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Abstract

Background

Advances in climate change research contribute to improved forecasts of hydrological

extremes with potentially severe impacts on human societies and natural landscapes. Rain-

fall erosivity density (RED), i.e. rainfall erosivity (MJ mm hm-2 h-1 yr-1) per rainfall unit (mm),

is a measure of rainstorm aggressiveness and a proxy indicator of damaging hydrological

events.

Methods and findings

Here, using downscaled RED data from 3,625 raingauges worldwide and log-normal ordi-

nary kriging with probability mapping, we identify damaging hydrological hazard-prone

areas that exceed warning and alert thresholds (1.5 and 3.0 MJ hm-2 h-1, respectively).

Applying exceedance probabilities in a geographical information system shows that, under

current climate conditions, hazard-prone areas exceeding a 50% probability cover ~31%

and ~19% of the world’s land at warning and alert states, respectively.

Conclusion

RED is identified as a key driver behind the spatial growth of environmental disruption world-

wide (with tropical Latin America, South Africa, India and the Indian Archipelago most

affected).

Introduction

Although there is a growing need to assess ecosystem responses to climate change-induced

disaster risk reduction, there is a lack of research on sensitive areas and on coastal zones, dry-

lands and watersheds, particularly in Global South low-income countries [1, 2]. In order to

advance global climate change studies, climate impact indicators are needed to help develop
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guidelines for landscape conservation planning [3, 4] and support decision-making based on

hydrological damage data [5, 6]. Rainfall erosivity density (RED in MJ hm-2 h-1, equivalent to

the most common MJ ha-1 h-1), i.e. rainfall erosivity per unit of rainfall, is an important cli-

matic indicator of floods and soil erosion [7, 8]. RED effects are apparent in catastrophic

weather events, due to the intensification of daily storms in the northern Hemisphere (Fig 1A)

and erosive precipitation in other parts of the world (Fig 1B). The effects of more intense

extreme rainfall worldwide [9–12] include intensified sub-daily precipitations [13, 14], the

local occurrence of flash floods [15] and the incidence of the erosive force of rainfall [16–19].

Damaging hydrological events are extreme phenomena, the source of multiple hazardous

events with potentially serious impacts on human societies [21]. Among these, floods and

events causing flooding are identified as hydrological disasters, which also include meteorolog-

ical disasters like thunderstorms. Like other extreme phenomena, hydrological disasters typi-

cally leave behind socio-economic damage, the severity of which depends on the resilience of

the affected population and the available infrastructures [22]. Potentially severe natural events

are typically not classified as natural disasters if they occur in areas without a vulnerable popu-

lation, e.g. deserts [23]. Information on the spatial distribution of RED can help delineate areas

prone to multiple damaging hydrological events [24, 25] and, in turn, can transfer important

prescriptions for disaster response planning. However, geoinformation and hazard mapping

have been and remain critical in modern visual communication science practice [26], particu-

larly in landscape decision-making, where the uncertainty component must be included in the

mapping [27, 28]. In particular, it is difficult to represent disaster-prone areas by RED, as dif-

ferent parts of terrestrial ecosystems respond differently to uneven, often nonlinear and uni-

versal forcing agents, with threshold-like features [29, 30]. Landscapes are, in fact, highly

responsive and non-linear systems to both external dynamics, such as climatic and non-cli-

matic factors, with a combination of gradual changes coupled with infrequent high-magnitude

events has led to dramatic landscape responses throughout Earth’s history [31]. Then, the

effects of these historical landscape responses to climate extremes and threshold processes are

key parameters affecting the geomorphological impacts of extreme hydrological events [32,

33].

Threshold mapping, and the processes of developing probability mapping, is a challenge in

geographic information science and spatial downscaling [34]. Scaling and integrating the rela-

tive uncertainty of these thresholds, for which storms drive surface flows, including

Fig 1. Emerging catastrophic weather events over the last four decades. a) Annual mean daily maximum storm

depth (mm d-1) in the Northern Hemisphere (mean data of areal maxima from NCEP/NCAR Reanalysis [20]), and b)

Global evolution of the erosive force of rainfall (rainfall erosivity) in MJ mm hm-2 h-1 yr-1 (arranged from Bezak et al.

[19]). Graph a) covers the period 1981–2018, and graph b) covers the period 1981–2020.

https://doi.org/10.1371/journal.pone.0272161.g001
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geomorphic effectiveness and erosional soil degradation, affect the spatial pattern of damaging

hydrological events, and ultimately improve our understanding of ecological responses to cli-

mate extremes and thresholds [35].

The apparent naturalness of a landscape measures the degree to which it is free from storm

damage (Fig 2A). Under erosive climatic conditions, the strength, intensity and frequency of a

given rainfall influence hydrological processes, even though they may still maintain the shape

of the land and the equilibrium of the environmental system in a resilient landscape (Fig 2B).

On the contrary, a change in the hydrological regime, especially when the thresholds of an

acceptable level of hydrological disturbance are exceeded, can have harmful consequences for

the landscape (Fig 2C).

The prerequisite for RED modelling is that the environmental system adapts to changes in

the natural hydrological regime. Usually, the prediction of precipitation and its extremes is

performed using physical models, mainly due to the high spatial variability and nonlinearity of

the problem [36]. The limitations of physical models (which are mainly computational at the

global level) are encountered with very extreme rainfall, when the prediction has to be per-

formed at time-scales less than 30 minutes over many years and for a spatial resolution of a

few kilometres. Recently improved convection models can predict extreme rainfall, but simu-

lations are not currently within reach due to their computational cost and degree of uncer-

tainty [37]. Retrieving extreme rainfall from satellite data would be an option to improve the

estimation of rainfall erosivity [38], but satellite data require corrections and need further

assessment, especially on a global scale [39]. With the advancement of global atmospheric

reanalysis data, numerical weather prediction techniques are becoming an encouraging mean

of estimating rainfall erosivity [40]. In particular, the production of global RED maps is a chal-

lenge due to two conflicting conditions, namely that the analysis requires precipitation data

with both high temporal resolution and global coverage. With a large volume of data and

uneven distribution of stations, geostatistical methods provide reasonable estimates of what

the variable of interest would be at intermediate locations. Geostatistics offers different

approaches to deal with this issue and provides attracting results when experimentally deter-

mined rainfall erosivity data are available at both regional [41, 42], continental [43, 44], or

even global scales [5]. However, geostatistical estimation of RED [17, 45, 46], and its spatial

patterns above given thresholds [47], have generally received limited attention [48].

Fig 2. Landscape under different weather regimes with changing RED thresholds for a given level of hydrological disturbance in: a) Storm-free

landscape, b) Landscape under storms not exceeding thresholds, and c) Stressed landscape where thresholds are exceeded resulting in

damaging hydrological events (image arranged from MeteoBlue, https://static.meteoblue.com/assets/images/crosslinks/yearcomparison.svg).

https://doi.org/10.1371/journal.pone.0272161.g002
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The value of geostatistical probability mapping for geographic information systems (GIS)

lies in providing reliable interpolation methods in error assessment and scaling, which can be

used in environmental modelling and decision-making [49]. The spatial uncertainty associated

with RED hazard over a range of scales is, in any case, an open issue, coupled with uncertain-

ties in downscaling methods and a lack of primary information data in many areas. The uncer-

tainty of RED thresholds actually poses challenges for geospatial assessment, as the worst

storms can fall at locations not well-covered by weather recording stations [50]. Global quanti-

fication of storms at fine time scales also remains challenging, as hourly or sub-hourly rainfall

data of sufficient length are poor, especially for critical and vulnerable regions such as the trop-

ics [51].

Here, we present for the first time the use of the Global Rainfall Erosivity Database (GLoR-

EDa) to estimate RED worldwide [5]. For this study, this database was updated as GLoREDa-

V2 and contains erosivity values estimated as RED from 3,625 stations in 63 countries with

time resolutions from 1 to 60 minutes. The results obtained are based on climate data and a

probabilistic approach to proceed under a soft geovisualisation in order to mitigate the uncer-

tainty involved in downscaling and geocomputational tracking. For this purpose, we used a

parametric kriging technique, which provides great flexibility for modelling environmental

data [52]. In particular, GIS and log-normal ordinary kriging coupled with output probability

mapping (LNOKpm) were used to continuously delineate the spatial uncertainty of RED

thresholds and predict areas prone to damaging hydrological events on a global scale.

Methods

Rainfall erosivity data

We refer to annual rainfall erosivity data from the Global Rainfall Erosivity Database (GloR-

EDa, here updated to GloREDa-V2), which covers 3,625 precipitation stations from 63 coun-

tries with temporal resolutions of 1 to 60 minutes. It is the result of an extensive collection of

high temporal resolution rainfall data from as many countries as possible in order to have a

representative sample across climatic and geographical gradients (Fig 3).

The number of stations varies greatly from continent to continent, with no station-data

available above 70˚ North and below 47˚ South. However, the latter is not an issue. In fact, the

heaviest rains have a low probability of occurring over the northern limit, where rainfall ero-

sivity values are close to zero, while large areas below the southern limit are open sea water or

ice-covered (Antarctic ice cap). Precipitation time-series range from a minimum of 5 years to

maximum of 52 years (on average, 16.8 years).

GloREDa contains the best available global datasets of annual rainfall erosivity (RE, MJ mm

hm-2 h-1 yr-1), in the form of (R)USLE-R factor [53], calculated on a monthly (j = 1, . . ., 12)

basis (REm, MJ mm hm-2 h-1 month-1), from which we obtained rainfall erosivity density

(RED, MJ hm-2 h-1) as the ratio between rainfall erosivity and precipitation amount [54]:

REj ¼
1

n
�
Pn

i¼1

Pmj
k¼1fI30 �

Pm
r¼1
½0:29 � ð1 � 0:72 � e� 0:05�irÞ� � vrg � k ð1Þ

REy ¼
Pj¼12

j¼1
REj ð2Þ

RED ¼
RE

1

n �
Pn

i¼1
Py

ð3Þ

where n is the number of years recorded; mj is the number of erosive events during a given
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month j; k is the index of a kth single event; vr is the volume of rainfall (mm) during the rth

period of a storm, which splits into m parts; I30 is the maximum 30-minute rainfall intensity

(mm h-1); ir is the rainfall intensity during the time interval (mm h-1); Py is the amount of rain

(mm) during a given year y. The numerator in Eq (3) represents the long-term mean rainfall

erosivity (MJ mm hm-2 h-1 yr-1), while the denominator is the relative mean amount of precip-

itation (mm) over the same number of years.

Warning and alert thresholds

We use concepts of a “warning state” and an “alert state” [55] for erosivity density, as regions

with high RED are at risk of flooding and water scarcity owing to their infrequent but very

intense and erosive rainstorm [19, 56]. As such, RED reflects not only the component of cli-

mate forcing reproduced in the aggressiveness of the storm (rainfall erosivity), but also the

damaging hazard and its associated hydrological risk [18]. In particular, RED values> 3.0 MJ

ha-1 h-1 indicate an increased risk of erosive rainstorms, soil erosion and flooding [57]. This

critical threshold value was popularised in storm geomorphology by Dabney et al. [58] as the

runoff increases when RED exceeds 3 MJ hm-2 h-1, thus leading to an increasing erosive hazard

as storm erosivity represents a large proportion of the rainfall amount in an intense event.

Mostly set regionally on a monthly basis [44], this hydrological threshold (alert) could help

detecting areas prone to erosion- and overland flow [59, 60]. Abstractions such as thresholds

of change and strength are all essential as landscapes may be able to counter or assimilate

pulses of change as a form of sensitivity or stability [61]. The use of this abstraction for the way

geomorphological systems react to climate variability and change is still an important topic

since its conception by Allison and Thomas [62] and Phillips [63]. Given the global scale and

annual resolution of this study, a second, smaller RED threshold value (warning) was also used

to better capture interactions between changing hydrologic variability and ecological

responses. For instance, major tropical forest regions like Amazon and African regions are less

vulnerable to hydrological hazards than Southeast Asia [64]. When RED values are > 1 MJ ha-

1 h-1, only a certain amount of precipitation can cause relatively high erosivity [57]. Therefore,

Fig 3. Geographical extent of the global network of stations (red circles) where rainfall erosivity density (RED) data were available.

https://doi.org/10.1371/journal.pone.0272161.g003
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we adopted two threshold values as follows: RED exceeds the threshold of 1.5 MJ hm-2 h-1 in

the warning state and exceeds 3.0 MJ hm-2 h-1 in the alert state. The two values correspond,

respectively, to the median and the 3rd quartile of the distribution of the RED data (Fig 4A).

These values also mark the range of critical RED values identified by Diodato et al. [8] with a

50-year return period in north-western Italy. The advantage of using RED threshold values

compared to other rainfall aggressiveness indicators are [54]: a) greater propensity to classify

geomorphological hazards; b) greater stability, obtained with a shorter and heterogeneous

period of recording; and c) easier mapping over large areas due to its independence on altitude

up to 3000 m a.s.l. [65].

Log-normal ordinary kriging probability map

Kriging is a generic name covering a range of spatial least-square prediction methods [66].

Most kriging algorithms with references to hydrogeological applications were reviewed in

Kitanidis [67]. For some kriging models, only one estimate per cell is required; for others, as in

decision-making, it is necessary to know the local uncertainty associated with the estimates

[68, 69]. The ordinary lognormal kriging algorithm has the potential to improve maps because

such techniques can be combined with data transformation and detrending options, and can

take different forms, such as maps of probability outputs, quantiles and standard errors of pre-

diction, when the normality of the distribution is verified [52]. In contrast, indicator kriging

cannot perform data-transform and detrending, when soft information is required within the

probability mapping.

If the prediction in the unknown locations is normally distributed, then the mean and

median of the predictions will be positioned centrally in the probability density distribution of

each location.

The area under the distribution curve to the right of the threshold line predicts the proba-

bility that the value is greater than a threshold value. The distribution of predictions changes

for each location as the mean and standard error of the predictions change. Thus, by keeping

the threshold value constant, a probability map is produced for the whole area. Since the RED

data show a skewed distribution, we used a lognormal ordinary kriging in the form of a proba-

bility output map (LNOKpm). The assumption of normality of the distribution was checked

after the data were log-transformed. A straightforward approach is to classify as hazardous all

locations where the probability of exceeding a critical threshold value, zk, is greater than a criti-

cal RED value (1.5 MJ hm-2 h-1 for the warning state and 3.0 MJ hm-2 h-1 for the alert state).

The ordinary kriging model assumes that the data are a realisation of an auto-correlated pro-

cess plus an indipendent random error. For a complete analytical procedure of LNOKpm,

refer to Krivoruchko et al. [70].

Results and discussion

Exploratory data analysis and transformation

Exploratory data analysis is important to inspect and explore data statistically before deciding

whether and how to transform them for analysis and to illustrate what can be achieved by

transforming data (e.g. into logarithms) of single variates and calculating principal component

analysis of multivariate data [71]. The first step in the spatial analysis is to check the raw data

for drifts and outliers [72], and finally for normal distribution. Outliers and spatially-skewed

data can be detected by the frequency distribution and the third standardised moment or

skewness (g), whose value is 0 for a normal distribution and any other symmetric distribution

with finite third moment.
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A lognormal transformation was used to approximate the skewed distribution of the RED

data (Fig 4A), with g = 2.244 to a normal distribution (Fig 4B), with g = 0.011.

The QQ-plot shows the theoretical and estimated distribution deviating from the normal

distribution as the RED values increase (Fig 4C), while a normalisation of the distribution is

evident after the logarithmic transformation (Fig 4D). With the normality of the distribution

restored, it is possible to extend the log-normal ordinary kriging to probability mapping [73].

The drift analysis demonstrated the existence of a non-random (deterministic) component

in spatial distribution of the data: the moderate gradient of RED data occurs from north to

south regions of the world. However, we considered that the stationarity hypothesis does not

hold for the global, but only locally. Thus, in order to make a robust assumption of homogene-

ity of variances, the concept of process stationarity has been replaced by a stationarity of gov-

erning influence regarding local hydrological processes and nearby local anisotropy. In such a

situation, ordinary kriging is recommended for interpolation [74].

Spatial structural modelling

To instruct the kriging interpolation, a regionalisation model was fitted using an iterative pro-

cedure developed by Johnston et al. [73], which consists of two steps. Step 1 assumes an isotro-

pic model, and performs an initial run of the experimental spatial structure on the standard

deviation-scaled data zðs0Þ ¼ ðzðs0Þ � �zÞ � s� 1, where z(s0) is used to denote the jth measure-

ment of a variable at the αth spatial locations s0, and σ is the sample standard deviation. With

step 2 any parameter is calibrated interactively, such as: lag number (assumed equal to 7), lag
size h (assumed equal to 10 km for the warning state and 20 km for the alert state), range a

Fig 4. Exploratory data analysis and verification of normality of rainfall erosivity density (RED) data. a) Distributional frequency on the original

RED data and b) after log-normal transformation; c) QQ-Plot of the theoretical and estimated distribution of the original RED data and d) after log-

normal transformation. Warning and alert thresholds (MJ hm-2 h-1) are shown in a).

https://doi.org/10.1371/journal.pone.0272161.g004
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representing the limit of spatial dependence (equal to 112 km for the warning state and 70 km

for the alert state, which are comparable to the ranges of spatial dependence of extreme precip-

itation on a global scale, varied between 54 and 265 km [75].

Isotropic semivariograms were then modelled as a combination of two distinct spatial

structures, the nugget variance and a spherical structure, as shown in Eq (4):

g hð Þ ¼

0

C0 þ C
3

2

h
a
�

1

2

h3

a3

� �

C0 þ C

h ¼ 0

0 < h

h > a

� a ð4Þ

8
>>><

>>>:

The nugget effect C0, equal to 0.066 for the warning state and 0.072 for the alert state, is sim-

ply the sum of the measurement error, and the microscale variation of RED, which remains

unknown due to the spatial variability associated with the distance between raingauge stations.

The value that the semivariogram model reaches at the range (the value on the h-axis) is called

the sill (partial sill + nugget), and counts 0.182 for the warning state and 0.189 for the alert

state, while h is the distance between the unknown point (h = 0) and a generic point-station.

In this way, Fig 5 shows the experimental unidirectional semivariogram computed from

the 3,625 data of RED, with spherical admissible models fitted for threshold-values zk
(RED > 1.5, and> 3.0 MJ hm-2 h-1).

Semivariogram values increase with separation distance, reflecting the assumption that

RED data that are close tend to be more similar than data that are farther away. In particular,

the spherical semivariogram model fluctuates around the sill value at 1.05˚ (~112 km) for the

warning state (Fig 5A, violet curve) and at 0.70˚ (~70 km) for the alert state (Fig 5B, violet

curve), suggesting that the phenomenon recorded at alert state operates on a smaller spatial

scale than in the warning state. This is physically correct as RED events affect a smaller area as

they become more extreme, and the physical mechanisms of extreme storm events are size-

dependent [76].

The errors involved in the transfer of information from the point to the landscapes via

LNOKpm were assessed by means of quantitative standard error estimation and cross-valida-

tion [77], re-estimating the RED data at raingauge locations after removing one RED value at a

time from the datase [78]. The difference between the estimated and the corresponding actual

indicator value is the experimental error. Thus, repeating this estimation for the number of the

experimental data n = 3,625, the cross-validation statistics were calculated, as mean error and

root mean square errors (RMSE).

Fig 5. Modelling of spatial dependence to instructing kriging interpolation. Experimental semivariogram (dots)

with permissible spherical model estimates (violet curve) at a) threshold zk> 1.5 MJ hm-2 h-1 and b) at threshold zk>
3.0 MJ hm-2 h-1 (b). Units of the semivariance γ are multiplied by 10.

https://doi.org/10.1371/journal.pone.0272161.g005
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Cross-validation estimates the proportion of neighbourhood values that are below or above

the threshold value. The high proportions of low values not exceeding the threshold and high

values exceeding the threshold are a measure of the success of the kriging estimates Fig 6.

This is an estimate of the proportion of the values in the neighbourhood that are above the

threshold value. The mean error values of -0.005 (warning state) and -0.019 (alert state), and

RMSE = 0.262 (warning state) and RMSE = 0.215 (alert state), are close to zero, making it clear

that there are no systematic errors.

Global spatial pattern of RED-kriged probability estimation

Fig 7A presents the map of the hydrological hazard-prone areas at the warning state, highlight-

ing the fact that about 31% of the world’s land area has a greater than 50% probability of

exceeding the zk threshold (RED > 1.5 MJ hm-2 h-1). The map indicates that the phenomenon

taken into account by LNOKpm is not smooth (i.e. RED values change strongly with distance).

The most affected hydrological hazard-prone areas are Africa and the southern Asian conti-

nents, southern Saudi Arabia, Australia, almost all of the USA with an offshoot to western

Canada. These figures are consistent with statistics indicating that about 10 million hectares of

cropland are lost each year due to soil erosion worldwide [79], particularly in Asia, Africa and

South America, where erosion is more severe [80, 81].

China’s far southeast, where the probability of exceeding RED at warning state is high, has

experienced significant upward trends in rainfall erosivity over the period 1950–2010 [82].

Similarly, in many parts of Africa, where the warning state is expected to be exceeded over a

wide area, soil erosion is becoming a major problem due to the high sediment production in

tropical mountain streams [83]. The Mediterranean also has a high probability of reaching a

warning state, where the aggressiveness of rainfall [8], in tandem with RED, seems to show a

propensity to increase in recent decades [18]. However, in addition to the frequent high erosiv-

ity of precipitation regimes and human disturbances, it can be argued that much of the Medi-

terranean landscape is naturally vulnerable to soil erosion processes [84, 85]. Fig 7B, on the

other hand, shows the map of the hydrological hazard-prone areas at alert state, highlighting

the fact that ~19% of the world’s land area has a greater than 50% chance of exceeding the zk
threshold (RED > 3.0 MJ hm-2 h-1).

With respect to the alert threshold (Fig 7B), regions that have become free hazard-areas

include the Mediterranean lands, almost all of the USA, Japan, Pakistan, northern and central

Fig 6. Cross-validation for warning and alert states. Scatterplots between actual rainfall erosivity density (RED)

values above the given threshold and LNOKpm probability for the thresholds a) zk (RED)> 1.5 MJ hm-2 h-1 and b) zk
(RED)> 3.0 MJ hm-2 h-1. The white vertical lines in both graphs represent the respective RED thresholds (a, warning

state; b, alert state). The cross-validation scatter diagrams (a and b) show that the actual RED values below and above

the given thresholds at the warning and alert states are in agreement with the respective kriged probability.

https://doi.org/10.1371/journal.pone.0272161.g006
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Africa and south-central Australia. Canada, Greenland and Eurasia still remain below the zk
threshold in warning and alert states, because these regions have a climate less exposed to the

critical level of RED, and where rainfall erosivity is also lower with a decrease in rainfall inten-

sity as latitude increases northwards. For the areas of the USA exposed to hydrological hazards

at the alert stage, the map in Fig 7B roughly overlaps with the map of the country highlighting

the hurricane-prone areas [86].

The southernmost part of China, and parts of the southern USA, central and southern

Africa, Latin America and India have a very high probability of exceeding the warning thresh-

old. These regions reach soil erosion hotspots of> 20 Mg hm-2 yr-1, and are among that most

intensely eroded areas in the world [87]. In particular, the observation in India follows the

small convective systems that dominate throughout the Western Ghats region [88], but large

events are also more intense [89].

These findings are consistent with the results of Medeiros et al. [90], who showed that the

most perturbed areas in the tropical region are associated with convective storms that can have

smaller radii (~10 km), as suggested by the smallest kriged-range obtained with the

Fig 7. Global spatial patterns of kriged-probability map over the period 2002–2011. Exceedance of the rainfall

erosivity density (RED) threshold-value at a) warning state: zk (RED)> 1.5 MJ hm-2 h-1, and b) alert state: zk (RED)>

3.0 MJ hm-2 h-1.

https://doi.org/10.1371/journal.pone.0272161.g007
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semivariogram function exceeding the zk threshold (RED > 3.0 MJ hm-2 h-1) at alert state.

These are the highest RED values found in most of South America and central and southern

Africa, which are characterised by a complex property in the transfer of erosive energy to land.

In these regions, sub-grid scale convection and intensification of rainfall generation processes

are very hazardous, as long-lived mesoscale convective systems are well organised at these lati-

tudes and contribute disproportionally to extreme tropical precipitation, with ~40% of days

with more than 250 mm of rain over land being associated with convective systems lasting

more than 24 hours [91].

Kriged-probability mapping validation at continental spatial scale

The geostatistical approach used is robust to outlier effects even when the number of experimental

data is relatively small and irregularly distributed [92], as the few network stations over some

regions (e.g. Russia and the African continent). Then, a main drawback that can occur is when

rainfall decreases significantly after heavy rainstorms [93]. However, our approach has proven to

give satisfactory results when comparing LNOK-based probability maps with the hydrological

disasters recorded by the Munich Reinsurance Company (Munich Re, https://www.munichre.

com, on a continental scale (data not shown). Thus, for the Asian continent, it was possible to

compare the kriged-probability map, for RED> 1.5 MJ hm-2 h-1, with the damaging hydrological

events (storm + erosional soil degradation) that occurred between 1981 and 2018 (Fig 8).

The orange and red colours of the kriged map covering Saudi Arabia, Yemen, Oman, Paki-

stan, Nepal, Bangladesh, Burma, Vietnam, Thailand, Cambodia, the Indonesian Archipelago,

southern Japan and south-eastern China (Fig 8A, red areas) are roughly overlapping with the

hazards in multiple locations with the aggregate hydrological impact of the Munich Re dataset

(not shown).

The average number of weather, climate and water hazards per decade has increased over

the period 1970–2019 in Asia (Fig 8B). They have increased from, on average, one disaster

every 15 days to one every three days [94], with a higher proportion of floods and storm events

(Fig 8C). On the central and northern Asian continent, the low probability of high RED values

(Fig 7), generally associated with a low probability of damaging hydrological events (Fig 8A),

is consistent with the rainfall minima of desert areas (e.g. in Mongolia and in northwestern

China) and Siberia [95].

For the African continent, spatial dependence may be more difficult to detect because RED

data are scarce. Although broad climatic patterns can be identified across the African conti-

nent, there are many local variations from place to place, with the most important differentiat-

ing climatic factor being rainfall [96]. The continent is most affected by both a continental

tropical air mass to the north and by maritime tropical and equatorial air masses to the south

(meeting in the Inter-Tropical Convergence Zone) [97]. Essentially, the equatorial maritime

air mass is unstable and brings rain, while the tropical maritime air mass, when fully devel-

oped, is stable and generally does not bring rain unless forced over a high mountain [98].

However, with the exception of some northern coastal countries and an overestimation for

some southern countries, it is still possible to roughly identify the areas most susceptible to

damaging hydrological events for African lands below 15˚ N (Fig 8D, red areas), compared to

the flood pattern of the Munich Re dataset (not shown).

This is also in line with increased flooding and storm-driven erosion in Africa (Fig 8E), and

nutrient loss due to increased extreme diurnal rainfall observed in tropical eastern and south-

eastern Africa in the late 20th century [99], calling into question the sustainability of food secu-

rity for the ~300 million people currently living in Africa south of the equator [100]. Floods

account for 60% of recorded disasters, while storms account for 17% (Fig 8F).
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Conclusion

Detailed rainfall datasets and appropriate modelling approaches are necessary to establish the

mechanisms underlying the complex set of physical processes that govern the response of

hydrological cycles to a changing climate. Indeed, hydrological hazard responses to climate

change remain difficult to quantify with existing modelling frameworks. Although in some

areas of the world (such as the African continent) the network of weather stations is still

Fig 8. Comparison of kriged probability maps with damaging hydrological events (Asia) and flood events (Africa) over the last four-

five decades. a) Rainfall erosivity density (RED)> 1.5 MJ hm-2 h-1 with b) with trend of disasters and c) related percentage; d) Rainfall

erosivity density (RED)> 3.0 MJ hm-2 h-1 with e) trend of disasters and f) related percentage. The graphs a) and d) refer to the period

2002–2011, graphs b), c), e) and f) to 1971–2019.

https://doi.org/10.1371/journal.pone.0272161.g008
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insufficient, with the widespread availability of high-temporal resolution rainfall records for

large areas and modern advances in climate modelling, new opportunities are opening up for

the use of geostatistical methods for large-scale planning, hazard management and risk preven-

tion. This paper presents a geostatistical modelling framework for the proper interpretation of

spatially-explicit hydrological hazard, which assumes a set of quantitative data for the location

of interest (precipitation extremes and rainfall erosivity) and probabilities associated with

ranges of rainfall erosivity density above critical values. They include the best available precipi-

tation data from a set of stations (3,625) worldwide (63 countries) and rainfall erosivity data, as

provided by an updated version of the Global Rainfall Erosivity Database.

In this study, we have analysed for the first time the spatial pattern of hydrological hazard

associated with rainfall erosivity in a global-scale visualisation. The results indicated that about

31% and 19% of the world’s land area have a greater than 50% probability of exceeding the

warning and alert thresholds of 1.5 and 3.0 MJ hm-2 h-1, respectively, with the most affected

regions being tropical Latin America, South Africa, India and the Indian Archipelago. The

geostatistical modelling, designed for a spatial resolution of ~100 km, is compatible with the

vast majority of countries in the world (167 out of 234 having an area>10,000 km2, https://

www.worldometers.info/geography/largest-countries-in-the-world) and within the aggrega-

tion range of most environmental and biodiversity models [101]. Highlighting the potential of

probabilistic geostatistical modelling, our results suggest the possibility of using geostatistical

spatial modelling to determine the probability of exceeding thresholds of high erosivity density

and to generate probability maps to delineate the most sensitive areas, which may lead to cata-

strophic regime shifts related to the occurrence of damaging hydrological events. This soft-

computing modelling represents a paradigm shift on how to provide timely, accurate and

actionable information on hydrological hazards [102–104]. Without giving the value at each

point but returning a probability map, this approach offers the possibility to obtain informa-

tion also where no data or measurements exist, as it identifies the hydrological hazard associ-

ated with the probability of exceeding an erosivity density threshold. In this way, the approach

can support decision-making. We thus offer these results as a springboard to support policy-

makers, local authorities and civil protection in planning medium- and long-term actions to

reduce hydrological disasters [105–106]. As rainfall erosivity is projected to increase by at least

35% globally by 2070 [107], the probability of hydrological hazards will also show similar

trends.

A more careful validation of the global map of hydrological disaster-prone areas is certainly

needed. However, this is a promising first step, and the global probability map was well suited

to hydrological disasters in regions where data coverage was substantial. Quantifying the prob-

ability of exceeding threshold values of erosivity density in a way that enables meaningful com-

parisons with hydrological records is an important topic of study, and our article is a step

forward towards this goal. In fact, geostatistical methods can be practically implemented to

create spatially explicit probabilistic maps at the country level, and can be useful in the study of

erosive hazards, which, however, depend on several interacting factors, such as complex orog-

raphy, large-scale air flow and teleconnection patterns. Then, purely geostatistical findings do

not produce an explicit mechanistic modelling of rainfall erosivity density, which, however, is

data demanding and can be accompanied by a large amount of uncertainties in the estimates.

Future studies should assess the results in diverse physical geographic conditions and socio-

economic situations, taking into account that population density, infrastructures, plant density

and other factors also influence the occurrence of damage. In addition, probability calculations

have also to take into account particularly long periods of low rainfall intensity, which are not

erosive but can lead to deadly flooding and landslides.
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92. Pardo-Igúzquiza E. Optimal selection of number and location of rainfall gauges for areal rainfall esti-

mation using geostatistics and simulated annealing. J Hydrol 1998; 210:206–20.

93. Seo DJ, Smith JA. Characterization of the climatological variability of mean areal 665 rainfall through

fractional coverage. Water Resour Res 1996; 32:2087–95.

94. Douris J, Kim G. The atlas of mortality and economic losses from weather, climate and water extremes

(1970–2019). Geneva: World Meteorological Organization; 2021.

95. Dando WA. Asia, climates of Siberia, Central and East Asia. Encyclopedia of World Climatology. Dor-

drecht: Springer; 2005.

96. Mitchell T. Africa rainfall climatology. Seattle: University of Washington; 2001.

97. Smith DE, Oliver JE. Tropical and equatorial climates. Dordrecht: Springer; 1987.

98. Miller AA. Air mass climatology. Geography 1953; 38:55–67.

99. Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N. More extreme precipitation in the

world’s dry and wet regions. Nat Clim Chang 2016; 6:508–13.

100. Pohl B., MacRon C. & Monerie P. A. Fewer rainy days and more extreme rainfall by the end of the cen-

tury in Southern Africa. Sci Rep 2017; 7:6–12.

101. Amatulli G, Domisch S, Tuanmu M-N, Parmentier B, Ranipeta A, Malczyk J, et al.A suite of global,

cross-scale topographic variables for environmental and biodiversity modeling. Sci Data 2018;

5:180040. https://doi.org/10.1038/sdata.2018.40 PMID: 29557978

102. Diodato N. Geostatistical uncertainty modelling for the environmental hazard assessment during sin-

gle erosive rainstorm events. Environ Monitor Assess (2005); 105:25–42. https://doi.org/10.1007/

s10661-005-2815-x PMID: 15952510

103. Diodato N. Spatial uncertainty modeling of climate processes for extreme hydrogeomorphological

events hazard monitoring. J Environ Eng 2006; 132:1530–38.

104. Alipour ZT, Mahdian MH, Pazira E, Hakimkhani S, Saeed M. The determination of the best rainfall ero-

sivity index for Namak Lake basin and evaluation of spatial variations. J Basic Appl Sci Res 2012;

2:484–94.

105. de Medeiros ES, de Lima RR, de Olinda RA, Costa dos Santos CA. Modeling spatiotemporal rainfall

variability in Paraı́ba, Brazil. Water 2019; 11:1843.

106. Guardiola-Albert C, Dı́ez-Herrero A, Cuervo-Arango MA, Bodoque JM, Garcı́a JA, Naranjo-Fernández

N, et al. Analysing flash flood risk perception through a geostatistical approach in the village of Nava-

luenga, Central Spain. J Flood Risk Manag 2020; 13:e12590.

PLOS ONE Hydrological disaster prone-areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0272161 August 24, 2022 18 / 19

https://doi.org/10.1038/s41467-017-02142-7
https://doi.org/10.1038/s41467-017-02142-7
http://www.ncbi.nlm.nih.gov/pubmed/29222506
https://doi.org/10.1038/sdata.2018.40
http://www.ncbi.nlm.nih.gov/pubmed/29557978
https://doi.org/10.1007/s10661-005-2815-x
https://doi.org/10.1007/s10661-005-2815-x
http://www.ncbi.nlm.nih.gov/pubmed/15952510
https://doi.org/10.1371/journal.pone.0272161


107. Panagos P., Borrelli P., Matthews F., Liakos L., Bezak N., Diodato N. et al., 2022. Global rainfall ero-

sivity projections for 2050 and 2070. Journal of Hydrology, 610, Art.no.127865

PLOS ONE Hydrological disaster prone-areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0272161 August 24, 2022 19 / 19

https://doi.org/10.1371/journal.pone.0272161

