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Abstract 

Human immunodeficiency virus type 1 is
associated with the development of neurocog-
nitive disorders in many infected individuals,
including a broad spectrum of motor impair-
ments and cognitive deficits. Despite exten-
sive research, the pathogenesis of HIV-associ-
ated neurocognitive disorders (HAND) is still
not clear. This review provides a comprehen-
sive view of HAND, including HIV neuroinva-
sion, HAND diagnosis and different level of
disturbances, influence of highly-active anti-
retroviral therapy to HIV-associated dementia
(HAD), possible pathogenesis of HAD, etc.
Together, this review will give a thorough and
clear understanding of HAND, especially HAD,
which will be vital for future research, diagno-
sis and treatment.

HIV neurobiology
and neuroinvasion

Human immunodeficiency virus (HIV) is a
member of the genus Lentivirus, part of the
family of Retroviridae.1 As is well known, HIV-1
is highly virulent and infective,2 and is respon-
sible for the current AIDS pandemic.3 The HIV-
1 genome contains three structural genes (gag,
pol and env),4 two regulatory genes (tat and
rev) and four accessory genes (nef, vif, vpr and
vpu). The HIV-1 genome also consists of at
least seven structural elements (LTR, TAR,
RRE, PE, SLIP, CRS, and INS).
The initial step of HIV infection is binding of

the virions to the CD4 receptor and an addition-
al co-receptor on the cell surface. Twelve
chemokine receptors have been recognized act-
ing as HIV co-receptors in cultured cells, but only
two appear to play a more definitive role in vivo,
CCR5 and CXCR4.5 CCR5 can bind macrophage-
tropic, non-syncytium-inducing (R5) viruses
and it has been suggested to play a more pivotal
role in the initiation and spread of HIV infection.
This is based on the fact that R5 viruses are pre-
dominant not only during the early stages of HIV
infection,6 but more than half of HIV-infected
individuals uniquely carry CCR5-using HIV
strains throughout the course of their infection.

Moreover, Individuals homozygous for CCR5-
Δ32 mutation, which is a 32bp deletion in the
host CCR5 gene, were described to be resistant
to HIV infection by R5 strains,7,8 although recent
reports based on a single patient suggest that
subsequent infection in patients harbouring
CCR5-Δ32 can occur via CXCR4 receptor.9

Overall, the CCR5 or macrophage-tropic strains
play a crucial role in HIV infection of the central
nervous system (CNS).

Possible mechanism of HIV-1
entry into the central nervous
system

The R5 viruses are the most common HIV-1
strains isolated from HIV-infected brains,10

which has been reported as the second most
frequently infected organ in HIV-infected indi-
viduals at autopsy.11 HIV-1 entry into the brain at
early phase of the infection can occur by sever-
al means,12 including transcytosis; transition by
infected endothelial cells, passage through the
blood-cerebral spinal fluid (CSF) barrier of the
choroid plexus (CPx),13,14 and the Trojan horse
model.15,16 Transcytosis pathway is that where
brain microvascular endothelial cells (BMVECs)
take up HIV-1 particles into vacuoles from the
blood side and release them on the brain side of
the BMVECs. However, it is estimated that only
less than 1% of the taken-up virus can be trans-
mitted through BMVEC.17,18 The second means
is still very controversial because it is widely
agreed that BMVECs only produce very limited
HIV-1, if at all. CSF dissemination from a pri-
mary infection of CPx has been proposed as
another possible mechanism partially supported
by recent studies.19,20 However, our studies,21

together with others,14,22 could not locate any
productive HIV infection of the CPx both in vivo
and in vitro. The Trojan Horse hypothesis is gen-
erally accepted due to the most compelling evi-
dence.15,16 The details of that model have been
elucidated in many reviews.23,24

Although, HIV entry to CNS largely occurs via
CCR5 co-receptor, the CXCR4 and CCR3 co-
receptors are also reported to play a role in
mediating HIV infection of brain. They are
expressed in brain microglia although at lower
efficiency than CCR5.25 Moreover, HIV co-recep-
tors CCR2, APJ, CX3CR1, STRL33/BONZO, and
gpr1 are also expressed in the human brain
although so far no defined role for them in
mediating HIV CNS infection has been report-
ed. However, CCR2, which is expressed on brain
microvascular endothelial cells, has been
reported to play a critical role for macrophage
transendothelial migration in other neurologi-
cal inflammatory disease,26 suggesting that it
might facilitate HIV-infected leukocytes to
transmit through the blood brain barrier (BBB).

Another study has shown HIV-1 variants isolat-
ed from the infected brain-derived CD4-positive
cells expressed a CCR8/TER1, suggesting
TER1/CCR8 can function as a co-receptor for
HIV-1 CNS infection.27 HIV co-receptor CX3CR1,
expressed on microglia, is crucial for sustaining
neuron-microglia communication and knockout
of CX3CR1 can prevent neuron loss.28 APJ is
another co-receptor for some HIV-1 strains,
which is expressed in the human brain and in
NT2N neurons. Studies have indicated it might
play a role in HIV neuropathogenesis.29,30

Impairment of blood brain
barrier function 
in HIV-infected individuals 

The alteration of BBB of HIV-1 infected
patients has been detected either by MRI or sin-
gle-proton emission computed tomography or is
indicated by the leakage of serum protein,
quinolinic acid, metalloproteinase and nitric
oxide (NO) in the CSF.31-39 The relative genomic
and proteomic changes of HBMEC induced by
HIV-1/HIV-infected monocyte-derived macropha-
ges (MDM) have also been found.40,41
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Alternation of the BBB function is not only a fea-
ture of HIV-1 CNS infection but it has a crucial
impact on the pathogenesis of HAD,32 because
BBB usually only permits a small percentage of
leukocytes to cross without disrupting its
integrity, which preclude the circulating mono-
cytes. Therefore, its impairment facilitates pen-
etration of virus and influx of more activated and
HIV-1 infected monocytes into the brain, which
can spread virus to the resident glia cells, includ-
ing microglia and astrocytes, and further disrupt
the integrity of the BBB. The mechanisms of
BBB dysfunction in the course of HIV infection
are poorly understood. It has been reported that
the plasma lipopolysaccharide (LPS), which can
compromise the permeability of BBB, is signifi-
cantly higher in HIV-1 progressors than LPS-
injected HIV-1 seronegative human volunteers.42

In addition, several cellular and viral factors
have been demonstrated, including tumor
necrosis factor-a (TNF-a) and interleukin-6 (IL-
6), HIV-1 TAT and GP120, to influence the mono-
cytes migration across the BBB directly or indi-
rectly.43-50 Cytokines and chemokines, such as IL-
6, IL-10, IFN, CCL-2, CXCL-10, CXCL-1, CXCL-2,
CXCL-5 etc., which are associated with the dam-
age of microvascular integrity and the incidence
of HAD, have been shown to be up-regulated in
the brain and CSF of HIV-1 infected patients.51-54

The central nervous system
as a site of HIV-1 reservoir

CNS has been regarded as one of the
anatomical HIV reservoirs due to its immuno-
logically privileged status. It is a huge chal-
lenge to overcome this difficulty and deliver
therapeutic agents into the CNS, especially
brain tissue, to treat the CNS disease. It has
been reported that the CSF penetration rate of
the nucleoside reverse transcriptase inhibitor
AZT is 60% compared to the plasma level, and
only 11% for 3TC.55,56 Consistent with these
reports, other studies have shown the CSF HIV
has a slower decay rate, higher evolutionary
rate and faster re-bounce rate compared to the
HIV in plasma.57-60 In addition, the data on viral
genotypic evolution before and after HAART
have both shown viral compartmentalization
comparing HIV isolates from the CSF and plas-
ma.61-65 Although so far, very little information
on intraparenchymal penetration rate of drugs
is available, it has been well established that
the brain tissue harboured unique sequences
compared to the whole body.13,66-68 Moreover,
drug-resistant mutations in different areas of
the brains have also been explored, suggesting
compartmentalized evolution of HIV-1 in the
brain.69 In addition, the data on compartmen-
talization of HIV in the CNS support the belief
that HIV infection of the brain contributes in

part to the occurrence and pathogenesis of HIV
associated neurocognitive disorders (HAND).
This hypothesis also has been supported by the
fact that some patients have poor CSF viral
load control but good plasma viral suppres-
sion.70 Further, the compartmentalization of
HIV may have regional implications.71

The cellular reservoirs of HIV in the CNS are
mainly microglia cells and macrophages. The
role of each macrophage population in HIV
spread and persistence depends on their
turnover rate. Perivascular macrophages are
assumed to be responsible for trafficking HIV
between the periphery and the CNS, including
dissemination of HIV from the peripheral blood
to the CNS, commonly referred as the Trojan
horse model; and reseeding CNS residing HIV
strains back to the periphery.72 In contrast,
microglia has relatively longer turnover rate and
it might play a more crucial role as HIV CNS
reservoirs. Recently, the role of microglia in pro-
moting HIV latency has been linked to the tran-
scription factors, such as CTIP2, which can
repress HIV-1 gene expression in microglia.73,74

Moreover, variable levels of HIV-1 infections
have been detected in other cell types within the
CNS as well, such as: neurons, microvascular
endothelial cells (MVEC) and astrocytes.75

Recently, extensive astrocyte infection has been
demonstrated in HAD patients and positive cor-
relation degree between its infection frequency
and the severity of neuropathological changes
has been shown comparable to perivascular
macrophages.76 This suggests that astrocytes
might play a crucial role as HIV reservoir.

HIV-associated neurocognitive
disorders

HIV-associated neurocognitive disorders
were recognized by clinicians shortly after the
AIDS epidemic in 1981.77 Identification of the
retroviral aetiology of AIDS allowed introduction
of the hypothesis that HIV-1 itself might affect
the CNS and cause neurological disorders,
referred to as AIDS dementia complex (ADC) or
HIV-associated dementia (HAD).78,79 The terms
HIV encephalopathy, or HIV encephalitis, or HIV
dementia are also commonly used.

Diagnostic criteria and current
nomenclature

A diagnostic guideline was outlined by AIDS
Task Force of the American Academy of
Neurology (AAN) in 1991 proposing two levels
disturbance:80 HAD (Including HAD with motor
symptoms, HAD with behavioural or psychoso-
cial symptoms and HAD with both motor and

behavioural/psychosocial symptoms), and minor
cognitive motor disorder (MCMD). The specific
criteria for reaching these diagnoses were pro-
vided as well. In 1995, this guideline was
expanded by adding the diagnosis of asympto-
matic neurocognitive impairment, which
described mild neurocognitive deficits that do
not substantially interfere with daily function
but being recognized increasingly frequently.81

Recently, a refinement of the AAN criteria was
established by the HIV Neurobehavioral
Research Centre at UCSD with the recommen-
dation from an NIH working group.82 These cri-
teria include three diagnoses: asymptomatic
neurocognitive impairment (ANI), HIV-associat-
ed mild neurocognitive disorder (MND), and
HAD (Supplementary Table 1). According to
these criteria, at least five areas of well known
HIV affecting neurocognitive functioning need
to be assessed to arrive at the diagnosis. Apart
from ideal comprehensive neuropsychological
evaluation, a HIV dementia scale is used for
assessing these domains due to its feasibility. In
addition, the presence (or absence) of decline in
everyday functioning is very important for the
diagnosis of HAND. Unfortunately, to date, there
are no widely agreed clinical measures of daily
functioning,83 thus the assessments of that
mainly depends on self-report, using question-
naires such as Lawton & Brody’s modified
Activities of Daily Living scale and the Patient’s
Assessment of Own Functioning.84,85

Asymptomatic neurocognitive
impairment and mild
neurocognitive disorder 

Asymptomatic neurocognitive impairment
(ANI) refers to the mild neurocognitive
deficits (MND) in two or more cognitive areas
without a substantial interference in everyday
functioning (Supplementary Table 1). It repre-
sents more than 50% of diagnosed HAND cases
and 21-30% of the asymptomatic HIV-infected
individuals.86 Moreover, it has been reported to
be well associated with HIV neuropathological
abnormalities.87,88 Thus, it will be particularly
important to identify these cases and intro-
duce intervention at this earliest stage of
HAND for the best prognosis.
MND is marked by mild to moderate impair-

ment in two or more cognitive areas in addi-
tion to mild to moderate decline in daily func-
tioning. Based on the ANI criteria of MCMD,
additional everyday functioning decline has
been included. The incidence of MND remains
high and the prevalence of MND has not
changed despite the introduction of HAART.82,89

Moreover, it has become more prevalent form
since the severe forms of HAND are now not
seen as frequently in the HAART era. The
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prevalence of MND has been estimated at
between 5-14% in individuals with early symp-
toms and approximately 25% of those with
AIDS.81,90 In addition, it has been reported that
HAART failed to provide complete protection
for MND from developing into HAD based on
over more than 10 years of observations,82,91-94

although other studies have shown that
HARRT can temporarily deduce the incidence
rate of MND in high risk populations.95

HIV-associated dementia

HAD is the most severe form of HAND in
terms of its functional impact. It requires mod-
erate-to-severe cognitive impairment in more
than two areas with remarkable daily function
declines and together with an additional
abnormality of either motor function or speci-
fied neuropsychiatric/psychosocial functions,
which cannot be explained by co-morbid condi-
tions. In addition, sufficient consciousness
must be retained for cognitive abilities assess-
ment. Although the incidence of HAD has
decreased dramatically after the introduction
of HAART, antiretroviral drugs still fail to com-
pletely protect HIV-infected patients from
developing HAD. Recently, the concerns about
HAD are not only limited to its cause but the
consequence as well, since HAD in the HAART
era can signal patients’ death.96,97

Epidemiology of HIV-associated
dementia before and in the Era of
highly-active antiretroviral therapy

HAD is one of the end-stage complications
of HIV infection, which is not suppressed com-
pletely by HAART, although the incidence rate
of HAD has declined dramatically. Before the
HAART era, HAD affected almost 50-70% indi-
viduals with AIDS and became the most fre-
quent neurological disorder at that time.98

Since the introduction of HAART, the inci-
dence rate of HAD dropped by almost 50% com-
pared to early 1990s (Figure 1A).99 However,
the prevalence of HAD has stayed stable and
even appears to be rising (Figure 1B) due to
the longevity of HIV-infected patients on
HAART. In addition, HAART has started to show
its own neurological toxicity, which possibly
also affects neurocognitive functions.100-102

Neuropathology before and in the
era of highly-active antiretroviral
therapy

Before HAART, the most significant of HIV
associated neuropathology were HIV
encephalitis (HIVE), opportunistic infections

and/or primary CNS lymphomas.103 HIVE is
characterized by perivascular macrophage
infiltration, multinucleated giant cells, activat-
ed microglias/microglia nodules, pronounced
reactive astrocytosis, myelin pallor on micro-
scopic sections and neuron loss.78,104-108

Although the presence of HIVE correlates to
HAD to some degree, the best correlates are
macrophage infiltration, activated microglia
and reduced synaptic/dendritic density and
selective neuronal loss.87,109

After the introduction of HAART, the neu-
ropathology of HIV infection and HAD has
shifted.87,94,110 Due to controlled plasma viral
load levels and restored immune competencies
after HAART, the opportunistic infections and
primary CNS lymphomas declined dramatical-
ly.111 So, there is a dramatic decrease in cere-
bral toxoplasmosis and cytomegalovirus
(CMV) encephalitis, and more burn-out forms
of HIVE are found, possibly part of the benefits

from HAART.112 However, the neuro-inflamma-
tion does not improve significantly and the
extent of microglial activation is still compara-
ble to pre-HAART era.110 In addition, following
HAART, a reversible HIV-associated amy-
otrophic lateral sclerosis (ALS)-like disorder
has been observed.113 Moreover, HAART influ-
ences HIV neuropathology by changing the
predominant sites of involvement. In post-
HAART era, the pronounced inflammation was
found in the hippocampus and adjacent parts
of entorhinal and temporal cortex, while basal
ganglia is the most involved in pre-HAART
era.93,94,110 Furthermore, HAART causes
immune reconstitution, which may lead to
increased lymphocytic infiltration into the
brain.112,114 Several cases of immune reconsti-
tution-related neuropathology, also called
immune reconstitution inflammatory syn-
drome (IRIS), have been reported; character-
ized by massive lymphocytosis, extensive
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Figure 1. Incidence rate (A) and prevalence rate (B) of HAD in the Johns Hopkins HIV
clinic. The x-axis corresponds to the calendar year. The y-axis corresponds to the incidence
rate/prevalence rate per 1000 person years.
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demyelination and white matter damage.93,110

Peripheral neuropathies due to drug neurotox-
icity are frequent.115

However, it is important to bear in mind that
it is more difficult to organize the systematic
neurological studies based on autopsies due to
the longevity of HIV-infected patients after
HAART. Hence, recent findings might not fully
reflect the difference between pre-HAART and
post-HAART, and also cannot represent those
who survive from HAART but only HIV seropos-
itive individuals who died following the failure
of HAART. Besides, after HAART, a new chron-
ic subtype of dementia has emerged among
HIV+ patients together with the involvement
of additional cognitive domains in previous
phenotype,116,117 partly due to the longevity of
HIV seropositive patients after the introduc-
tion of HAART.

Possible pathogenesis 
of HIV-associated dementia 
Viral factors

It has been well documented that productive
HIV infection of the CNS is detectable on
macrophage/microglia and astrocytes,104,118

although so far infection of astrocytes is only
limited to the transcriptional level or early
expressed proteins (TAT, NEF and REV).75,119-121

In addition, HIV proteins can be released from
these HIV-infected cells and then exhibit their
neuronal toxicity directly or indirectly,
although neurons are not infected.122-124 Three
HIV proteins have been reported to cause
direct neuronal injury or death: the virus’s gly-
coprotein (gp120), trans-activator of transcrip-
tion (TAT), and the viral protein R (VPR). 
Gp120 is essential for HIV infectivity and has

been shown to induce neuron apoptotic death
using the CXCR4 receptor with and without the
presence of glial cells in a dose-dependent man-
ner,125-128 and gp120 over-expression in trans-
genic mice can cause neuropathological simi-
larity to that of HAD.129 In addition, gp120 can
also cause dysfunction of nigrostriatal dopamin-
ergic system and injection to rat striatum result
in neuronal apoptosis in the substantia nigra,130

which might explain why dopaminergic neu-
rons are more susceptible to gp120 neurotoxici-
ty.131 Neuronal injury or death induced by gp120
can be via interaction with N-Methyl-D
Aspartate (NMDA) receptors,127,132,133 which can
influence the influx of Ca2+, and therefore trig-
ger further neuronal injury by harmful
enzymes, as well as free radicals and additional
glutamate.67 Moreover, gp120 can also cause
neuronal injury or death by interacting with
apoptosis regulator, such as p38 mitogen-acti-
vated protein kinase,134 or influencing the
expression of pro-apoptotic transcription factor,
such as E2F1.135

Another neurotoxic HIV protein is TAT,

which is mainly active in nucleus and essen-
tial for HIV replication. In vivo, it has been
shown to cause direct tissue loss when inject-
ed to the striatum of adult rats.51 In vitro, TAT
can cause dendritic loss and neuronal death at
lower concentrations than those needed for
viral replication.136 The neurotoxicity of TAT
has been supported by many other studies.137-146

Interestingly, TAT neurotoxicity has regional
preference, and some brain regions are more
susceptible compared to others, such as the
striatum, hippocampal dentate gyrus and the
CA3 region of the hippocampus.137,140,147 TAT
can dysregulate neuronal microRNAs (miR),148

which were found functioning in neurodevel-
opment and can mediate regulations of local
synaptic and dendritic translation.149 TAT can
alter the tight junction protein expression and
BBB function, which can promote brain infil-
tration. In addition, its neurotoxicity can also
be through mediating mitochondrial energy
metabolism failure, and therefore influencing
normal synaptic communication;150 activating
p53 pathway and involving multiple intracellu-
lar-signalling pathways.151-155

Another HIV accessory protein is VPR, which
is important for HIV initial infection and repli-
cation, and plays a role in HIV neurotoxicity as
well. VPR can be detected from CSF of HIV
seropositive patients, and may be involved in
pro-apoptotic activity in AIDS-associated
dementia.156,157 Moreover, it has been shown
that both intracellular and extracellular VPR is
capable of inducing apoptosis in both rat and
human neuronal cells, including the NT2 cell
line, and mature and differentiated neurons by
direct activation of the initiator caspase-8.158-161

VPR neurotoxicity is possibly through several
mechanisms: inducing cell cycle arrest at G2/M
phase;162 altering mitochondrial permeabili-
ty;163 regulating some apoptotic related pro-
teins;164,165 facilitating transporting of pre-inte-
gration complex, and promoting transcrip-
tion.166-169

Other HIV proteins, such as NEF, REV and
GP41, have also been reported to induce neuro-
toxicity. NEF is a known virulence factor or
progression factor to AIDS,170 which can
manipulate infection, survival and replication
of HIV.171 In addition, NEF shares significant
sequence homology with scorpion neurotox-
ins, which can inactivate potassium chan-
nels.172-174 Consistently, NEF is lethal to neuron
in vitro and abundantly expressed in astro-
cytes of HIV seropositive patients with patho-
logical neuronal damage/dementia.119,120,175,176

REV protein accumulates in the nucleus and
exports unspliced RNA from nucleus to the
cytoplasm.177 It has been shown that REV has
neurotoxicity in vitro and in vivo.178 It has also
been shown that HIV seropositive patients,
with NEF and REV expressed in astrocytes, pro-
gressed most rapidly to severe dementia.119

GP41 is also elevated in HAD patients, but in

vitro studies showed it can only mediate neu-
ronal injury in the presence of glial cells rather
than directly.179

Role of mononuclear phagocytes

Apart from the direct neurotoxicity of HIV
proteins, mononuclear phagocytes, including
perivascular macrophages, resident microglia,
etc. play a significant role in the development of
HAD. First of all, as discussed above,
macrophages have been proposed to traffic HIV
into the brain and then infect/activate other
macrophages or other cell types.180 Actually, HIV
proteins are predominantly released from
infected macrophages since they are the major
cell types supporting productive infection in the
brain. Other than these, infected or activated
macrophages can also release long list of solu-
ble factors, such as cytokines, chemokines (see
Cytokine and Chemokine sections), which have
been implicated in the pathogenesis of HAD.
Some studies have shown a better correlation
between neurocognitive deficits and activated
microglial cells than infection itself,181 although
we have recently shown that the direct and pro-
ductive infection of the CNS macrophages is
vital for HAD manifestation.71 These disparate
results might be due to the different sample
sets, but the contribution of different disease
progression pace appears more likely the cause.
As a matter of fact, all human in vivo studies are
based on autopsy brain samples, rather than in
vivo tissue. Therefore, it is difficult to make any
sole correlation between disease stage and pos-
sible pathological factors (such as HIV produc-
tive infection, or degree of cellular activation),
because some patients progress too fast to show
all HIV-related neurological stages before their
death. So, disease progression pace would be a
better parameter with which to correlate. We
have found very extensive HIV productive infec-
tion in rapid progressors with relatively low cel-
lular infiltration compared to those who
progress more slowly. However, it is very hard to
distinguish the role of HIV, activated systemic
macrophages and activated CNS residential
macrophages individually due to: i) HIV infec-
tion persists in the CNS, latently if not produc-
tively, after its initial entry at the very early
stages of HIV infection; ii) microphage/
microglia is the major cell type supporting pro-
ductive CNS infection; iii) currently, there is no
reliable marker available to separate perivascu-
lar macrophages and microglia.

Cytokines 

Apart from direct HIV proteins neurotoxicity
discussed above, soluble factors (such as
cytokines, chemokines and their receptors)
also play significant roles in the pathogenesis
of HAD. Many neuronal injuries are mediated
by cytokines and chemokines, which are
secreted by HIV-infected or activated
macrophage/microglia or astrocytes. It has
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been reported that HIV-infected or activated
macrophage/microglia can increase several
pro-inflammatory cytokines expression,
including TNF-α, IL-6, GM-CSF and IL-1β,182-185

which can enhance CNS inflammation further.
In addition, these cytokines have also been
reported to upregulate in the CNS or CSF of
HAD patients.186,187

Among them, TNF-α plays dual roles in HAD
pathogenesis. It is a pro-inflammatory
cytokine and also characterized as an oxidative
stress mediator. It can stimulate reactive
oxidative intermediates (ROIs) production in
T cells,188,189 and in turn cause T cell apoptosis,
which has been proposed as one of the mecha-
nisms of AIDS.190,191 In addition, it can also
cause apoptosis in human neuronal cells via
similar mechanism and accelerate neurode-
generative disease pathology.192 In contrast,
some studies have also shown its neuro-pro-
tective role due to its capabilities to enhance
anti-apoptotic and anti-oxidative protein
expression.193-197 These dual actions might be

because of different inflammatory time
course,198 or different TNF receptors to which it
binds.199 

Tumor Necrosis Factor-Related Apoptosis-
Inducing Ligand (TRAIL), a member of the
TNF superfamily, has been shown to cause
rapid apoptosis of different cells.200-204 It
increases in human monocyte-derived
macrophages after HIV-1 infection and
immune activation.204-206 Moreover, it has been
demonstrated that TRAIL-expressing
macrophages are in close association with
neurons undergoing apoptosis in HIV-1
encephalitis.207 Interestingly, antibodies
against TRAIL can dramatically prevent neu-
ronal injury in both in vitro experiments and
in an animal model of HIV-1 infection in the
brain.204,207 Worthy to note, different from TNF-
α and IL-1β, TRAIL is preferentially expressed
in HIV-infected macrophage/microglia.207 All
these results indicate that it contributes to
macrophage-mediated neuronal loss in HAD.
Apart from TNF-α, all the other cytokines

mentioned above have shown only indirect
neurotoxicity. Interestingly, all of them can be
related to TNF-α. M-CSF is majorly induced by
TNF-α.208 It can act on proliferation of cells of
macrophage lineage, differentiation and sur-
vival and its antagonists have been shown to
inhibit HIV replication in macrophages.209,210

Therefore, it might contribute to cellular reser-
voir of HIV infection. IL-1β can upregulate
TNF-α expression and IL-6 in mononuclear
phagocytes, and also it can contribute to neu-
ronal injury by promoting the expression of
nitric oxide (NO);211-213 IL-6 has to synergize
with TNF-α to induce HIV expression at the
transcriptional level, but not alone.214

Chemokines

HIV-infected or activated macrophages also
secrete chemokines, which are a family of
small chemotactic cytokines and can combine
with their receptors and play important roles in
immune surveillance and inflammatory
process. Chemokines are essential compo-
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Table 1. Role of selected chemokines and chemokine receptors in HIV-associated dementia.

Chemokine Chemokine Location of receptor expression in brain Effects in the brain
receptor

CXCL8 (IL-8) CXCR1 Microglia, subsets of neurons, astrocytes and Modulation of synaptic transmission and plasticity and
oligodendrocytes inhibition of long-term potentiation in hippocampus*

CXCR2 Microglia, neurons, astrocytes and
oligodendrocytes precusrsors

CXCL10 (IP10) CXCR3 Microglia, subsets of neurons and astrocytes Alteration of synaptic plasticity in hippocampus and
induction of leukocyte infiltration

CXCL12 (SDF1α,β) CXCR4 Microglia, neurons, astrocytes and endothelial cells Promotion of neuronal migration during cerebella
development, microglial chemotaxis and mesenchymal
stem-cell migration to site of injury; promotion of survival or
apoptosis of hippocampal neurons; regulation of cholinergic
and dopaminergic systems; promotion of astrocyte
proliferation; and promotion of cytokine and glutamate
release

CCL2(MCP1) CCR2 Human fetal glia and neurons, astrocytes and Protection of neurons and astrocytes from NMDA- or HIV
NT2N cells Tat-induced apoptosis, through release of astrocyte growth

factors
CCL3 (MIP1α) CCR1 Subsets of neurons, astrocytes and oligodendrocyte Development of CNS; migration of astrocytes and microglia;

precursors recruitment of monocytes to brain parenchyma in patients
CCR5 Microlia, neurons and astrocytes with HAD or other neurological disorders

CCL4 (MIP1β) CCR5 Microglia, neurons and astrocytes Recruitment of monocytes to brain parenchyma;
involvement in migration of macrophages, microglia and
astrocytes

CCL5 (RANTES) CCR1 Microglia, neurons and astrocytes Recruitment of monocytes to brain parenchyma;
CCR3 involvement in migration of macrophages, microglia and
CR5 astrocytes

CCL7 (MCP3) CCR1 Microglia, neurons and astrocytes Recruitment of monocytes to brain parenchyma
CCR2
CCR3

CX3CL1 (Fractalkine) CX3CR1 Microglia, subsets of neurons, astrocytes and Recruitment of receptive cells (mainly microglia), when in
endothelial cells soluble form; polymorphisms affect the development of AIDS

*Long-term potentiation is a persistent increase in the size of the synaptic response that is induced by several mechanisms; in the hippocampus, it is thought to be the synaptic basis of learning and memory in verte-
brates. CCL, CC-chemokine ligand; CCR, CC-chemokine receptor; CNS, central nervous system; CSF, cerebrospinal fluid; CXCL, CXC-chemokine ligand; CX3CL1, CX3C-chemokine ligand 1; CXCR, CXC-chemokine recep-
tor; CX3CR1, CX3C-chemokine receptor 1; HAD, HIV-associated dementia; IL, interleukin; IP10, interferon-γ-induced protein of 10 kDa; MCP, monocyte-chemotactic protein; MIP1, macrophage inflammatory protein 1;
NMDA, N-methyl-D-aspartate; RANTES, regulated upon activation, normally T-cell expressed and presumably secreted; SDF1, stromal-cell-derived factor 1; SHIV, simian-human immunodeficiency virus; SIV, simian
immunodeficiency virus; Tat, transcriptional transactivator; TNF, tumour-necrosis factor. Taken from Gonzalez-Scarano et al.107
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nents for normal neuronal physiology in the
CNS. However, the over-expression of some
chemokines can lead to excess activated leuko-
cytes infiltration into the CNS and consequent-
ly to neuronal injury, while others exhibit neu-
roprotective function. So, the balance between
their neuro-protection and neuro-degenera-
tion roles are crucial to HAD pathogenesis. Not
surprisingly, altered expression of chemokines
and chemokine receptors has been found in
HAD brain,215-217 indicating their involvement
in HAD pathogenesis. However, their contribu-
tion still remains unclear. So far, CC
chemokines have not shown any neurotoxicity,
but only neuroprotective roles in vitro, such as
RANTES and MIP-1β,128,218,219 while CXC
chemokines have been found to be neurotoxic,
such as IP10 and SDF-1.220-222 Table 1 shows the
detailed effects of selected chemokines and
chemokine receptors in relation to HAD. 

Other soluble factors

HIV-infected or activated macrophages also
secrete other soluble factors which have been
reported to be neurotoxic, including L-cys-
teine,223 quinolinic aicd,224 neurotoxic amine
NTox,225 NO,226 and eicosanoids.184 Their neu-
rotoxicity are all mediated or related to gluta-
mate. The neurotoxic effects of L-cysteine,
quinolinic aicd and NTox are all NMDA recep-
tor directed.227-229 Some eicosanoids expression
altered upon HIV infection as well, such as
arachidonic acid and PAF,230 a metabolite of
arachidonate.184,231 PAF can be rapidly produced
by HIV-infected mononuclear phagocytes and it
has been reported to mediate the release and
activation of glutamate.232,233 Of NO, although
the most of the neurotoxic actions are mediat-
ed by peroxynitrite (ONOO-), the reaction
product from NO and superoxide anions, still

partly contribute to glutamate neurotoxicity in
primary neuronal cell cultures and in animal
models of stroke.234 In addition, it has been
proven that glutamate is the predominant neu-
rotoxic factor released from activated
macrophage/microglia.235

DNA microarray and its
applications to HIV-associated
dementia
It is well known that host genetics plays a

role in the aetiology of neurodegenerative dis-
ease, including HAD. Thus, it is necessary to
study host genetics in order to define host-
viral interaction and understand the genetic
basis of disease. First of all, the gene expres-
sion products are critical for the normal devel-
opment, function and adaptive response of the
nervous system,236 and minor fluctuations or

Review

Table 2. Gene profiling studies in HIV-1 infected astrocytes and HIV-1 or SIV infected brains.

Sample source Microarray Experiment design Conclusion Ref.

Astrocytes
Primary human astroyctes NIA immuno and neuroarray HIV vs non- HIV Differential effect of HIV-1 and gp120 in astrocytes. 249

HIV-gp120 vs non- HIV-gp120 Gp120 has more profound effect but chemokine and
cytokine induction occurs predominantly by HIV
infection

Primary human astroyctes Affymetrix U133 A/B VSV-HIV vs non- VSV-HIV Up-regulation of IFN antiviral responses, intercellular 250
contacts, cell adhesion, and signalling. Down-regulation
of cell cycle, DNA replication, and cell proliferation

Astrocytoma BD bioscience clontech Native Nef vs non- Up-regulation of small GTPase signalling, regulation of 251
myristoylated Nef apoptosis, lipid metabolism, JAK/STAT and MAPK

signalling pathways
Brain tissue

Macaque-basal ganglia Clontech chemokine and SIVE vs non-SIVE Upregulation in SIVE of genes involved in promoting 255
cytokine array macrophage infiltration, activation and virus replication.

Down regulation of genes regulating neurotrophic
functions

Macaque-frontal lobe Affymetrix U95Av2 SIVE vs ni Up-regulation in SIVE of genes implicated in monocyte 256
entry to the brain, inflammation, IFN response, antigen
presentation, production of neurotoxic effects,
transcription factors and others
Up-regulation in acute SIV infection of genes involved 257
in IFN and IL-6 pathways. Many of these genes also
up-regulated in long-term infection and SIVE

Macaque-cortical brain Clontech cytokine array SHIV vs ni Up-regulated genes, including Cripto-1 and genes 258
implicated in inflammatory, neuroprotective,
cognitive, and stress responses

Human-frontal cortex Affymetrix U95Av2 HIVE vs non-HIVE Up-regulated pathways included neuroimmune and 253
antiviral response, transcription factors, and
cytoskeletal components

Human brain cortex Affymetrix HAD vs non-HIV The analysis focused on ionic conductance carriers that 252
(middle frontal gyrus) HG-U133 control membrane excitation. They found six ionic

channel genes overexpressed in HAD brains compared
to control while seven downregulated. Conclude the
relevance between channelopathy and subcoritcal
dementias.

Human-frontal cortex Affymetrix human HIV-1 infected and 4 HIV-1 Focusing on analytic approaches 254
genome U95A negative control subjects

Modified from Sui et al.255
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alterations in gene expression can influence
the susceptibility of the host to neurological
disorders, including attention deficit disorder,
and schizophrenia,237 PD and AD,238 as well as
HAD.239 Therefore, genetic studies will offer a
direct clinical impact on HAD in terms of diag-
nosis and pre-symptomatic testing.
Consequently, it will shed light on broader
genomic aspect of pathogenesis of HAD, which
is not limited on individual genes or genetic
forms, but to provide potential target pathways
for therapy. In addition, these studies have the
potential to contribute to the development of
effective animal model to study HAD and other
neurodegenerative diseases. 
DNA microarray has become the most popu-

lar tool for global gene expression study. It is
characterized by high-density arrays of DNA
oligonucleotides bonding to a structural sup-
port, which differ with types of arrays (e.g. a
solid surface, such as glass, plastic or silicon
biochip or coded beads). The core principle
behind microarrays is hybridization between
target samples and probes, then based on dif-
ferent labeled target (e.g. fluorophore-, silver-,
or chemiluminescence-labeled), these
hybridizations can be detected and quantified
by relative abundance of nucleic acid
sequences in the target. It can be used to
detect either DNA or RNA (most commonly as
cDNA) that may or may not be translated into
proteins. One of the greatest advantages of
these methods is that they allow the analysis of
thousands genes in relation to specific disease
in one experiment. Gene expression profiling
is one of the applications of DNA microarray to
identify genes whose expression is changed in
response to pathogens or other stimulating
factors. 
Since the first microarray-based study in

gene expression of host cells in relation to HIV
infection,240 a variety of different types and
generations of microarrays have been applied
to HIV viral-host interaction studies, and to
HAD pathogenesis as well. However, most of
them have been done on glial cells because of
the difficulties of analysing multiple cell types
from brain rather than clonal expansion of a
single-cell type, and accessing the relevant tis-
sues during the lifetime of the patient.241 In
addition, because astrocytes constitute 50-60%
of brain cell volume,242 they have been chosen
as a target cell type by many researchers.
Although only a very small astrocytic popula-
tion can be infected in vivo by HIV and even in
vitro,243-245 the infection is passive and not
cytolytic,246,247 astrocytic function can be
altered by binding HIV-1 or envelope protein
gp120, which is consistent with changes in
gene expression.248 Among those studies, sev-
eral are comprehensive gene expression pro-
filing of astrocytes exposed to HIV-1 or viral
proteins using high-flux microarray platforms
for parallel detection of multiple differentially

expressed genes.249-251 The details are listed in
Table 2. 
Apart from cells, several microarray studies

have been carried out in different brain
regions of macaques with and without SIV
encephalitis (Table 2). Moreover, limited
genomic studies (partial human genome) on
human brain tissues from patients with and
without HIV-associated CNS disorders have
also been done.252-254 The details are listed in
the Table 2.255-258 Interestingly, there are con-
siderable number of consistently dysregulated
genes in human astrocytes and in macaque
and human brain, which might suggest the
important role that HIV-infected or activated
astrocytes play in HAD pathogenesis. The com-
mon genes are mostly implicated in immune
responses, and neurological function/diseases.
Although many in vitro and in vivo studies
have been done, so far the whole genome
microarray fingerprint profiling using autopsy
human brain tissue is still lacking.
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