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Aging is associated with cognitive decline and alterations in early perceptual processes.
Studies in the auditory and visual sensory modalities have shown that the mismatch
negativity [or the mismatch response (MMR)], an event-related potential (ERP) elicited
by a deviant stimulus in a background of homogenous events, diminishes with aging and
cognitive decline. However, the effects of aging on the somatosensory MMR (sMMR) are
not known. In the current study, we recorded ERPs to electrical pulses to different fingers
of the left hand in a passive oddball experiment in young (22–36 years) and elderly (66–
95 years) adults engaged in a visual task.The MMR was found to deviants as compared to
standards at two latency ranges: 180–220 ms and 250–290 ms post-stimulus onset. At 180–
220 ms, within the young, the MMR was found at medial electrode sites, whereas aged
did not show any amplitude difference between the stimulus types at the same latency
range. At 250–290 ms, the MMR was evident with attenuated amplitude and narrowed
scalp distribution among aged (Fz) compared to young (fronto-centrally and lateral parietal
sites). Hence, the results reveal that the somatosensory change detection mechanism is
altered in aging. The sMMR can be used as a reliable measure of age-related changes in
sensory-cognitive functions.
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INTRODUCTION
It is suggested that the brain can rapidly and effortlessly learn the
regularities in the stimulus environment and predict what should
happen in the future (Wacongne et al., 2012). The brain is capa-
ble to detect sudden changes in the perceptual environment even
without attentive resources. In aging, the change detection and
predictive coding of the environmental events is gradually declined
(Ruzzoli et al., 2012; see also Winkler and Czigler, 2012). There is a
growing concern to understand widely the aspects of healthy aging
as the world’s age breakdown is rapidly reversing; it is expected
that in 2050 the world’s population at ages over 65 years will be 2.5
times that of the population at ages 0–4 years, the opposite ratio
to 1950 (Haub, 2011).

On neurophysiological approach on aging, event-related poten-
tials (ERPs) provide important indicators for pre-attentive sensory
processing. The mismatch negativity (MMN) is a component of
ERPs that occurs when the brain detects a change in a background
of homogenous events (Näätänen, 1992). Further, its elicitation
reflects predictive coding of the stimulus environment (Garrido
et al., 2009; Wacongne et al., 2012). The MMN has been originally
discovered in the auditory modality (Näätänen et al., 1978), but
there is extensive evidence of the existence of its visual analog (for
reviews see Kimura, 2012; Winkler and Czigler, 2012).

In normal aging, the MMN amplitude in the auditory (Cooper
et al., 2006; Schiff et al., 2008; Kiang et al., 2009; Näätänen et al.,
2012; Cheng et al., 2013) and visual (Tales et al., 2002; Lorenzo-
Lopez et al., 2004) modalities have been shown to decrease
gradually. In addition, the latency of the auditory MMN seems

to prolong with age (e.g., Gaeta et al., 2001; Bertoli et al., 2002).
These changes in MMN have been argued to indicate the shorten-
ing of the sensory memory duration and deficits in the encoding
of the information due to age-related decline of the functional
integrity of the central sensory processing (Pekkonen, 2000;
Cooper et al., 2006). Importantly, the attenuation of MMN has
been shown to reflect the deterioration in cognitive functions
(Kisley et al., 2005; Foster et al., 2013). In these studies, decrease in
the MMN to changes in intervals between the sounds correlated
with poorer performance in cognitive tasks requiring executive
function.

The reports of the somatosensory MMR (sMMR), a coun-
terpart of auditory MMN, are sparse. Nonetheless, it is reliably
obtained in adults (Kekoni et al., 1997; Shinozaki et al., 1998;
Akatsuka et al., 2005; Spackman et al., 2010) and in healthy chil-
dren (Restuccia et al., 2009). In these studies, the sMMR has
been shown to be elicited in a response to changes or vio-
lations in stimulus site (different fingers) of an electric pulse,
frequency or duration of a vibration burst or a within-pair
inter-stimulus interval of stimulus pairs. In most studies, the
sMMR has been elicited at about 100–200 ms after the stim-
ulus onset over the fronto-central regions either as a negative
or positive component, presumably depending on the direc-
tion of the generating dipole (Kekoni et al., 1997; Akatsuka
et al., 2005). Spackman et al. (2007) found both a negative shift
of a difference wave (deviant minus standard) at about 100–
200 ms fronto-centrally contralateral to stimulus and a subsequent
positive shift at about 150–250 ms with centro-parietal scalp
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distribution, despite of the stimulus site. Correspondingly, Restuc-
cia et al. (2009) found in children a central negative shift of
the difference wave at about 120–180 ms contralateral to stim-
ulus, followed by a deflection at about 180–250 ms, albeit
negative in polarity and distributed frontally contralateral to
stimulus. In a tactile two-point discrimination task (Akatsuka
et al., 2007a,b) the generators of the magnetic equivalent of the
sMMR [the magnetic mismatch field (MMF)], peaking around
30–70 ms and 150–250 ms, were found in the primary and
secondary somatosensory cortex contralateral to stimulus, respec-
tively. Studies with intracranial recordings using vibrotactile
stimulation have showed that the sMMR is localized on the post-
central gyrus on the cortex (Spackman et al., 2010; Butler et al.,
2011).

Contrary to studies in the auditory and visual modalities,
to our knowledge, there are no studies showing the effects of
normal aging on the pre-attentive detection of somatosensory
changes. Nevertheless, Bolton and Staines (2012) have stud-
ied age-related changes in somatosensory ERPs using tasks that
require subject’s attentional resources. They suggested that in
an attention-demanding somatosensory task age-related alter-
ations in the attention mechanism are partly due to deficit in
suppressing irrelevant sensory information. However, the elic-
itation of the sMMR does not rely on the subject’s attention
or reactions and it is thus a potentially valuable tool for clin-
ical purposes. Indeed, it has been showed that the sMMR
can be used reliably for neurophysiological evaluation of tactile
two-point discrimination (Akatsuka et al., 2007a) or the sever-
ity of a cerebellar dysfunction (Restuccia et al., 2007; Chen et al.,
2014).

We recorded ERPs to electrical pulses with changes in the loca-
tion of the stimuli in hand in two groups of subjects, young and
elderly adults, while they were attending to a task in the visual
modality. We hypothesize that the sMMR is elicited at the scalp
regions representing the primary and secondary somatosensory
cortices at about 100–250 ms after the stimulus onset as reported
earlier (Shinozaki et al., 1998; Restuccia et al., 2009). We also
hypothesize that the sMMR is attenuated in amplitude in aged
compared to young similarly as in the auditory MMN.

MATERIALS AND METHODS
PARTICIPANTS
Electroencephalogram was collected from 22 young (22–36 years)
and 14 elderly (66–95 years) Finns. All participants were right-
handed volunteers with no self-reported neurological or psy-
chiatric conditions. Five of the participants were discarded due
to disrupted data (e.g., excessive movement during the record-
ing). For the final data analysis there were 18 participants in the
young adults group (22–29 years old, mean age 25 years, six
female) and 13 participants in the elderly group (66–95 years
old, mean age 75 years, nine female). The elderly group com-
prised of volunteers from the local organization of retired people
recruited at their weekly meeting after an informative presenta-
tion of the study. The young adults group comprised university
students recruited via e-mail. An informed written consent was
obtained from each participant. The experiment was under-
taken in accordance with the Declaration of Helsinki. The ethical

committee of the University of Jyväskylä had approved the
study.

STIMULI AND PROCEDURE
During the recording, the subjects sat comfortably in a chair in a
laboratory room. The subjects were instructed to ignore stimula-
tion to the fingers and to be fully involved with a radio play, about
which they were told to be asked questions afterward. The radio
play was presented via loudspeaker placed about 50 cm above the
subjects head with a volume subjectively comparable to normal
speaking voice. The subjects were asked to fix their gaze at the
cross on a computer screen placed about 1.5 m in front of the sub-
ject. The recording was video monitored from the room next to the
subject’s room to control the subject’s sleepiness and movements
during recording.

Electrical stimulation was generated with a constant current
stimulator (Digitimer Ltd., model DS7A, Welwyn Garden City,
UK). Electrical pulses of 200 μs in duration were delivered via
conductive jelly moistened flexible metal ring electrodes (Tech-
nomed Europe Ltd., Maastrich, Netherlands) on the left forefinger
and little finger (stimulating cathode above the proximal pha-
lanx and anode above the distal phalanx). A piece of gauze was
placed on the finger between electrodes to prevent conductivity
between the two electrodes in the same finger. A run of 1000 stim-
uli was delivered with an inter-stimulus interval (ISI) of 500 ms.
Frequently presented “standard” stimuli (probability 85%) were
presented to one and rare “deviant” stimuli (probability 15%) to
the other finger (forefinger and little finger). This assignment was
counterbalanced between the subjects. Stimulus intensities were
adjusted for each subject independently for both fingers to be twice
the subjective sensory threshold, which was tested before record-
ing. Overall, forefinger stimulus intensities were larger in the aged
group (forefinger mean 5.5 mA, range 0.48–0.78 mA; little fin-
ger mean 4.4 mA, range 0.30–0.62 mA) than in the young group
(forefinger mean 4.1 mA, range 0.28–0.56 mA; little finger mean
3.8 mA; range 0.24–0.48 mA) and larger to forefinger than to little
finger within the both age groups: young t17 = 3.50, p = 0.003,
d = 0.500; aged t12 = 4.10, p = 0.003, d = 0.208. One-way ANOVA
showed a significant difference between the age groups in forefin-
ger stimulus intensity (F1,29 = 21.24, p < 0.001), but no significant
difference between little finger stimulus intensities (F1,29 = 3.60,
p = 0.068).

EEG ACQUISITION
Electroencephalogram was recorded with Brain Vision Recorder
software (Brain Products GmbH, Munich, Germany) at 30 scalp
locations. Ag/AgCl electrodes were placed on the electrode cap
(Easy Cap QA40) according to the modified International 10–20
System at FP1, FP2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, T7, T8,
C3, C4, Cz, CP1, CP2, CP3, CP4, CP5, CP6, Pz, P3, P4, P7, P8, Oz,
O1, and O2. Linked left and right mastoid electrodes served as a
reference for all electrodes. The ground electrode was placed in the
middle of the forehead. Eye movements and blinks were measured
from bipolar electrodes placed one above the left eye and another
lateral to the right orbit. The signal was amplified (Brain Vision
QuickAmp), filtered with a band pass of 0.1–100 Hz and stored
on hard disk at a sampling rate of 1000 Hz.
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DATA PROCESSING
The data were analyzed with Brain Vision Analyzer 2.0 software
(Brain Products GmbH). The signals from the electrodes were
first filtered with a band pass of 0.1–20 Hz (24 dB/octave roll
off) and divided in stimulus onset-locked segments from −100
to +500 ms by stimulus type (deviant stimulus and standard
stimulus immediately preceding the deviant stimuli). Segments
with signal amplitude exceeding ±90 μV from the averaging and
any recording channel were omitted from the further analysis.
The pre-stimulus baseline was corrected by the mean amplitude
between −100 to 0 ms. An average of 122 of standard (min = 79,
max = 149, median = 131) and an average of 123 deviant
(min = 64, max = 148, median = 128) trials were available for the
further analysis from each individual.

Visual inspection indicated amplitude differences between
standard and deviant responses for P50 and N80 components.
Accordingly, the maximum peak amplitude value at C4 electrode
(Shinozaki et al., 1998) and its latency were calculated within a time
window of 30–80 ms and 40–110 ms after the onset of the stimulus
for P50 and N80, respectively. To compare difference between the
stimulus types and between the age groups, statistical analysis of
ERP peak amplitudes of P50 and N80 were performed in repeated
measures multivariate analysis of variance (MANOVA) with fac-
tors of Stimulus type (standard, deviant) and Age group (young,
aged). In addition, visual inspection revealed MMR-like differen-
tial responses at 180–220 ms and 250–290 ms after the stimulus
onset, labeled as early and late MMR, respectively. Accordingly,
mean amplitude values from these time windows at nine electrode
sites (FC1, Fz, FC2, C3, Cz, C4, P7, Pz, P8) were calculated. The
selection of the electrode sites were based on the visual inspection
of grand averaged scalp topography maps and previous findings
on sMMR (Restuccia et al., 2009). MANOVA with within-subjects
factors of Stimulus type (standard, deviant), Laterality (left: FC1,
CP1, P7; medial: Fz, Cz, Pz; right: FC2, CP2, P8), Anterior-
ity (frontal: FC1, Fz, FC2; central: CP1, Cz, CP2; parietal: P7,
Pz, P8) and between-subjects factor of Age group (young, aged)
were applied. Whenever group differences were found, differential
ERPs (deviant minus standard responses) were calculated sepa-
rately for both age groups and analysis of variances (ANOVA)
was performed to compare differential responses between the
groups. Finally, Pearson’s correlation coefficients, controlled with
age, were computed separately within the each age group to exam-
ine the relationship between the stimulus intensity and differential
ERPs.

Effect size estimates are described as partial eta squared (η2
p)

scores for MANOVA and Cohen’s d for t-tests. Paired samples
t-tests were two tailed. The threshold for statistical significance
was p < 0.05. Since focusing on the processing of different
stimulus types, here we report only the main effects and inter-
action effects of MANOVA including the factor of Stimulus
type.

RESULTS
Figures 1 and 2 depict the grand-averaged waveforms to deviant
and standard stimuli and a differential waveform within each age
group on analyzed electrode sites. The grand-averaged waveforms
for P50 and N80 on C4 are shown in Figure 3.

P50
For P50 amplitude, a MANOVA showed a significant main effect
of Stimulus type (F1,29 = 6.13, p = 0.019, η2

p = 0.175), but nei-
ther an interaction effect between Stimulus type and Age group
(F1,29 = 1.35, p = 0.254, η2

p = 0.045) nor any other interaction
effect with Stimulus type. Mean difference between the responses
to deviant and standard stimuli was 0.42 μV (95% confidence
interval 0.048–0.787 μV).

For P50 latency, all the effects were non-significant includ-
ing the main effect of Stimulus type (F1,29 = 0.12, p = 0.730,
η2

p = 0.004) and the interaction effect of Stimulus type × Age

group (F1,29 = 0.20, p = 0.656, η2
p = 0.007).

N80
An effect of Stimulus type was significant (F1,29 = 15.17, p = 0.001,
η2

p = 0.343). Mean difference between the responses to deviant and
standard stimuli was −1.13 μV, 95% confidence interval −1.695
to −0.570 μV). An interaction effect of Stimulus type × Age group
was non-significant (F1,29 = 1.02, p = 0.322, η2

p = 0.034) as were
the other interaction effects. Negative correlations between the
N80 amplitude to deviant stimuli and the stimulus intensity to
forefinger (r = −0.602, p < 0.001) and to little finger (r = −0.386,
p = 0.035) were found.

For the latency, no significant main effect of Stimulus type
(F1,29 = 1.23, p = 0.277, η2

p = 0.041) was found, but there was a
significant interaction effect between Stimulus type and Age group
(F1,29 = 6.73, p = 0.015, η2

p = 0.188). Thus, the standard and
deviant stimulus responses were compared separately within each
age group. Among young, the response latency to deviant stim-
uli was prolonged compared to that to standard stimuli (mean
latencies 80.8 and 75.2 ms, respectively), t17 = 2.45, p = 0.025,
d = 0.486 (mean difference 5.6 ms, 95% confidence interval 0.8–
10.3 ms). Within aged no difference between the peak latencies
to different stimulus types was found (t12 = 1.39, p = 0.189,
d = 0.402, mean difference −2.2 ms, 95% confidence interval
−5.7 to 1.3 ms; mean latency for the deviant responses were 85.9
and 88.2 ms for the standard responses). Further, an ANOVA
showed that responses to standards (F1,29 = 10.02, p = 0.004), but
not to deviants (F1,29 = 3.15, p = 0.088), were prolonged in aged
compared to young.

THE MMR
Figure 4 shows mean scalp potential maps for the differential
responses (deviant minus standard stimulus responses) at the ana-
lyzed latency ranges. Correlation analysis (Pearson’s, controlled
with age, Bonferroni-adjusted) showed no correlation between
the stimulus intensities to fingers and the amplitude values of
differential responses for early or late MMR.

Early MMR: 180–220 ms
A MANOVA showed a significant main effect of Stimulus type
(F1,29 = 5.75, p = 0.023, η2

p = 0.165) and interaction effects of

Stimulus type × Laterality (F2,28 = 7.92, p = 0.002, η2
p = 0.361)

and Stimulus type × Centrality (F1,28 = 5.13, p = 0.013,
η2

p = 0.268), indicating inequality in scalp distributions of the
ERP amplitudes to the different stimulus types (i.e., a mismatch
response).
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FIGURE 1 |The MMR in young. The grand-averaged waveforms to deviant and standard stimuli and a differential waveform (deviants minus standards) within
young at electrode sites analyzed for the early and the late MMR.

FIGURE 2 |The MMR in aged. The grand-averaged waveforms to deviant and standard stimuli and a differential waveform (deviants minus standards) within
aged at electrode sites analyzed for the early and the late MMR.
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FIGURE 3 |The grand-averaged waveforms to deviant and standard

stimuli and a differential waveform within each age group at electrode

C4, where P50 and N80 were analyzed.

In addition, significant interaction effects of Stimulus
type × Age group (F1,29 = 5.27, p = 0.029, η2

p = 0.154) and
Stimulus type × Laterality × Age group (F2,28 = 4.08, p = 0.028,
η2

p = 0.226) were found, revealing unequal responses between the
age groups and non-homogenous scalp distribution of the MMR
between young and aged. Since Stimulus type × Centrality × Lat-
erality × Age group (F4,26 = 2.13, p = 0.106, η2

p = 0.247) and
Stimulus type × Centrality × Age group (F2,28 = 3.01, p = 0.066,
η2

p = 0.177) showed no significant effect, amplitude values were
averaged over left, medial and right electrode sites, and responses

FIGURE 4 |The voltage distribution maps for the early and late MMR in

young and aged.

to standard and deviant stimuli were compared in paired samples
t-tests separately within each age group. Within young, responses
to deviant stimuli differed significantly to those of standard stimuli
at medial electrode sites, t17 = 3.57, p = 0.002, d = 1.033. Dif-
ferential responses to the two stimulus types at right hemisphere
electrode sites, t17 = 2.09, p = 0.052, d = 0.563, and left hemi-
sphere electrode sites, t17 = 1.99, p = 0.063, d = 0.477, did not
reach the significance. Among aged the difference in amplitude
between the ERPs to deviants and standards were not evident at
any of the analyzed averaged electrode sites (medial: t12 = 0.51,
p = 0.616, d = 0.180; left: t12 = 0.35, p = 0.736, d = 0.093; right:
t12 = 0.03, p = 0.981, d = 0.010; Table 1).

The MMR was different in amplitude between the age groups
at medial electrode sites (F1,29 = 6.96, p = 0.013), but not at left
(F1,29 = 2.93, p = 0.097), neither at right (F1,29 = 2.05, p = 0.163)

Table 1 | Latency range of 180–220 ms.

Electrode

pool

t P

(2-tailed)

d Mean difference

(μV)

95% CI

lower

95% CI

upper

Left/young 1.99 0.063 0.477 0.23 −0.014 0.479

Left/aged −0.35 0.736 0.093 −0.02 −0.168 0.122

Medial/young 3.57 0.002 1.033 0.77 0.315 1.224

Medial/aged 0.51 0.616 0.180 0.06 −0.181 0.292

Right/young 2.09 0.052 0.563 0.26 −0.002 0.532

Right/aged −0.03 0.981 0.010 −0.001 −0.293 0.286

Post hoc tests (paired samples t-tests) for the interaction effect Stimulus type × Laterality × Age group. CI, confidence interval. d, Cohen’s d.
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electrode sites. The differential mean amplitudes were larger in
young (left 0.23 μV, middle 0.77 μV, right 0.26 μV) compared to
aged (left −0.02 μV, middle 0.06 μV, right −0.001 μV; Table 1).

Late MMR: 250–290 ms
Figure 5 shows the mean amplitudes to deviant and standard
responses, standard deviations and individual participants’ ampli-
tudes of the differential responses (deviant minus standard) in
both age groups. A MANOVA revealed a significant main effect of
Stimulus type (F1,29 = 13.31, p = 0.001, η2

p = 0.315) and signifi-
cance for the all interaction effects including the factor of Stimulus
type: Stimulus type × Laterality (F2,22 = 11.33, p = 0.0001,
η2

p = 0.447), Stimulus type × Centrality (F2,22 = 9.22, p = 0.001,

η2
p = 0.397), Stimulus type × Laterality × Centrality (F4,26 = 4.30,

p = 0.008, η2
p = 0.398), Stimulus type × Age group (F1,29 = 8.96,

p = 0.006, η2
p = 0.236), Stimulus type × Laterality × Age group

(F2,28 = 5.90, p = 0.007, η2
p = 0.296), Stimulus type × Cen-

trality × Age group (F2,28 = 5.61, p = 0.009, η2
p = 0.286), and

Stimulus type × Laterality × Centrality ×Age group (F4,26 = 4.41,
p = 0.007, η2

p = 0.404). The 4-tailed interaction indicates an
unequal scalp distribution of the MMR between the age groups.

The subsequent paired samples t-tests comparing the standard
and deviant stimulus responses were applied separately on each
analyzed electrode site and for both age groups (Table 2). Within
young the difference in amplitude between the ERPs to deviant
and standard stimuli were significant at FC1, Fz, FC2, CP1, Cz,
CP2, P7, P8 (t17 = 6.28–4.66, p < 0.001–0.045, d = 0.690–1.575).
Within aged, instead, ERPs to deviant and standard stimuli differed
significantly only at Fz (t12 = 3.53, p = 0.004, d = 0.972).

The MMR (deviant minus standard differential response)
was different in amplitude between the age groups at FC1
(F1,29 = 5.91, p = 0.022), FC2 (F1,29 = 8.31, p = 0.007),
CP1 (F1,29 = 6.12, p = 0.019), Cz (F1,29 = 10.87, p = 0.003),
CP2 (F1,29 = 10.87, p = 0.003), P7 (F1,29 = 13.38, p = 0.001), Pz
(F1,29 = 5.24, p = 0.030), but not at Fz (F1,29 = 1.17, p = 0.289)
neither at P8 (F1,29 = 0.307, p = 0.584; Table 2).

DISCUSSION
We recorded ERPs to changes in somatosensory stimuli, i.e., elec-
trical pulses to different fingers in healthy young and elderly adults
in a passive oddball condition. The sMMR was positive in polar-
ity and elicited at two latency ranges in young: centro-parietally
at 180–220 and fronto-centrally at 250–290 ms after the stimulus

FIGURE 5 | Mean amplitudes and standard deviations to deviant and standard stimuli responses on analyzed electrode sites in young and aged.

Values of the differential response (deviants minus standards, i.e., MMR) of the individual participants’ are shown as scatterplots.
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Table 2 | Latency range of 250–290 ms.

Electrode

site/age group

t P (2-tailed) d Mean difference

(μV)

95% CI

lower

95% CI

upper

FC1/young 4.30 <0.001 1.375 1.75 0.890 2.602

FC1/aged 2.00 0.069 0.685 0.48 −0.043 −0.017

Fz/young 3.24 0.005 0.932 1.33 0.464 2.199

Fz/aged 3.53 0.004 0.972 0.77 0.294 1.245

FC2/young 4.36 <0.001 1.320 2.01 1.035 2.979

FC2/aged 1.74 0.107 0.558 0.36 −0.090 0.807

CP1/young 3.56 0.002 1.154 1.10 0.450 1.756

CP1/aged 0.93 0.370 0.308 0.14 −0.191 0.477

Cz/young 4.66 <0.001 1.473 2.26 1.237 3.285

Cz/aged 0.93 0.370 0.337 0.24 −0.320 0.798

CP2/young 4.11 0.001 1.301 1.39 0.677 2.107

CP2/aged −0.46 0.651 0.155 −0.12 −0.704 0.457

P7/young −6.28 <0.001 1.595 −1.59 −2.122 −1.054

P7/aged −1.80 0.097 0.511 −0.34 −0.761 0.072

Pz/young 2.05 0.057 0.612 0.64 −0.020 1.298

Pz/aged −1.74 0.107 0.571 −0.25 −0.564 0.063

P8/young 2.00 0.045 0.690 −0.72 −1.414 −0.017

P8/aged −1.70 0.114 0.507 −0.46 −1.058 0.130

Paired samples t-tests (deviant vs. standard stimulus responses). CI, confidence interval. d, Cohen’s d.

onset. In aged, the sMMR was attenuated and elicited only at the
latter latency window with reduced scalp distribution compared
to young. While in elderly the sMMR was evident only at Fz, it was
found widely at fronto-central electrodes in young participants.

The sMMR to location changes has been found earlier by
Shinozaki et al. (1998) in young adults. In addition, there are cor-
responding results in children (Restuccia et al., 2009). Shinozaki
et al. (1998) found a central positive deflection to middle or index
finger deviants at 100–200 ms post-stimulus, compatible to the
early sMMR found in the present study. However, they did not
report the following frontal positivity that was found in our study
both in young and aged, probably owing to linked ear lobes ref-
erence used in their study compared with the average reference of
the present study. Chen et al. (2014) argued in light of their find-
ings that the sMMR is less sensitive to changes in location than
to duration: they reported fronto-central negativity to vibrotactile
duration deviants at 150–250 ms, but did not find sMMR to loca-
tion changes. They suggested that the sMMR to spatially separated
stimuli was absent due to relatively high age (mean 57.5 years) of
their participants or too low stimulus intensity used in their study.
In our data the late sMMR were found in aged despite of notably
older age of the participants (mean age 75 years) than in the study
of Chen et al. (2014), albeit the stimulus intensities were higher
in our study, too. However, we found no correlation between the
stimulus intensity and the sMMR amplitude though we did not
specifically test extreme stimulus intensities.

In addition to the early sMMR (180–220 ms) found in young
adults there was also a differential response at later latency range

(250–290 ms) which was significant in both age groups. A few
earlier studies have found sMMR in two latency ranges, albeit
the findings seem somewhat discrepant. Akatsuka et al. (2005)
reported a sMMR to temporal discrimination deviants elicit-
ing an early negativity and a positive deflection at 100–200 ms
post-stimulus. Spackman et al. (2007) found instead a nega-
tive fronto-central shift of a difference wave at 100–200 ms
followed by a centro-parietal positive shift at 150–250 ms to
vibrotactile presented changes in duration and frequency. The
latter was suggested to reflect a process that is specific to sen-
sory discrimination in the somatosensory modality. Similarly,
Butler et al. (2011) reported a sMMR of negative polarity to
duration changes approximately peaking at 145 ms followed
with a fronto-central sMMR of positive polarity peaking at
235 ms post-stimulus. The late sMMR found in the present
study seems to be similar in scalp topography and only slightly
later in latency compared to the sMMR reported by Butler et al.
(2011).

To our knowledge, the present study is the first to show the
reduction of the sMMR in healthy aging. The results are in line
with the findings of the auditory MMN. A recent meta-analysis
concluded that the MMN to frequency and duration changes con-
siderably declines in normal aging (Cheng et al., 2013). There is
evidence from auditory studies linking the reduction of the MMN
amplitude to decline in modality specific cognitive processing
(Kisley et al., 2005; Mowszowski et al., 2012; Foster et al., 2013)
and amnestic mild cognitive impairment (Lindin et al., 2013).
Also the visual MMN to changes in motion direction and object
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form have been reported to diminish in aging, analogously to the
auditory MMN (Tales et al., 2002; Lorenzo-Lopez et al., 2004). In
addition, it has been shown that the latency of the auditory MMN
to frequency (Gaeta et al., 2001) and temporal (Bertoli et al., 2002)
changes is prolonged in aging.

A possible explanation for the aging-related diminution of the
MMR may also lie behind disturbed predictive coding of sen-
sory information. The predictive coding models presume that
the brain continuously updates an internal model of environment
by synaptic plasticity to predict the causes of sensory input; the
MMN represents an inconsistency between the predicted sensory
input (repetitive standards) and the unlearned (deviant) stimu-
lus (Friston, 2005; Garrido et al., 2009; Wacongne et al., 2012).
Further, N-methyl-D-aspartate (NMDA) receptor, a predominant
controller of synaptic plasticity and memory function, have been
proposed to have a fundamental role in predictive coding and
the MMN generation (Tikhonravov et al., 2008, 2010; Wacon-
gne et al., 2012). Aging-related deficiency in NMDA function
may thus at least partly explain the MMN reduction in aging
(Muller et al., 1994; Näätänen et al., 2011). It is also possible that
in aging, predictive coding of stimulus characteristics is interfered
by declined gating of sensory inputs (Chao and Knight, 1997) due
to reduced inhibitory function (Reuter-Lorenz and Park, 2010;
Bolton and Staines, 2012) in the sensory cortices (David-Jurgens
and Dinse, 2010; Cheng and Lin, 2013). The assumption of age-
related deficit in suppression of irrelevant sensory stimuli cannot
be tested in the present data which was not designed to study the
above-mentioned mechanism (see, e.g., Kisley et al., 2005). Never-
theless, we found age-related prolongation of the N80 latency (see
Figure 3) indicating that aging might also have an effect on early
sensory processing that precede the higher order sensory-cognitive
functions.

There are limitations in the present study that future stud-
ies can address. First, the relationship between the age-related
reduction of the sMMR and the cognitive function should be
confirmed by using neuropsychological test batteries and care-
fully controlled demographic information (e.g., lifestyle factors
and educational level). Second, we did not apply any control
condition in order to investigate the underlying neural mech-
anism of sMMR (for a review of underlying mechanism of
the auditory MMN, see Näätänen et al., 2005). Third, a low
amount of sensors used in the EEG recording of the present
study did not enable the application of source localization in
the present data. Thus, no inferences of the processing hierar-
chy or pathways of the sMMR generation in the cortex can be
made. Finally, although the preliminary results of the present
study clearly demonstrate age-related effects to somatosensory
deviance detection, our findings should be confirmed in future
studies with larger sample sizes, and wide-ranging age range of
participants, in order to determine whether the effects of aging
on sensory-cognitive processing are constant within the adult life
span.

In conclusion, the present study showed that the sMMR
to location changes is sensitive to aging. The sMMR was
attenuated in amplitude and prolonged in latency in aged
compared to young adults. The findings provide new knowl-
edge for the scant literature on aging-related changes in

pre-attentive sensory-cognitive processing in the somatosensory
modality.
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