and Levene’s test was used to assess the normality
of distribution and homogeneity for each variable. Parametric
tests were used for variables with normal distribution and ho-
mogeneity. The effects of AET and IMT were verified by Stu-
dent’s t-test for paired data in each group. In addition, the
delta changes between 4 months at baseline were verified
by one-way analysis of variance followed by Scheffé’s post
hoc multiple comparisons. Nonparametric tests were used
for variables with no normal distribution and homogeneity
(Kruskal–Wallis test and Mann–Whitney’s test). A χ2 test
was used to assess categorical data differences. Spearman
correlation analysis was performed to test correlation be-
tween molecular percent changes and peak VO2 percent
changes. Probability values of P ≤ 0.05 were considered statis-
tically significant

Results

Study population

After screening, 44 HFrEF patients were randomized into
three groups: (i) control group (n = 12), (ii) IMT group (n
= 16), and (iii) AET group (n = 16). In the control group,
two patients did not complete the study because of death
(n = 1) and drop out for personal reasons (n = 1). In the
IMT group, five patients did not complete the training pro-
tocol because of death (n = 1), hospitalization [HF decom-
pensation (n = 1); other cardiovascular events (n = 2)], and
drop out for personal reasons (n = 1). In the AET group, four
patients did not complete the training protocol because of
hospitalization [HF decompensation (n = 1); other cardiovas-
cular events (n = 1)], cancer diagnosis (n = 1), and drop out
for personal reasons (n = 1). Thus, data are available for
analysis in 33 subjects (Figure 1).

Baseline measurements

Baseline characteristics of heart failure patients who com-
pleted the study are shown in Table 1. There were no

differences among groups in physical characteristics, gender,
functional class, aetiology, medications, associated comorbid-
ities, haemodynamic parameters, respiratory muscle strength,
functional capacity, and quality of life.

Effects of aerobic exercise training and inspiratory
muscle training on skeletal myopathy

Skeletal muscle biopsy with good quality, pre and post inter-
ventions, or clinical care was attained in 29 patients (control,
n = 10; IMT, n = 10; and AET, n = 9). The protein expression
evaluation and genic expression evaluation were performed
in all 29 patients. Muscle tissue to evaluate fibre cross-sec-
tional area was available in four patients from each group.

MicroRNA-1 and microRNA-133a
Aerobic exercise training (AET) significantly increased
microRNA-1 levels (P = 0.02, Figure 2A) and tended to in-
crease microRNA-133a levels (P = 0.06, Figure 2B). No
changes were found in the control group and the IMT group.
The percent change comparisons (post–pre) among groups
showed that microRNA-1 levels tended to be greater in the
AET group when compared with control group (P = 0.07,
Figure 2A). No significant differences in microRNA-133a
among groups were found. Despite the structural similarity
in these microRNAs, they have different actions in
myogenesis. MicroRNA-1 modulates myoblast differentiation
and regeneration, while microRNA-133a modulates myoblast
proliferation, fusion, regeneration, and, muscle fibre shift. Be-
cause the microRNA-1 levels, but not the microRNA-133a
levels, were significantly changed by AET, further investiga-
tions were focused on microRNA-1 downstream-associated
pathways.

MicroRNA-1 downstream pathway: PTEN, PI3K, and AKT
Aerobic exercise training (AET) significantly reduced PTEN pro-
tein levels (P = 0.003, Figure 3B). In contrast, PTEN protein
levels increased in the control group (P = 0.05, Figure 3B).
No changes were found in the IMT. The percent change com-
parisons among groups showed that the changes caused by
AET in the PTEN protein levels were significantly different from
those observed in the control group (P = 0.02, Figure 3B). AET
significantly increased PI3K protein levels (P = 0.01, Figure 3C).
No changes in PI3K protein levels in the control and IMT
groups were found. AET tended to increase p-AKTser473/AKT
ratio (P = 0.06, Figure 3D). No changes in p-AKTser473/AKT ratio
in the control and IMT groups were found.

MicroRNA-1 downstream pathway: HDAC4, follistatin, MEF2c,
and MyoD
To further explore the effects of AET and IMT on microRNA-1
downstream pathway, we assessed p-HDAC4ser632, follistatin,
MEF2c, and MyoD. AET significantly reduced the protein
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Figure 1 Study design. AET, aerobic exercise training; BMI, body mass index; HFrEF, heart failure with reduced ejection fraction; IMT, inspiratory mus-
cle training; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; VO2, oxygen uptake.

Table 1 Baseline characteristics in patients with heart failure selected to inspiratory muscle training, aerobic exercise training, and control groups

Control (n = 10) IMT (n = 11) AET (n = 12) P

Physical characteristics
Age (year) 57 ± 3 55 ± 3 57 ± 2 0.83
Weight (kg) 72 ± 4 77 ± 6 76 ± 6 0.79
BMI (kg/m2) 27 ± 1 29 ± 2 28 ± 1 0.63
Gender
Male (n) 6 3 7 0.23
Female (n) 4 8 5
Functional class
NYHA-II (n) 9 8 9 0.58
NYHA-III (n) 1 3 3
HF aetiology
Ischaemic (n) 6 1 4 0.25
Hypertensive (n) 2 4 2
Idiopathic (n) 1 5 3
Chagasic (n) 1 0 2
Others (n) 0 1 1
Medications
Beta-blocker (n) 10 11 9 1.00
ACEI/ARB (n) 10 11 9 1.00
Spironolactone (n) 10 10 12 0.36
Diuretics (n) 9 11 12 0.31
Statins (n) 6 6 5 0.67
ASA (n) 6 3 5 0.32
Digoxin (n) 1 4 3 0.37
Hypoglycaemic drugs (n) 3 2 2 0.72
Comorbidities
Diabetes (n) 3 2 2 0.72
Dyslipidaemia (n) 6 6 6 0.90
Hypertension (n) 8 7 9 0.69

Haemodynamic parameters
LVEF (%) 25 ± 1 31 ± 2 26 ± 2 0.10
HR (beats/min) 68 ± 3 61 ± 2 65 ± 2 0.22
SBP (mmHg) 121 ± 4 121 ± 5 121 ± 6 0.99
DBP (mmHg) 66 ± 2 68 ± 4 69 ± 3 0.72
MBP (mmHg) 86 ± 3 87 ± 4 88 ± 5 0.92
LBF (mL/min/100 mL_tec) 1.86 ± 0.26 1.84 ± 0.20 1.51 ± 0.20 0.45

(Continues)
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expression of p-HDAC4ser632 (P = 0.03, Figure 3E). No significant
changes in protein expression of p-HDAC4ser632 were found in
the IMT and control groups. Further analysis showed that the
percent changes in p-HDAC4ser632 protein levels tended to be
different in the AET group compared with the control group
(P = 0.08, Figure 3E). Follistatin mRNA levels were significantly
reduced in the control group (P = 0.01, Figure 3F). In contrast,
follistatin mRNA levels were significantly increased in the AET

(P = 0.02, Figure 3F). No changes were found in the IMT group.
Further analysis showed that the percent changes in follistatin
mRNA levels were significantly greater in the AET group than
those observed in the control group and IMT group (P =
0.001 and P = 0.004, respectively, Figure 3F). AET significantly
increased MEF2c (P = 0.05, Figure 3G) andMyoD (P = 0.05, Fig-
ure 3H) mRNA levels. No changes in MEF2c and MyoD mRNA
levels were found in the control and IMT groups. Further anal-
yses showed a significant correlation between percent changes
in microRNA-1 and percent changes in follistatin mRNA (P =
0.001, rho = 0.58).

Fibre cross-sectional area
The results regarding the muscle cross-sectional area are
shown in Figure 4. AET significantly increased muscle fibre
cross-sectional area (P = 0.01). IMT increased muscle fibre
cross-sectional area, but these changes did not achieve signif-
icant levels (P = 0.06). No changes were found in the control
group.

Effects of aerobic exercise training and inspiratory
muscle training on leg blood flow, respiratory
muscle strength, physical capacity, and quality of
life

The effects of IMT and AET on LBF and LVC, respiratory muscle
strength, functional capacity, and quality of life are shown in
Figure 5. Both interventions increased LBF (IMT, P = 0.04, and
AET, P = 0.02, Figure 5A). In regard to LVC, the effect of AET
on LVC was more pronounced than those found in IMT (P =
0.03 and P = 0.07, respectively, Figure 5B). Further
comparisons showed that the changes in LBF caused by AET
and IMT were greater than those found in the control group
(P = 0.01 and P = 0.05, respectively, Figure 5A). Similarly, the

Table 1 (continued)

Control (n = 10) IMT (n = 11) AET (n = 12) P

LVC (u.a.) 2.14 ± 0.31 2.03 ± 0.20 1.69 ± 0.22 0.39
Respiratory muscle function and functional capacity
Max IP (cmH2O) 85 ± 8 86 ± 9 87 ± 10 0.99
Peak VO2 (mL/kg/min) 16 ± 1 16 ± 1 15 ± 1 0.80
AT VO2 (mL/kg/min) 12 ± 1 11 ± 1 10 ± 1 0.32
Workload peak (Watts) 72 ± 6 75 ± 8 76 ± 10 0.93
O2 pulse (mL) 9 ± 1 11 ± 1 10 ± 1 0.51
Total time (seg) 523 ± 50 576 ± 54 542 ± 49 0.78

Quality of life
MLHFQ (u.a.) 55 ± 6 50 ± 6 56 ± 2 0.64

Values are mean ± SE.
ACEI, angiotensin-converting enzyme inhibitors; AET, aerobic exercise training; ARB, angiotensin II receptor blocker; ASA, acetylsalicylic
acid; AT, anaerobic threshold; BMI, body mass index; DPB, diastolic blood pressure; HR, heart rate; IMT, inspiratory muscle training;
LBF, leg blood flow; LVC, leg vascular conductance; LVEF, left ventricular ejection fraction; MBP, mean blood pressure; Max IP, maximal
inspiratory pressure; MLHFQ, Minnesota Living with Heart Failure Questionnaire; NYHA, New York Heart Association; SBP, systolic blood
pressure; VO2, oxygen uptake.

Figure 2 Expression of (A) microRNA-1 and (B) microRNA-133a expressed
in percent changes (post vs. pre) in control group (control, n = 10), inspi-
ratory muscle training group (IMT, n = 10), and aerobic exercise training
group (AET, n = 9). Note that AET provokes a significant increase in ex-
pression of microRNA-1. Values are means ± SE. * vs. pre; P < 0.05.
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changes in LVC provoked by AET and IMT were greater than
those in the control group (P = 0.05 and P = 0.02, respectively,
Figure 5B).

As expected, IMT increased maximal inspiratory pressure (P
= 0.0002, Figure 5C). No significant changes in maximal inspira-
tory pressure were observed in the control and AET groups.

In relation to functional capacity, both AET and IMT signif-
icantly increased peak VO2 (P = 0.001 and P = 0.01, respec-
tively, Figure 5D). No changes were found in the control
group. Thus, the percent change analysis showed that the
changes in peak VO2 provoked by AET (P = 0.001) and IMT
(P = 0.02) were greater compared with the control group (Fig-
ure 5D). The peak workload significantly increased in the
three groups studied (control, P = 0.03; IMT, P = 0.01; and
AET, P = 0.002, respectively, Figure 5E). However, the changes
in peak workload in AET were greater than those found in IMT
and control groups (P = 0.004, Figure 5E). Further analyses
showed a significant correlation between percent changes in
follistatin mRNA and percent changes in peak VO2 (P =
0.004, rho = 0.51).

Both IMT (P = 0.001) and AET (P = 0.001) significantly
decreased MLHFQ score, which means an improvement in
quality of life (Figure 5F). In contrast, the MLHFQ score signif-
icantly increased in the control group (P = 0.01, Figure 5F).
The percent change comparisons among groups showed that
the changes caused by IMT and AET in quality of life (P =
0.0001 and P = 0.0001, respectively, Figure 5F) were signifi-
cantly different from those found in the control group.

Discussion

The main and new findings of the present study are that AET,
but not IMT, improves microRNA-1 expression and down-
stream-associated pathways in patients with chronic HFrEF.
AET increases microRNA-1 levels and decreases the expres-
sion of PTEN, which in turn reduces its inhibitory action on
PI3K-AKT pathway. In addition, AET decreases HDAC4 levels,
which results in an increase in the levels of follistatin, MEF2C,
and MyoD. These molecular responses, associated with the

Figure 3 (A) Representative western blots for statistical results, protein expression of (B) PTEN, (C) PI3K, (D) ratio of phospho-AKT(ser473)/AKT, and (E) p-
HDAC4ser632. Gene expression of (F) follistatin, (G) MEF2c, and (H) MyoD. The results of protein expression were normalized by Ponceau staining. They
are expressed as a percentage of pre expression for each sample in control group (control, n = 10), inspiratory muscle training group (IMT, n = 10), and
aerobic exercise training group (AET, n = 9). Note that AET reduces PTEN protein levels, increases PI3K protein levels, and tends to increase p-AKTser473/
AKT ratio (P = 0.06). In addition, AET reduces the protein expression of p-HDAC4ser632, increases follistatin mRNA levels, increases MEF2c, and increases
MyoD mRNA levels. Values are means ± SE. * vs. pre,

#
vs. control group (percent changes), and

†
vs. IMT group (percent changes); P < 0.05.
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increase in muscle fibre cross-sectional area (Figure 6), cer-
tainty contribute to the amelioration in the skeletal myopathy
in chronic heart failure.

Some investigators reported that AET reduces microRNA-1
levels and increases PI3K/AKT/mTOR pathways in healthy

people.47 A different scenario was observed in patients with
skeletal myopathy associated with chronic HFrEF. AET
increased the levels of PI3K and p-AKT, despite the augmenta-
tion in the expression of microRNA-1. These findings corrobo-
rate the idea that the PI3K/AKT/mTOR pathway was activated

Figure 4 (A) Example of cross-sectional area of vastus lateralis muscle by one patient from control group (control), inspiratory muscle training group
(IMT), and aerobic exercise training group (AET). (B) Cross-sectional area of vastus lateralis expressed in percent changes (post vs. pre) in control (n = 4),
IMT (n = 4), and AET (n = 4). Note that AET increases muscle fibre cross-sectional area. Values are means ± SE. * vs. pre and # vs control group (percent
changes); P < 0.05.

Figure 5 (A) Leg blood flow (LBF), (B) leg vascular conductance (LVC), (C) maximal inspiratory pressure, (D) peak oxygen consumption (peak VO2), (E)
peak workload, and (F) Minnesota Living with Heart Failure Questionnaire (MLHFQ) score in control group (control, n = 10), inspiratory muscle training
group (IMT, n = 11), and aerobic exercise training group (AET, n = 12). Note that AET and IMT increase LBF and LVC and that the magnitude of changes
in LVC is more pronounced in AET group. IMT increases maximal inspiratory pressure. Both AET and IMT increase peak VO2. The peak workload in-
creases in the three groups studied. However, the changes in peak workload in AET group were greater than those found in IMT and control groups.
Finally, AET and IMT decrease MLHFQ score. Values are means ± SE. * vs. pre and # vs. control group (delta changes); P < 0.05.
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post-exercise training. Based on this observation, we raised
the hypothesis that the increased levels of p-AKT would be as-
sociated with a reduction in PTEN expression. Although PTEN
is not a predicted target gene of microRNA-1, there is evi-
dence that increased microRNA-1 levels downregulate PTEN
levels.48,49 The reduction in PTEN in our study favoured the
increase in p-AKT stimulating protein synthesis by mTOR up-
regulation. Moreover, these responses seem to contribute
to an improvement in anabolic/catabolic balance expressed
by the enhancement in the muscle fibre cross-sectional
area.3,5,26,27,50 At this point, the explanation for the differ-
ences in the microRNA-1 expression provoked by exercise
training in healthy individuals and patients with chronic HFrEF
remains uncertain. Surely, this topic deserves future
investigation.

Increased levels of microRNA-1 can be also involved in
postnatal myoblast differentiation by suppressing HDAC4, a
predicted target gene of this myomiR.7,10–12,51–53 HDACs are
well known for regulating muscle proliferation, differentia-
tion, and growth through the regulation of histone acetyla-
tion. In particular, class IIa HDACs (HDACs 4, 5, 7, and 9)
plays an important role in the maintenance of muscle mass
and protein degradation during muscle wasting.54 The re-
duced levels of HDAC4 promote myoblast differentiation,
while increased levels of HDAC4 enhances skeletal muscle at-
rophy.7,10,12,51,55–58 Chen et al.12 reported that overexpres-
sion of microRNA-1 strongly repressed HDAC4 expression,
which results in myoblast differentiation in myotube via
HDAC4/MEF2/MyoD family pathways in C2C12 cells. In the

present study, we found that AET downregulated HDAC4 ex-
pression likely associated with the increased levels of
microRNA-1. These molecular responses led to an increase
in MEF2c and MyoD mRNA levels, which results in stimulation
of skeletal muscle satellite cells differentiation. These re-
sponses highlight the importance of AET in counteracting
the skeletal muscle loss in chronic HFrEF.

Another important finding in the present study is the in-
creased follistatin mRNA levels after AET. Previous studies
have demonstrated a significant relationship between
follistatin and muscle growth and/or hypertrophy.59,60 Actu-
ally, Sun et al.11 showed that increased levels of mammalian
target of rapamycin (mTOR) upregulate MyoD expression
and microRNA-1 transcription, which suppresses HDAC4 and
subsequently increases follistatin. This myogenic pathway
mTOR/MyoD/microRNA-1/HDAC4/follistatin stimulates skele-
tal myoblast fusion. Our study shows that AET increases the
follistatin expression by increasing microRNA-1 levels and by
upregulating mTOR/MyoD feedback on microRNA-1, which is
important stimuli to myoblast fusion. In fact, the increase in
microRNA-1 levels was associated with the increase in
follistatin levels (P = 0.001, rho = 0.58). In addition, there was
a tendency toward association between the increase in MyoD
levels and the increase in follistatin levels (P = 0.06, rho = 0.35).
More importantly, these findings have the potential for clinical
application. Reduced levels of follistatin are associated with at-
rophy and skeletal myopathy in animal model of HF.61 The in-
crease in follistatin levels contributes to the reduction in
myostatin levels, a negative regulator of muscle mass. Some
authors previously showed that AET reduces myostatin levels
and contributes to the increase inmusclemass and exercise ca-
pacity in animal model of HF.50 Our study shows a correlation
between the increase in follistatin levels and the improvement
in peak VO2 in patients with HFrEF.

Exercise intolerance in patients with chronic HFrEF has
been attributed, in great part, to skeletal myopathy. Exercise
training has been shown to counteract the muscular
alterations in this syndrome by improving many of the key
features of the skeletal myopathy.3,5,26,27 This
nonpharmacological strategy increases muscle capillarization,
muscle blood flow, and flow-mediated dilation, which facili-
tate oxygen diffusion and oxidative energy production.3,5,26,27

In addition, exercise training ameliorates protein degradation
pathways by downregulating the ubiquitin-proteasome sys-
tem and stimulating insulin-like growth factor-1 (IGF-1) signal-
ling pathway.3,5,26,27 These changes contribute to the
restoration in anabolic/catabolic imbalance.3,5,26,27 The pres-
ent study extends the knowledge that AET improves the
microRNA-1 downstream-associated pathways in patients
with chronic HFrEF, which seems to improve skeletal myopa-
thy and exercise capacity in this set of patients.

Accumulated evidence shows that exercise training in-
creases muscle blood flow in chronic heart failure.16–25 Our
study confirms this finding. AET increased LBF in patients with

Figure 6 Changes provoked by aerobic exercise training on microRNA-1
downstream-associated pathways in patients with chronic heart failure
with reduced ejection fraction (HFrEF). Note that despite the increase in
microRNA-1 levels, the PI3K-AKT pathway is increased, which seems to
be associated with a reduction in PTEN levels. In addition, HDAC4 levels
decrease, which leads to an increase in follistatin, MEF2C, and MyoD
levels. These changes improve protein synthesis, skeletal muscle differen-
tiation, and myocyte fusion. The consequence of such changes is an in-
crease in muscle cross-sectional area.

L.M. Antunes-Correa et al.

DOI: 10.1002/jcsm.12495
Journal of Cachexia, Sarcopenia and Muscle 2020; 11: 89–102

98



chronic HFrEF. This observation has clinical implications be-
cause muscle blood flow is an independent predictor of mor-
tality in these patients.62 However, our study provides no
information regarding the mechanisms involved in the in-
crease of LBF. We speculate that increase in endothelial func-
tion and reduction in sympathetic nerve activity contribute to
the amelioration in LBF. Previous studies demonstrate that
AET increases endothelial-mediated blood flow and reduces
muscle sympathetic nerve activity in chronic heart fail-
ure.4,5,16–24,63,64 IMT also increased LBF,33,65 but the mecha-
nisms underlying this response are virtually unknown. This
issue is an interesting topic for future investigations.

Increase in functional capacity after exercise training has
been reported in patients with chronic HFrEF regardless of
age, gender, and aetiology.16,17,19 Our study is consistent with
this observation. AET increased peak VO2 and peak workload.
We have no explanation for this response. However, it is con-
ceivable that the increase in LBF and the improvement in skel-
etal myopathy contributed to the enhancement in the
functional capacity in our patients.

Premature inspiratory muscle fatigue stimulates pulmonary
ventilation.66 This response activates inspiratory muscle
metaboreceptors that reflexively increase sympathetic nerve
activity.66 The augmentation in sympathetic outflow causes
skeletal muscle vasoconstriction that contributes to early fa-
tigue.66 Our study shows that IMT increases peak VO2 in pa-
tients with chronic HFrEF. It is possible that IMT by
enhancing global inspiratory muscle strength, represented
by maximal inspiratory pressure, delays diaphragm fatigue,
attenuating the reflex sympathetic nerve activity discharge
and skeletal muscle vasoconstriction. In fact, we found that
IMT increases LBF, and reduction in muscle sympathetic nerve
activity was reported after IMT in patients with HF.37 More re-
cently, Smuder et al. showed that exercise increases the ex-
pression of heat shock protein 72 (HSP72), which reduces
the expression of atrophic transcript factors and oxidative
stress. These responses preserve diaphragm muscle function
in animals with diaphragm dysfunction.67 Molecular adapta-
tions in respiratory muscles were out of the scope of our
study. However, it is possible that the increase in HSP72 levels
is involved in inspiratory muscle adaptation in patients with
chronic HFrEF. In summary, IMT improves inspiratory muscle
strength and neurovascular control, increases skeletal muscle
perfusion, and provokes respiratory muscle adaptations. The
consequence of such changes is an increase in exercise toler-
ance in patients with HFrEF.33,66,68,69 These findings support
the concept of IMT as a strategy in the treatment for patients
with HFrEF.

AET caused a remarkable change in microRNA-1 expression
and downstream-associated pathways in leg muscle. These
changes were not observed in the patients enrolled in the
IMT. In addition, the increase in LVC and the increase in mus-
cle fibre cross-sectional area were more pronounced in pa-
tients involved in AET than in patients involved in IMT.

These findings can be attributed to the specificity of local
training effects on exercise muscle. AET was performed on a
bicycle ergometer, whereas IMT consisted of breathing
against resistance.

Despite its recognized benefits, exercise-based cardiac re-
habilitation has been an underused therapy.70 There are
many potential barriers, including socio-economic factors,
work conflicts, inadequate transportation, and patient atti-
tude and motivation, that affect the adherence of patients
with HFrEF to cardiac rehabilitation programmes. In a recent
report, the European Society of Cardiology provides practical
recommendations on how to implement exercise training
for heart failure patients with ventricular assistance devices.71

The benefits of exercise training in these patients are not fully
understood, but it seems to be a promising therapy for clinical
improvement. Exercise training increases functional capacity
and decreases N-terminal pro-B-type natriuretic peptide
(NT-proBNP) in heart failure patients.71 Alternative therapies
based on IMT may be useful in cardiac rehabilitation
programmes if the patient is unable to perform conventional
exercise training. IMT provokes remarkable benefits for pa-
tients with HFrEF. In addition, recent reports show that
electro-myostimulation is an important strategy to improve
muscle structure, function, and atrophy in patients with
chronic HErEF.72

We recognize several limitations in our study. Respiratory
muscle biopsy would improve the understanding regarding
the effects of IMT and AET on functional capacity. The small
sample size may limit our interpretation, but this is a very
complex and herculean study that is unlikely to be re-
peated. Fourty-four HFrEF patients were randomized into
control group, IMT group, and AET group. Three patients
in the IMT and two patients in the AET were excluded
because of HF decompensation or cardiovascular events.
Although these exclusions may generate bias in the study,
patients that were hospitalized were not able to proceed
with the training protocol due to patient safety issues.
The responses achieved by the association of both IMT
and AET are not available. It is possible that benefits of
both IMT and AET on skeletal myopathy, muscle blood flow,
and functional capacity are even greater than AET and IMT
alone.

In conclusion, AET upregulates microRNA-1 levels. The in-
creased levels of microRNA-1 decrease the protein expression
of PTEN, which in turn reduces the inhibitory action on the
PI3K-AKT pathway that regulates the skeletal muscle tropism.
In addition, increased levels of microRNA-1 decrease HDAC4
and upregulate MEF2c, MyoD, and follistatin levels, improving
skeletal muscle regeneration. These changes in skeletal mus-
cle phenotype associated with the increase in the muscle
cross-sectional area and LBF contribute to the attenuation in
skeletal myopathy and improves the functional capacity in pa-
tients with HFrEF. IMT also increases functional capacity.
However, this response seems to be associated with
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amelioration in the respiratory function instead of changes in
skeletal muscle.
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