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Intergroup conflict has been suggested as a major force shaping the evolution
of social behaviour in animal groups. A long-standing hypothesis is that
groups at risk of attack by rivals should become more socially cohesive, to
increase resilience or protect against future attack. However, it is usually
unclear how cohesive behaviours (such as grooming or social contacts) func-
tion in intergroup conflict. We performed an experiment in whichwe exposed
young colonies of the dampwood termite, Zootermopsis angusticollis, to a rival
colony while preventing physical combat with a permeable barrier. We
measured social contacts, allogrooming and trophallaxis before, during and
after exposure. Termites showed elevated rates of social contacts during
exposure to a rival compared to the pre-exposure phase, but rates returned
to pre-exposure levels after colonies were separated for 9 days. There was evi-
dence of a delayed effect of conflict on worker trophallaxis. We suggest that
social contacts during intergroup conflict function as a form of social surveil-
lance, to check individual identity and assess colony resource holding
potential. Intergroup conflict may increase social cohesion in both the short
and the long term, improving the effectiveness of groups in competition.
1. Introduction
Classic research on the evolution of cooperation has focused on mechanisms
(such as kin selection and policing) that operate within social groups [1].
More recently, however, evidence has accumulated from studies of human
and non-human animal societies that interactions between groups can exert a
strong influence on within-group social behaviour [2–4]. Theoretical models
developed to investigate the origins of large-scale human cooperation show
that sufficiently intense conflict between groups for resources (intergroup con-
flict) can select for altruism within groups [5,6]. In these models, intergroup
conflict can, over many generations, select for genetic traits that amplify both
between-group aggression and within-group cooperation [7].

A hypothesis linked to, but distinct from, these models is that groups
exposed to conflict should evolve to respond on a behavioural timescale by
becoming more coordinated or cohesive, to increase effectiveness or resilience
in group competition [8–10]. This is a classic idea in sociological and political
studies of human conflict (the ‘conflict-cohesion hypothesis’; [11,12]). In non-
human animal societies, there is indeed evidence that exposure to rival
groups leads to increased ‘social cohesion’, measured by affiliative behaviour
such as allogrooming or other social contacts [9,13–15]. However, in some
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Figure 1. Schematic of the experimental design.
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systems, intergroup encounters are associated with reduced
affiliation or increased within-group aggression [16–17].
Thus, there are intriguing and contrasting findings about
whether intergroup conflict promotes internal solidarity or
exacerbates internal conflicts.

Two limitations of existing research are, first, in behav-
ioural ecology (as in political science; [12]), the concept of
‘social cohesion’ is rarely defined explicitly. Behaviours
used as markers of cohesion or classed as affiliative may
serve different functions in conflict and be differentially up-
or downregulated accordingly. For example, groups might
increase allogrooming behaviour to reduce stress following
conflict, or to encourage participation in future intergroup
interactions [13,18]. Conversely, groups might reduce allo-
grooming in favour of behaviours that maintain group
integrity or defences, such as identity checking, vigilance or
patrolling. Second, most studies measure only short-term
impacts of exposure to conflict, over minutes or hours. It is
largely unknown whether there are lasting effects on social
cohesion, days or weeks after exposure to conflict (but see
[19]).

In this study, we test how exposure to rival groups influ-
ences measures of social cohesion in the primitive
dampwood termite Zootermopsis angusticollis. We test (i) the
impact of intergroup conflict on behaviours that might pro-
mote social cohesion and (ii) whether there are any lasting
impacts of intergroup conflict, long after exposure to rival
groups has ceased. In Z. angusticollis, intergroup conflict is
a key aspect of life history because multiple colonies compete
for a single limited resource (a log) in which to develop, feed
and reproduce [20–22], and that they never leave. Colonies
that come into contact often engage in lethal combat,
during which reproductives (kings and queens) are particu-
larly likely to be killed [23].

We experimentally exposed colonies to a rival group
while preventing physical combat by means of a permeable
barrier and measured behaviour before, during and after
exposure. We predicted that exposure to a rival colony
would result in increased rates of social contact and affiliative
behaviour. We also tested whether these behavioural
responses persist long after colonies had been separated.
2. Methods
(a) Study colonies
Experiments were conducted at the University of Exeter’s Centre
for Ecology and Conservation (UK) between November and
December 2018. Incipient colonies used in these experiments
were bred from stock colonies collected under permit from Red-
wood Regional Park, California (37°4804000 N, 122°0901700 W).
Incipient colonies were formed by pairing de-winged virgin
male and female alates harvested from stock colonies during dis-
persal events [24,25]. At the start of the study, colonies were aged
between 66 and 564 days post-establishment. Incipient colonies
were housed in plastic Petri dishes (10 cm × 10 cm) containing
pieces of silver birch (Betula pendula) wood into which termites
could burrow, and damp, cellulose filter paper (cut to 10 cm ×
7 cm). Colonies were kept in a controlled environment room set
at 23°C and 85% humidity, in total darkness, and were sprayed
with distilled water approximately twice per week to maintain
a damp environment.
(b) Experimental setup
Thirty-three incipient colonies (mean ± s.e. colony size = 7.6 ter-
mites ± 0.65; range = 2–29; electronic supplementary material,
table S1) were used in the experiment, which consisted of three
phases (pre-conflict, conflict and post-conflict phases). Colonies
consisted of a reproductive royal pair (king and queen), workers
(the larval stage, also termed ‘pseudergates’, which perform
worker tasks and have the capacity to differentiate into an
alate [26]) and soldiers (but contained no secondary reproduc-
tives or reproductive soldiers; see electronic supplementary
material, table S1 for colony compositions). In preparation for
the conflict phase, one wall of each Petri dish was removed
and replaced with a stainless steel mesh barrier with 2 mm
holes (figure 1). This barrier prevented physical (potentially
lethal) fighting while allowing for the detection of the rival
colony via chemical and vibroacoustic cues and signals.

In the pre-conflict phase, colonies remained separate and
undisturbed for 10 days, except for biweekly water spraying.
On day 11, we extracted five individuals from each colony for be-
havioural observations. The king and queen were always
extracted (if present). For colonies numbering fewer than five
individuals, all colony members were used (electronic sup-
plementary material, table S1). Extracted individuals were
placed in a fresh 10 cm × 10 cm Petri dish (the observation
arena) lined with clean filter paper. Termites were left to
acclimatize for 15 min and then videoed for 10 min using a
Sony HDR-PJ330 camera. Extracted individuals were filmed
under red light using two 11 W light bulbs, before being returned
to their original colonies.

At the start of the conflict phase (day 11), group size-matched
pairs of colonies were placed adjacent to one another in contact
along their mesh barrier and taped together. Pairs were matched
for size to ensure that all colonies were exposed to a stimulus
group of similar size to themselves. Pairs were left undisturbed
for 10 days, except for bi-weekly water spraying. On day 22,
we extracted 5 individuals from each colony, placed them in an
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Figure 2. The effect of exposure to a rival group on (a) rates of social contacts, (b) the time spent in trophallaxis. In both panels, points show model-predicted
means ± s.e. Asterisks refer to post hoc Tukey’s all-pairwise comparisons of means. ***p < 0.001, **p < 0.01, *p < 0.05.

royalsocietypublishing.org/journal/rsbl
Biol.Lett.16:20200131

3

observation arena, videoed them as before, then returned them
to their original colonies.

At the start of the post-conflict phase (day 22), joined colonies
were separated and, again, left undisturbed for 9 days (not 10
days, owing to a seasonal holiday), except for bi-weekly water
spraying. On day 32, we conducted the final video recordings
using methods described previously.

(c) Behavioural and statistical analyses
Videos were analysed using BORIS version 7.4.5 [27]. We
measured three behaviours that could be classed as affiliative:
momentary social contacts (contacts lasting < 1 s, including
antennation), allogrooming (more prolonged mandibular contact
with body parts of the social partner) and trophallaxis (more pro-
longed mouth-to-mouth or mouth-to-anus contact). Counts (for
social contacts) and duration (for allogrooming and trophallaxis)
were scored for each individual that initiated the interaction in
the observation arena. Across the three phases, we videoed 177
reproductives, 136 workers and 16 soldiers (electronic sup-
plementary material, table S1). Since we did not have enough
data in the pre-conflict phase to make meaningful comparisons
of soldier behaviour across the phases, we excluded soldier
behavioural data from our analyses.

Statistical analyses were performed in R version 3.6.0 [28].
For the analysis of social contacts, we fitted the number of
social contacts as the response variable in a generalized linear
mixed model (GLMM) using a Poisson error structure and a
log link function. We included phase (pre-conflict, conflict,
post-conflict), caste (reproductive, worker) and their interaction
as fixed effects. We included the log(number of individuals in
assay-1) as an offset term as a fixed effect to account for differ-
ences in the focal individual’s opportunity to initiate social
interactions. To control for differences in behaviour resulting
from the presence of the queen [29], the king [30] or a soldier
[30] in the colony, we included these variables as three additional
fixed effects. Similarly, to control for the presence of a soldier in
the observation arena [31], we included this variable as a fixed
effect (electronic supplementary material, table S1). We fitted
colony ID as a random effect and an observational level
random effect to correct overdispersion of the response variable
[32]. We fitted the model to 307 individuals (N = 102 pre-conflict;
102 conflict; 103 post-conflict) in 33 colonies [33].

For the analyses of allogrooming and trophallaxis, we fitted
either the proportion of time spent allogrooming or engaging
in trophallaxis as the response variable in a linear mixed model
with a Gaussian error structure and identity link function. The
response variable was logit transformed to ensure model
residuals were normally distributed with homogeneous var-
iance. We included phase, caste and their interaction as fixed
effects, and an additional fixed effect of (number of individuals
in assay-1) to account for differences in the focal individual’s
opportunity to initiate social interactions. As in the model of
social contacts, we included whether there was the queen, the
king or a soldier present in the colony, and whether there
was a soldier present in the observation arena as fixed effects.
We included colony ID as a random effect, and fitted each
model to 307 individuals (N = 102 pre-conflict; 102 conflict; 103
post-conflict) in 33 colonies [33].

In each analysis, to assess the significance of each fixed
effect we compared the likelihood ratio of the maximal model
to that of the model without the fixed effect [34]. We removed
non-significant interactions from our model to allow the main
effects to be tested [35], but to avoid problems associated with
stepwise model reduction we did not remove non-significant
main effects [36,37].
3. Results
(a) Rates of social contacts
Individual termites initiated significantly more social contacts
per capita at the end of the conflict phase than at the end of
the pre-conflict or the post-conflict phase (GLMM, x22 ¼ 10:47,
p = 0.005; figure 2a; electronic supplementary material, table
S2; post hoc Tukey’s test, pre-conflict versus conflict: β ± s.e. =
0.16 ± 0.06, z = 2.63, p = 0.023; conflict versus post-conflict: β ±
s.e. =−0.17 ± 0.05, z =−3.05, p = 0.006; electronic supplemen-
tary material, table S3). Overall, reproductives initiated
significantly more social contacts than workers (β ± s.e. =
−0.18 ± 0.05, x21 ¼ 13:07, p < 0.001; figure 2a), but this effect
was independent of phase (x22 ¼ 0:37, p = 0.83). We observed
fewer social contacts among individuals when the queen (β ±
s.e. =−0.83 ± 0.25, x21 ¼ 11:33, p < 0.001), the king (β ± s.e. =
−0.53 ± 0.15, x21 ¼ 12:88, p < 0.001), or a soldier was present in
the colony (β ± s.e. =−0.50 ± 0.09, x21 ¼ 27:12, p < 0.001).

(b) Time allogrooming
There was no difference in the time that termites spent allo-
grooming across phases (LMM, x22 ¼ 0:67, p = 0.72;
electronic supplementary material, table S4), but overall
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workers spent significantly longer allogrooming than repro-
ductives (β ± s.e. = 0.37 ± 0.07, x21 ¼ 26:11, p < 0.001;
interaction: x22 ¼ 3:06, p = 0.22). Individuals spent longer allo-
grooming when the queen (β ± s.e. = 1.13 ± 0.27, x21 ¼ 17:30,
p < 0.001), the king (β ± s.e. = 0.71 ± 0.18, x21 ¼ 14:69, p <
0.001), or a soldier was present in the colony (β ± s.e. =
0.46 ± 0.14, x21 ¼ 11:30, p < 0.001).

(c) Time in trophallaxis
There was a significant interaction between phase and caste
(LMM, x22 ¼ 7:76, p = 0.021; electronic supplementarymaterial,
table S5), which revealed that workers spent significantly
longer in trophallaxis in the post-conflict phase compared to
both the conflict and the pre-conflict phases (post hoc Tukey’s
test, conflict versus post-conflict: β ± s.e. =−0.10 ± 0.04,
t =−2.54, p = 0.030; pre-conflict versus post-conflict: β ±
s.e. =−0.10 ± 0.04, t =−2.45, p = 0.039; figure 2b; electronic sup-
plementary material, table S6). Workers spent significantly
longer in trophallaxis than reproductives in the post-conflict
phase (β ± s.e. =−0.08 ± 0.04, t =−2.19, p = 0.029; figure 2b; elec-
tronic supplementary material, table S6) but there was no
change in trophallaxis by reproductives across phases.
4. Discussion
Rates of social contacts among colonymates increased during
exposure to a rival colony, but returned to pre-exposure levels
after colonies had been separated. We found no change in the
duration of allogrooming but there was evidence of increased
trophallaxis by workers in the post-conflict phase, long after
conflict had ceased.

We suggest that our results reflect the different function of
social behaviours in intergroup conflict. We hypothesise that
elevated rates of social contact during exposure to a rival
colony serve a ‘social surveillance’ function, to check the iden-
tity of individuals, or to assess absolute or relative resource
holding potential. Frequent social contacts may be particularly
important in the log environment inwhichZ. angusticollis lives,
helping individuals to find and remain close to members of
theirowncolony, and todetect enemies. By contrast, allogroom-
ing and trophallaxis are less directly linked to the effectiveness
of groups in combat, and so less likely to be expressed during
exposure to rival groups. We suggest that ‘social cohesion’
should be defined and measured in terms of behaviours that
plausibly increase the effectiveness or resilience of groups in
conflict, rather than more generic ‘affiliative’ behaviours.

In most studies of real or simulated encounters, there is
usually no information about the dynamics or durability of
behavioural responses to conflict beyond a few hours (but
see [19]). We found evidence that exposure to conflict had
lasting effects on worker trophallaxis, 9 days after the stimu-
lus was removed. This result is consistent with a shift in
priorities or resource allocation after conflict, for example,
via increased sharing of gut contents including symbionts
that are essential for survival.

In other systems, there is great variety in the types of
response that are assumed to represent social cohesion. Studies
of social birds andmammals often use allogrooming or allopre-
ening as measures of affiliation, and by implication, social
cohesion [13]. In cichlid fish [9], affiliative behaviour takes the
form of ‘bumps’ that resemble the contacts between termites
in our study; momentary contacts have also been used as a
measure of cohesion in ants [10], where they may also play a
social surveillance role. How allogrooming or social contacts
function to increaseperformance inconflict isusuallyunknown,
although in vervet monkeys allogrooming by females appears
to induce male participation in future bouts of aggression [16].

Our study adds to evidence that intergroup conflict
shapes within-group behaviour, with effects that vary
depending on the function of social interactions. Future
research could usefully test how measures of cohesion
affect group competitive ability, and the causes of variation
in the durability of behavioural responses.
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