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Abstract
Coronavirus Disease 2019 (COVID-19) is predominantly a respiratory tract infection that significantly rewires the host
metabolism. Here, we monitored a cohort of COVID-19 patients’ plasma lipidome over the disease course and
identified triacylglycerol (TG) as the dominant lipid class present in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)-induced metabolic dysregulation. In particular, we pinpointed the lipid droplet (LD)-formation enzyme
diacylglycerol acyltransferase (DGAT) and the LD stabilizer adipocyte differentiation-related protein (ADRP) to be
essential host factors for SARS-CoV-2 replication. Mechanistically, viral nucleo capsid protein drives DGAT1/2 gene
expression to facilitate LD formation and associates with ADRP on the LD surface to complete the viral replication
cycle. DGAT gene depletion reduces SARS-CoV-2 protein synthesis without compromising viral genome replication/
transcription. Importantly, a cheap and orally available DGAT inhibitor, xanthohumol, was found to suppress SARS-CoV-
2 replication and the associated pulmonary inflammation in a hamster model. Our findings not only uncovered the
mechanistic role of SARS-CoV-2 nucleocapsid protein to exploit LDs-oriented network for heightened metabolic
demand, but also the potential to target the LDs-synthetase DGAT and LDs-stabilizer ADRP for COVID-19 treatment.

Introduction
The collective scientific understanding of Coronavirus

Disease 2019 (COVID-19) has evolved rapidly since its
emergence, from the recognition of the causative virus,
evaluation of therapeutics, to the development of multiple
candidate vaccines within the span of a year1–4. However,
there remain many significant unanswered questions,
especially with regard to the underlying molecular
mechanisms associated with the metabolic alterations of
COVID-195. It is still unclear what are the SARS-CoV-2

determinants reprogramming host metabolism and what
are the essential host factors orchestrating the heightened
metabolic demand during virus propagation.
To fulfill the requirements of rapid and massive clonal

replication, viruses must co-opt distinct host programs to
meet heightened metabolic demands. A key component in
such reprogramming is the rapid upregulation of lipid
biosynthesis, which builds up structural elements of
double-membrane lipid vesicles for assembly of synthe-
sized virus components including the lipid envelope. We
previously documented the essentiality of lipogenic
reshaping in Middle East respiratory syndrome cor-
onavirus (MERS-CoV) replication6, which is another
betacoronavirus that can cause life-threatening infections
in humans. In COVID-19 patients, obesity increases the
risk of severe disease7 and lipid droplets (LDs) fuel SARS-
CoV-2 replication8. However, the precise mechanisms
involved in these host–virus interactions remain largely
mysterious.
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In this study, we performed both plasma and cellular
lipidomic profiling to compare SARS-CoV-2 and SARS-
CoV infections. Our results identified triacylglycerol
(TG) as the dominant lipid class of SARS-CoV-2-induced
metabolic dysregulation. Further analysis along the TG
synthetic pathways demonstrated that both diacylglycerol
acyltransferase (DGAT) and the LD stabilizer adipocyte
differentiation-related protein (ADRP) are potential
antiviral targets for SARS-CoV-2 infection. Importantly,
we showed that that Xanthohumol, a DGAT1/2 inhibitor
with both antiviral and anti-inflammatory properties,
may serve as an orally available treatment option for
COVID-19.

Results
SARS-CoV-2 reprograms host TG metabolism upon
infection
To depict the lipidomic landscape after SARS-CoV-2

infection over time, we monitored the lipidome of a
clinical cohort with serially collected plasma specimens at
days 0, 3, and 7 after hospitalization from 11 RT-qPCR-
confirmed COVID-19 patients (Supplementary Table S1).
All patients had mild-to-moderate symptomatic disease.
A list of 350 and 172 known lipid features in the positive
mode and negative mode were identified, respectively.
The levels of 26 of these lipid features were significantly
different between the days 0 and 7 specimens (Fig. 1a
and Supplementary Table S2). Plasma lipid alterations
were largely associated with increases in TG (42.31%),
diacylglycerol (DG, 19.23%), and glycerophosphocholine
(PC, 19.23%) (Fig. 1b), with glycerophospholipid meta-
bolism being the most enriched pathway (Fig. 1c). Of
note, the top two perturbed lipid classes, i.e., DG (18:1/
18:2/0:0) and TG (36:2) were elevated during the time-
course (Fig. 1d). The result indicated that the serum TG
and/or DG levels increased as the disease progressed.
Production of pro-inflammatory cytokines such as tumor

necrosis factor (TNF) and IL-6 are associated with COVID-
19 severity9, whereas TNF is known to increase serum TG
level10. From this perspective, the disruption of lipidomic
homeostasis, as detected in patient plasma, is caused by
virus-induced inflammatory stimuli. From another per-
spective, type II alveolar epithelial cells, the major portal of
SARS-CoV-2 infection, is known to synthesize surfactant
phospholipids and are essential for modulating lung
function11. To further understand the physiological rele-
vance of SARS-CoV-2 as a respiratory pathogen, we per-
formed comparative lipidome profiling of human lung
Calu-3 cells upon virus infection. The high multiplicity of
infection (MOI) by either SARS-CoV-2 or SARS-CoV was
performed, followed by lipid analysis at 8-h post-infection
(hpi) and 24 hpi, respectively (Fig. 2a). In line with the
observation in patient plasma, dominant upregulation of
TGs was identified at 8-h post-SARS-CoV-2 infection,

whereas SARS-CoV did not exhibit significant pattern
change as compared to mock-infected cells (Fig. 2b and
Supplementary Table S3). At 24 hpi, the lipidome profile of
SARS-CoV-infected Calu-3 cells became more similar to
that of SARS-CoV-2-infected than mock-infected Calu-3
cells (Fig. 2b). These results suggest that SARS-CoV-2
consistently triggers TG production in vitro and in vivo,
whose synthetic pathway might be critical to fuel virus
replication. Further investigation is warranted to under-
stand the earlier lipidomic reshaping in SARS-CoV-2 than
SARS-CoV infection.

DGAT and ADRP are potential host targets for anti-SARS-
CoV-2 therapy
LDs are the storage organelles accumulating TGs and

cholesterol esters, which are critically involved in a wide
range of virion production as the source of metabolic
energy and membrane formation in flaviviruses12. Indeed,
a considerable increase of LD accumulation was visualized
in human hepatic Huh7 cells after MERS-CoV infection6

and human monocytes after SARS-CoV-2 infection8,
indicating broad relevance between LDs and different
viruses’ life cycles. The last step in TG synthesis is cata-
lyzed by DGAT which esterifies the DG with a fatty acid.
The two isoform DGAT1 and DGAT2 enzymes are
endoplasmic reticulum-resident and have similar activ-
ities in vitro, while only DGAT2 is essential in vivo13. To
determine if DGAT enzymes influence SARS-CoV-2
replication, siRNAs directed against DGAT1 or DGAT2
were introduced into virus-permissive human colonic
Caco-2 cells with favorable knockdown efficiency. Utiliz-
ing a multi-cycle virus growth experiment, we found a
significant reduction of viral yields in the lysates of siD-
GAT1- or siDGAT2-treated cells, with SARS-CoV-2
exhibiting generally higher dependence on DGAT1 than
DGAT2 (Fig. 3a). Suppression of SARS-CoV-2 was also
observed in DGAT1/2 knockdown pulmonary Calu-3
cells (Fig. 3b). The results suggest that both DGAT1 and
DGAT2 are important to maintain SARS-CoV-2 replica-
tion fitness.
To investigate the druggability of targeting DGAT for

anti-SARS-CoV-2 therapy, we employed a DGAT1/
2 small molecule inhibitor Xanthohumol for the treat-
ment of virus-infected Caco-2 cells. Increasing con-
centrations of Xanthohumol caused a dose-dependent
reduction of virus titers in the cell culture supernatant
and at non-toxic concentrations, with a half-maximal
inhibitory concentration (EC50) of 4.7 ± 2.4 µM and a
half cytotoxicity concentration (CC50) of 35 ± 5 µM
(Fig. 3c). Experiments with Xanthohumol were also
performed in Calu-3 cells, where significant SARS-CoV-
2 viral load reduction was detected in both supernatant
and cell lysate after drug compound treatment (Fig. 3d).
The antiviral efficacy of Xanthohumol was also evident
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in human stem cell-derived cardiomyocytes, which is an
established susceptible primary cell model for SARS-
CoV-2 infection14. Importantly, cardiac complications
including viral myocarditis have been increasingly
reported in COVID-19 patients, and it is well recognized
that synthesis and turnover of cardiac TGs, controlled by
DGATs, play a pivotal role in cardiac function15. Indeed,
we demonstrated both extracellular (~3 logs) and
intracellular (~2 logs) SARS-CoV-2 viral load reduction
after Xanthohumol treatment, which was in similar
magnitude as that of remdesivir (Fig. 3e).

To ascertain the effects of DGAT1 and/or DGAT2
deficiency on SARS-CoV-2-induced LD formation,
immunofluorescence staining was employed to visualize
the intensity and abundance of LDs and viral nucleocapsid
protein (NP) expression. Notably, decreased LD induction
and NP expression were observed after DGAT1 or
DGAT2 siRNA treatment. Double knockdown of DGAT1
and DGAT2 exhibited less LD intensity and more SARS-
CoV-2 suppression when compared with either DGAT1
or DGAT2 knockdown (Fig. 3f). Next, we investigated for
the exact step of the SARS-CoV-2 replication cycle that

Fig. 1 Plasma lipidome of COVID-19 patients. a Lipidome of COVID-19 patients’ plasma samples over the disease course. All blood samples were
collected before the patients’ discharge from the hospital. Day 0 means the first day of patient hospitalization and blood taking. The hierarchical
clustering analysis was based on the identified lipid metabolites with significant changes in quantity, comparing with Day 0. Each rectangle represents
a lipid colored by its normalized intensity scale from blue (decreased level) to red (increased level). b Pie chart showing the relative ratio of eight lipid
classes that are significantly perturbed. These lipids belong to BMP bismono-acylglycerophosphate. DG diacylglycerol, PC glycerophosphocholines, PE
glycerophosphoethanolamines, PG glycerophosphoglycerols, PS glycerophosphoserines, SM sphingomyelin, TG triacylglycerol. c Overview of pathway
analysis based on the identified lipids. The y-axis, “-log(p)”, indicates the log10 transformed p-value after enrichment analysis; the x-axis, “Pathway
Impact”, represents the value calculated from the pathway topology analysis. d Boxplots illustrate the top two dominant perturbed lipid class
representatives in the time-course study, DG (18:1/18:2/0:0) (P= 0.0097, day 0 vs day 7) and TG (36:2, day 0 vs day 7) (P= 0.0084). y-Axis represents the
peak height of selected lipids based on the LC–MS data.
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DGAT1/2 contributes to. In a single infectious cycle, we
found that DGAT1/2 depletion decreased the extra-
cellular but not intracellular viral load (Fig. 3g). Intrigu-
ingly, a reduced amount of viral NP production was also
observed in the cell lysate, suggesting that DGAT1/2
affects the SARS-CoV-2 replication cycle at a stage after
viral genome replication/transcription, probably at the

stage of viral protein translation and/or thereafter
(Fig. 3h). Taken together, DGAT is a druggable target for
anti-SARS-CoV-2 intervention.
To explore the interplay between SARS-CoV-2 and

DGATs, we first performed a reporter gene assay
detecting the DGAT transcriptional activation. A panel of
SARS-CoV-2 ORF clones was co-transfected with the
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Fig. 2 Comparative lipidome between SARS-CoV- and SARS-CoV-2- infections. a Schematic flow chart showing the comparative analysis
between SARS-CoV- and SARS-CoV-2- infections. Human lung Calu-3 cells were infected (1 MOI) by SARS-CoV or SARS-CoV-2, followed by lipid
extraction at 8 and 24 hpi, respectively. b Hierarchical clustering analysis was generated based on all significantly increased/decreased lipids
comparing either SARS-CoV- or SARS-CoV-2- infection with that of mock infection, respectively. The 3D principal component analysis (PCA) score
plots showing the distribution pattern of the detectable lipid profile, which differentiate SARS-CoV-2-infection (red) from mock- nfection (yellow) and
SARS-CoV-infection (blue) groups. The triangles represent the distribution of an individual sample dot within each group (n= 6).
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Fig. 3 DGATs are potential therapeutic targets for COVID-19. a, b DGAT genes are required for SARS-CoV-2 replication. siRNA knockdown of
either DGAT1 (two distinct siRNA 1_1 and 1_2) or DGAT2 (siRNA 2_1 and 2_2) were performed on human colorectal Caco-2 (a) or lung Calu-3 cells
(b) before virus infection for 48 h (0.1 MOI). Viral yields in the cell lysate were determined by RT-qPCR and normalized with human β-actin. One-way
ANOVA was used for comparison with the scramble siRNA pre-treated group. c Dose–response analysis of the compound Xanthohumol is shown,
depicting both antiviral activity (red) and cytotoxicity (black). The gray dash line indicates 50% of the mock-treated control with EC50, CC50, and
chemical structure displayed. d Xanthohumol inhibited SARS-CoV-2 replication in Calu-3 cells that were infected by 0.1 MOI SARS-CoV-2. Viral loads in
the cell supernatant and cell lysate were determined at 48 hpi by RT-qPCR assays, respectively. Data represent means ± SD. One-way ANOVA was
used for comparison with the DMSO control group. e Xanthohumol inhibited SARS-CoV-2 replication in human embryonic stem cells-derived
cardiomyocytes (hES-CMs) that were infected by 0.1 MOI SARS-CoV-2. Viral loads in the cell supernatant and cell lysate were determined at 24 hpi by
RT-qPCR assays, respectively. Data represent means ± SD. One-way ANOVA was used for comparison with the DMSO control group. f siRNA-treated-
Huh7 cells were infected with SARS-CoV-2 (10 MOI for 12 h) before staining with DAPI (blue), viral nucleocapsid protein (NP) (red), and BODIPY 493/
503 lipid probe (green) for LD detection. Scale bar: 100 µm. g Knockdown of DGAT1/2 reduced viral yields in the cell culture supernatant but not cell
lysate. A single-cycle SARS-CoV-2 replication assay was performed in Caco-2 cells transfected with the indicated siRNA. Viral yields in the cell lysate
and supernatant were determined by RT-qPCR. Data collected at 2 hpi were taken as a baseline and at 10 hpi taken as the completion time for one
virus life cycle2. One-way ANOVA was used for comparison with the scrambled siRNA pre-treated group. For all statistical analyses, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, n.s. indicates P > 0.05. h Cell lysate at 10 hpi was also utilized for western blotting detecting SARS-CoV-2 NP and host
β-actin. Shown are triplicates (i.e., three different siRNAs) of each group.
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reporter gene plasmid carrying DGAT1 or DGAT2 pro-
moter region (Fig. 4a). Among the candidate proteins,
viral NP consistently enhanced both DGAT1 and DGAT2
gene expression whereas the other expressible viral
components did not (Fig. 4b). To determine if DGAT1
and/or DGAT2 physically interacts with viral NP,
co-immunoprecipitation assays were conducted, which

revealed that protein–protein interaction between
SARS-CoV-2 NP and DGAT1/2 was absent (Fig. 4c).
These results suggest that SARS-CoV-2 NP may tran-
scriptionally drive DGAT upregulation to meet the
heightened demand of TG and LD synthesis during its
replication cycle. To understand the precise impact of LD
formation to the SARS-CoV-2 life cycle, we performed
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protein ID of viral proteins associated with the LDs.
SARS-CoV-2-infected hamster lungs were harvested at 4
dpi, followed by LD isolation before BioID (Fig. 4d). Only
the viral spike and NP protein fragments were con-
sistently identified in three different hamster lungs. To
validate this finding, we performed immunofluorescence
staining of the virus-infected cells for visualization.
Increased LDs were observed in the perinuclear region of
Huh7 cells upon SARS-CoV-2 infection (Supplementary
Fig. S1a). To validate the potential co-localization
between NP–LDs and spike–LDs, we utilized immuno-
electron microscopy to detect the antibody-conjugated
gold nanoparticles in LDs. SARS-CoV-2-infected Huh7
cells were fixed before incubating with spike- or NP-
antibodies. Indeed, small dark circular particles (~10 nm)
were visible in LD regions of SARS-CoV-2-infected
groups, which was undetectable in those of the mock-
infection group (Supplementary Fig. S1b). The result
indicates that viral NP and spike are associated with cel-
lular LDs.
LDs consist of a neutral lipid core surrounded by a

phospholipid monolayer containing LD-associated pro-
tein adipose differentiation-related protein (named as
ADRP or PLIN2), which is the most abundant marker
protein on the LDs. Critically, ADRP and LDs provide
reciprocal stabilization16. To further investigate the
interaction between the viral NP and spike with LDs,
we first verified that both NP and spike were existing in
the LDs extraction of SARS-CoV-2-infected hamster lung
tissues using Western blotting (upper panel, Fig. 4e).
Next, immunoprecipitation assays were performed, where
direct interaction between ADRP and viral NP, but not
spike, was observed (lower panel, Fig. 4e). Importantly, we
found that siRNA knockdown of ADRP suppressed
SARS-CoV-2 replication in both cell culture supernatant
and lysate, suggesting the potential of targeting ADRP-
governed LDs integrity for antiviral therapy (Fig. 4f). To
the best of our knowledge, a direct ADRP-binding small
molecule compound is not available. Therefore, screening
for other repurposable drug compounds targeting the
ADRP-viral–NP interaction should be considered in
future studies.

The DGAT1/2 inhibitor Xanthohumol ameliorates SARS-
CoV-2 disease in a hamster model
Next, we employed an established golden Syrian ham-

ster model for COVID-19 to evaluate the in vivo effects of
DGAT inhibition on SARS-CoV-2 infection17. Dorn
et al.18 have previously reported that a high oral dose of
Xanthohumol (1000 mg/kg/day for 3 weeks) causes neg-
ligible signs of toxicity in BALB/c mice, indicating a
favorable drug safety profile of this natural compound
found in hops (flowers of Humulus lupulus). A single-
dose pharmacokinetic (PK) study of Xanthohumol in

humans showed a half-life of 18 h19. In our hamster
experiment, the first dose of 50 mg/kg of Xanthohumol
was given via intragastric gavage at 6 hpi, followed by
another 6 doses delivered from 1 to 3 dpi (twice daily
with 12 h interval) (Fig. 5a). At 4 dpi when the viral loads
are high and the histopathological changes are prominent
in the hamsters, the animal lungs were harvested for
evaluation of virological and histopathological analyses.
Xanthohumol significantly reduced the SARS-CoV-2
viral load in lung tissues (P < 0.001, Fig. 5b). The ther-
apeutic impact of Xanthohumol was also evidenced by
the immunofluorescence staining showing markedly
reduced viral NP expression in the bronchiolar and
alveolar epithelia, indicating restricted virus spread
(P < 0.0001, Fig. 5c).
Increased secretion of pro-inflammatory cytokines is

associated with severe COVID-19 in human20. To ascer-
tain if the therapeutic effect of Xanthohumol relieved
virus-induced cytokine dysregulation, we determined the
expression levels of IL-6, IL-10, and TNF-α, which are
prognostic markers for severe COVID-19, as well as other
major pro-inflammatory cytokines including IFN-γ. As
shown in Fig. 5d, mRNA expression of IFN-γ (P < 0.05)
and IL-10 (P < 0.05) were remarkably diminished in the
hamsters treated with Xanthohumol, whereas those
treated with remdesivir generally had lower but statisti-
cally non-significant changes compared with DMSO-
treated animals. We also detected substantially decreased
levels of serum IL-6 (P < 0.05) and TNF-α (P < 0.05) in
Xanthohumol-treated groups (Fig. 5e). Importantly,
Xanthohumol treatment also mitigated pulmonary
inflammation with fewer areas of consolidation and
alveolar space infiltration when compared with the
DMSO control (Fig. 5f). Taken together, our data
demonstrated the in vitro and in vivo effects of Xantho-
humol to ameliorate SARS-CoV-2 infection and the
associated inflammation.

Discussion
Collectively, our findings confirm the massive engage-

ment of host LDs-networking upon SARS-CoV-2 infec-
tion and identified hitherto unrecognized roles of DGAT
and ADRP during SARS-CoV-2 infection (Fig. 6). Tran-
scriptionally, SARS-CoV-2 NP activates DGAT1/2
expression that facilitates LD formation. LDs serve as
anchors for NP and spike localization, whereas the func-
tional significance of such trafficking as well as the direct
NP–ADRP interaction remains unknown at the present
stage. One of the possibilities is like the case of hepatitis C
virus (HCV), whose core protein has been shown to dis-
place ADRP from the LD surface to enable efficient virus
assembly21. In SARS-CoV-2, we found that NP upregu-
lates DGAT1/2 expression and thus facilitates virus pro-
duction; and both DGAT and ADRP determine virus
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fitness. Centralized via LDs, future studies are desired to
elucidate the interplay among the LD-residential viral NP,
the LD synthetase DGAT, and the LD stabilizer ADRP.
Intriguingly, distinct lipidomic patterns were observed in
cells infected with SARS-CoV-2 or SARS-CoV at 8 hpi,
when SARS-CoV-2 infection markedly perturbs TG

metabolism (Fig. 2). TGs serve as an important cellular
energy source and are lipolytically broken down into FAs,
which are then imported into mitochondria and con-
sumed by β-oxidation to produce ATP22. The result
indicates that SARS-CoV-2 may require higher demand of
energy supply to maximally fuel its genome and protein
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production during the early stage of the replication cycle.
Nevertheless, we cannot completely exclude the possibi-
lity that other CoVs may also perturb the host lipidome at
different time points as the modulation of host lipid
homeostasis is generally dynamic and the viral replication
kinetics of these CoVs differ23,24. A number of factors,
such as viral genome variance between SARS-CoV-2 and
SARS-CoV, cell models used for comparison, and time-
points of lipid profiling, may contribute to the apparent
differences observed in our findings. Further investiga-
tions to characterize the lipidomics perturbations induced
by different CoVs should be conducted.
Genetic deletion of DGAT1 in mice revealed that this

enzyme is not essential and caused TG decrease in many
tissues when the mice were fed with a high-fat diet25. Mice
lacking DGAT2, however, have severe reductions in TG
levels and die shortly after birth26. In this regard, further
investigations on whether or not DGAT1−/− mice are
resistant to SARS-CoV-2 infection should be considered.
In addition, the potential role of DGAT1 inhibition as a
pan-coronavirus agent should be further explored.
Increased cardiac TG content is a marker of lipotoxic
cardiomyopathy, while DGAT1−/− mice exhibit a number
of beneficial metabolic effects27. On the other hand,
ischemic and inflammatory responses caused by SARS-
CoV-2 infection can adversely affect cardiac function. In
such circumstances, Xanthohumol may potentially be

effective in directly reducing SARS-CoV-2 load and virus-
induced cardiac complications.
Compared with A922500, a DGAT1-specific inhibitor

with documented anti-SARS-CoV-2 activity28, Xantho-
humol inhibits both DGAT1 and DGAT2 with similar
potency29. Since compensatory mechanisms between
DGAT1 and DGAT2 exist30, and simultaneous suppres-
sion of DGAT1/2 activity exerts synergy when compared
with that of mono-inhibition (Fig. 3f), Xanthohumol
likely has a higher potential for clinical use against
COVID-19 than A922500 as DGAT2 are abundantly
expressed in blood, liver, and adipose tissues. In addition,
Xanthohumol shows anti-inflammatory effects as evi-
denced by its dose-dependent inhibition of lung inflam-
matory infiltrate in porcine reproductive and respiratory
syndrome virus infection in pigs31. Xanthohumol inhibits
NF-κB-dependent proinflammatory gene expressions
including IL-632. Appropriate and timely inhibition of IL-
6 may be beneficial in patients with severe COVID-1933

(Fig. 5e). Moreover, Xanthohumol can be easily extracted
from hops and should therefore be more affordable than
expensive antiviral drugs such as remdesivir in develop-
ing countries19. Importantly, in contrast to the orally
available Xanthohumol, remdesivir requires intravenous
administration, which makes outpatient or prophylactic
use of the drug difficult. Taken together, our study
identified an affordable treatment option for COVID-19.
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Further investigations to assess the effect of Xanthohu-
mol in additional animal models and clinical trials should
be considered.
In summary, our findings uncover that the TGs hyper-

production may partake in the metabolic dysregulation
underlying COVID-19 pathogenesis and provides the basis
for further development of DGAT-targeting and ADRP-
targeting interventions for COVID-19 therapeutics.

Materials and methods
Ethics statement
All experiments involving human subjects were con-

ducted in accordance with the Declaration of Helsinki and
the International Ethical Guidelines for Biomedical
Research. All donors gave written consent as approved by
the Institutional Review Board of the University of Hong
Kong/Hospital Authority Hong Kong West Cluster
(Reference code: UW13-364). All animal experimental
protocols were approved by the Animal Ethics Committee
in the University of Hong Kong (CULATR) and were
performed according to the standard operating proce-
dures of the biosafety level 3 animal facilities (Reference
code: CULATR 5370-20). All experiments involving live
SARS-CoV-2 and SARS-CoV followed the approved
standard operating procedures of the Biosafety Level 3
facility at the Department of Microbiology, The University
of Hong Kong34,35.

Cells and viruses
Human cardiomyocytes were differentiated from the

human embryonic stem cell HES2 (ESI) maintained in
mTeSR1 medium (STEMCELL Technologies), as pre-
viously described36. Briefly, HES2 cells were dissociated
with Accutase (Invitrogen) into single cells suspension on
day 0. Cells were seeded on low-attachment culture ves-
sels (Corning) and cultured in mTeSR1 medium supple-
mented with 40 µg/mL Matrigel, 1 ng/mL BMP4
(Invitrogen), and 10 µM Rho kinase inhibitor (ROCK)
(R&D) under the hypoxic environment with 5% O2. From
day 1 to 3, cells were cultured in StemPro34 SFM (Invi-
trogen) with 50 µg/mL ascorbic acid (AA) (Sigma), 2 mM
Gluta-MAX (Invitrogen), 10 ng/mL BMP4, and 10 ng/mL
human recombinant activin-A (Invitrogen). From day 4 to
day 7, 5 µM Wnt inhibitor IWR-1, a Wnt inhibitor
(Tocris) was added. From day 8 to day 14, cells were
cultured under normoxia in RPMI 1640 medium (Invi-
trogen) supplemented with 2 mM Gluta-MAX, 1× B-27
supplement (Invitrogen), and 50 µg/mL AA. The cells
were then dissociated with Accutase and seeded as
monolayers in desired culture vessels for 3 days before
infections. Vero-E6 (ATCC® CRL-1586™), Calu-3(ATCC®

HTB-55™), and human hepatoma (Huh7, JCRB® 0403™)
cells were maintained in Dulbecco’s modified eagle
medium (DMEM, Gibco, CA, USA) culture medium

supplemented with 10% heat-inactivated fetal bovine
serum (FBS, Gibco), 50 U/mL penicillin, and 50 μg/mL
streptomycin. All cell lines were confirmed to be free of
mycoplasma contamination by Plasmo Test (InvivoGen).
SARS-CoV-2 HKU-001a (GenBank accession number:
MT230904) was isolated from the nasopharyngeal aspi-
rate specimen of a laboratory-confirmed COVID-19
patient in Hong Kong; SARS-CoV (GZ50 strain) was kept
in our lab previously37. The viruses were propagated in
Vero-E6 cells and kept at −80 °C in aliquots until use.
Plaque forming units (PFU) were performed to titrate the
cultured SARS-CoV-2 and SARS-CoV38.

Plasma collection and lipid extraction
Patient blood was collected by regular phlebotomy

directly into BD Vacutainer® CPT™ tubes (heparin-Ficoll
tubes). Plasma was separated by centrifugation at
3000 rpm for 20min. Lipid extraction was performed for
liquid chromatography–mass spectrometry (LC–MS)
analysis as we previously described with slight modifica-
tions39. Briefly, 20 µL ice-cold methanol contained inter-
nal standards and butylated hydroxytoluene (BHT) was
added into 50 µL of each plasma sample. After vortex for
5 s, sample mixtures were placed on ice for 5 min before
vortex again for another 30 s. After that, samples were
incubated for 5 min at 1500 rpm at 4 °C in an orbital
mixer before centrifugation at 4500 rpm for 10min at
4 °C. The lipid-containing bottom phase was transferred
to glass vials and lyophilized using Centrivap cold trap
(Labconco) and stored at −80 °C before analysis.

Cell culture-based lipidomic sample preparation
Calu-3 cells in a 6-well plate were mock-infected or

infected with SARS-CoV-2 or SARS-CoV at 1 MOI. At 8
hpi, cells were collected for cellular lipid extraction using
the protocol as we previously described37. Briefly, 550 µL
of ice-cold 150 mM ammonium bicarbonate solution was
added to dissociate cells and 50 µL of cell suspension was
used for DNA extraction for normalization. A total of
250 µL of methanol containing internal standards and
BHT was added to the wells. Then, 2 mL of chloroform/
methanol (v/v 2:1) was added, followed by vortexing and
centrifugation at 4500 rpm for 10 min at 4 °C. The bottom
phase was transferred to glass vials and freeze-dried
before storing at −80 °C.

LC–MS based untargeted lipidomics
Untargeted lipidomic analysis was performed. The lipid

samples were analyzed using an Acquity UPLC system
coupled to a Synapt G2-Si high definition mass spectro-
metry system (Waters Corp., Milford, MA, USA). The
chromatography was performed on a Waters ACQUITY
CSH C18 column (100 × 2.1 mm; 1.7 µm) coupled to an
Acquity CSH C18 VanGuard pre-column (5 × 2.1 mm;
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1.7 µm) (Waters; Milford, MA, USA). The column and
autosampler temperature were maintained at 55 and 4 °C,
respectively. The injection volume was 7 µL for negative
and 5 µL for positive. The mass spectrometer was oper-
ated in MSE mode and the data were acquired in both
positive and negative modes. The capillary voltage was
maintained at 2.5 kV (positive mode) and 2.0 kV (negative
mode). Mass spectral data were acquired over the m/z
range of 100–1500. MS/MS acquisition was operated in
the same parameters as in MS acquisition. The collision
energy was applied at the range from 30 to 45 eV for
fragmentation to allow putative identification and struc-
tural elucidation of the significant lipids.
A total of 15 lipid internal standards were applied for

sample preparation and LC–MS analysis for monitoring
the lipids coverage and extraction efficiency including of
Arachidonic acid-d8, Platelet-activating factor C-16-d4
(PAF C-16-d4), 22:1 Cholesterol Ester, PE (17:0/17:0), PG
(17:0/17:0), PC (17:0/0:0), C17 Sphingosine, C17 Cer-
amide, SM (d18:1/17:0), PC (12:0/13:0), Cholesterol (d7),
TG (17:0/17:1/17:0) d5, DG (12:0/12:0/0:0), DG (18:1/2:0/
0:0), PE (17:1/0:0) and commercial standards used for
lipids identification. They all were purchased from Cay-
man Chemical (Ann Arbor, MI, USA) and Avanti Polar
Lipids, Inc (Alabaster, AL, USA). Quality control (QC)
samples were pooled and prepared by mixing equal ali-
quots of all of the biological samples for evaluating data
acquisition.

Data processing, statistical analysis, and lipids
identification
The lipidomic data were processed to the data matrix by

the MS-DIAL software before further statistical analysis.
MetaboAnalyst 4.0 (http://www.metaboanalyst.ca) and
SIMCA-P V12.0 (Umetrics, Umeå, Sweden) were used for
univariate and multivariate analysis, respectively. QC and
DNA-based normalization methods were applied during
data preprocessing. For human subject samples, the FDR-
adjust P-value < 0.05 and fold change > 1.5 or < 0.67 were
set as a criterion for selecting significant features. For
Calu-3 cell-based samples, FDR adjust P-value < 0.05 and
fold change > 1.25 or < 0.8 used as a cut-off. In multi-
variate analysis, the partial least squares discriminant
analysis was applied to find important variables with
discriminative power.
The significant lipid features were identified by

searching accurate MS and MS/MS fragmentation pattern
data in the MS-DIAL internal lipid database, MassBank of
North America (MoNA, http://mona.fiehnlab.ucdavis.
edu/), METLIN database (http://metlin.scripps.edu/),
and LIPID MAPS (http://www.lipidmaps.org/). For con-
firmation of lipid identity using authentic chemical stan-
dards, the MS/MS fragmentation patterns of the chemical
standards were compared with those of the candidate

lipids measured under the same LC–MS condition.
Pathway analysis was performed by Metaboanalyst and
KEGG mapper.

Animal model
Male and female Syrian hamsters, aged 6–10 weeks old,

were kept in biosafety level housing and given access to
standard pellet feed and water ad libitum as we previously
described17. Hamsters were randomly allocated to
experimental groups (n= 4) for antiviral evaluation. No
blinding was applied. All experimental protocols were
approved by the Animal Ethics Committee in the Uni-
versity of Hong Kong (CULATR) and were performed
according to the standard operating procedures of the
biosafety level 3 animal facilities (Reference code:
CULATR 5370-20)40. Experimentally, each hamster was
intranasally inoculated with 104 PFU of SARS-CoV-2 in
100 µL phosphate-buffered saline (PBS) under intraper-
itoneal ketamine (200 mg/kg) and xylazine (10 mg/kg)
anesthesia. Oral administration of Xanthohumol was
started at 6 hpi (50 mg/kg/day) and then continued for 6
additional doses (each dose with 12 h interval) from 1 to 3
dpi. Xanthohumol was delivered using corn oil (Sigma-
Aldrich, C8267) as a vehicle. One percent DMSO in corn
oil was taken as a placebo control through the oral route.
Animals were sacrificed at 4 dpi for virological analyses.
Lung tissue samples were collected for virological inves-
tigations. Viral yield in the tissue homogenates was
detected by the qRT-PCR method. IL-6 and TNF-α
expression in hamster serum was quantified by ELISA kits
purchased from the AssayGenie company. Histopatholo-
gical analyses and immunofluorescence staining of fixed
lung tissues were performed as we previously reported41.

LD extraction and protein ID
To identify the viral protein(s) associated with LDs,

hamster lungs on 4 dpi were subjected to LD extraction
utilizing the manufacturer’s protocol (Cell Biolabs, Cat#
MET-5011). Healthy hamster lung without infection was
taken as a negative control. The LD maker ADRP was
included as a positive control protein within the LD
extractions. The LD extraction of each infected hamster
lung was sent to the Center for PanorOmic Sciences
(CPOS) of the University of Hong Kong for viral protein
identification. Protein Identification is performed on an
online reverse-phase nanoLC coupled to an Orbitrap
Fusion Lumos mass spectrometer. The SEQUEST search
engine is used to search the acquired MS/MS spectra, the
resulting protein identifications are further validated
using the Proteome Discoverer (PD) software.

Cytotoxicity and antiviral measurement in vitro
The CellTiterGlo® luminescent assay (Promega Cor-

poration, Madison, WI, USA) was performed to detect
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the cytotoxicity of the selected drug compounds as
previously described42. The half cytotoxicity concentra-
tion (CC50) of the drug was calculated by Prism7
(GraphPad). A viral load reduction assay was performed
on the indicated cells. Supernatant samples from the
infected cells were harvested for qRT-PCR analysis of
virus replication2. To plot the half effective concentra-
tion (EC50) of Xanthohumol, the collected supernatant
was subject to standard plaque assay on Vero-E6 cells
and calculated by Prism7 (GraphPad).

Immunofluorescence staining
Huh7 cells in an 8-well chamber slide (LAB-TEK) were

infected with SARS-CoV-2 (10 MOI) for 12 h before
fixation with 4% Paraformaldehyde. After blocking, SARS-
CoV-2 NP was detected using the in-house rabbit anti-
SARS-CoV-2 NP serum (in house, 1:500) and Alexa Fluor
594 goat anti-rabbit IgG (H+ L) antibody (Abcam,
ab150080, 1:500). Cells were stained with DAPI and
BODIPY 493/503 lipid probe (Invitrogen) for visualization
of nucleus and LDs, respectively. The confocal imaging
was taken by Carl Zeiss LSM 800 microscope.

Immunoelectron microscopy
Huh7 cells were grown in six-well plates. The cell cul-

ture medium was removed after infection with SARS-
CoV-2 at 10 MOI for 24 h. The cells were washed with
PBS, trypsinized, fixed with 4% PFA before further pro-
cessing. Ultra-thin sections (10 nm) were cut and moun-
ted on nickel grids. Grids were incubated in a blocking
solution containing 1% bovine serum albumin and 0.1%
PBS for 1 h and subsequently cross-reacted with rabbit
anti-NP serum (in house, 1:50) or rabbit-anti-RBD serum
(in house, 1:50) at 4 °C overnight. After intensive washing,
grids were incubated in 1:100 dilution of anti-rabbit
antibodies conjugated to 10 nm gold (Sigma) at room
temperature for 1 h. Finally, the grids were stained with
2% uranyl acetate for 2 min before visualization. The
images were acquired in a Philips CM100 Transmission
Electron Microscope located in the Electron Microscope
Unit of the University of Hong Kong37.

Reporter gene assay
DGAT1 and DGAT2 promoter reporter clones were

purchased from GeneCopoeia (Cat# HPRM47226-PG02
and HPRM39535-PG02, respectively). SARS-CoV-2 ORF
clones were constructed as we previously described43. All
gene fragments were cloned into pCAGEN expression
vector with C-terminal FLAG-tag and confirmed by
Sanger sequencing. Huh7 cells were transfected with the
indicated reporter plasmid and each SARS-CoV-2 ORF
clone, individually. Gaussia luciferase activity was deter-
mined at 48 h post-transfection using the Gaussia luci-
ferase flash assay kits (Pierce). Nano-Luc was included as

an internal control for normalization of cell viability and
transfection efficiency.
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