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Angiogenesis is the biological process by which new blood vessels are formed from pre-
existing vessels. It is considered one of the classic hallmarks of cancer, as pathological
angiogenesis provides oxygen and essential nutrients to growing tumors. Two of the
seven known human oncoviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma-
associated herpesvirus (KSHV), belong to the Gammaherpesvirinae subfamily. Both
viruses are associated with several malignancies including lymphomas, nasopharyngeal
carcinomas, and Kaposi’s sarcoma. The viral genomes code for a plethora of viral
factors, including proteins and non-coding RNAs, some of which have been shown to
deregulate angiogenic pathways and promote tumor growth. In this review, we discuss
the ability of both viruses to modulate the pro-angiogenic process.

Keywords: angiogenesis, Epstein–Barr virus, gammaherpesviruses, Kaposi’s sarcoma-associated herpesvirus,
oncoviruses, vascular endothelial growth factor

INTRODUCTION

The worldwide prevalence of human cancers caused by infectious agents has been estimated to
be approximately 15–20% (Plummer et al., 2016). These infectious agents include the bacterium
Helicobacter pylori, the parasite Opisthorchis viverrini and seven viruses. These human cancer-
causing viruses, or oncoviruses, include both DNA and RNA viruses. Since the discovery of the
first human oncovirus, Epstein–Barr virus (EBV), in 1964, six additional viruses have been found
to be etiologically related to several malignancies (Mesri et al., 2014). The DNA oncoviruses are
EBV, Kaposi’s sarcoma-associated herpesvirus (KSHV), human papillomaviruses (HPV), hepatitis
B virus (HBV), and Merkel cell polyomavirus (MCV). The RNA oncoviruses are hepatitis C virus
(HCV) and human T-lymphotropic virus (HTLV) type 1. Although significant improvements have
been made with regards to prevention, diagnosis, and treatment of viral cancers, as evidenced
by the vaccines against HBV and HPV, the multi-step process by which viruses can induce cell
transformation and consequently cancer is not entirely understood. As illustrated by Mesri et al.
(2014), viruses can hijack cellular processes to facilitate the dysregulated growth of cells leading to
the formation of tumors. Also, to modulate cell proliferation and prevent cell death, oncoviruses
promote angiogenesis, providing the tumors with a continuous supply of nutrients.
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Angiogenesis is a multi-step process that leads to the
formation and growth of new blood vessels from pre-existing
vessels. The angiogenic process is essential for physiological
processes such as embryonic development, tissue repair during
wound-healing, and the female reproductive cycle (Carmeliet
and Jain, 2000). However, this process, which is tightly regulated
by several pro- and anti-angiogenic factors, can be altered by
cancer cells and result in enhanced tumorigenesis; the process
itself is considered a hallmark of cancer (Hanahan and Weinberg,
2011). Angiogenesis occurs when the balance between pro-
and anti-angiogenic factors is tilted toward the promotion of
angiogenesis. This event is known as the “angiogenic switch,” and
it is an essential step during the progression and metastasis of a
malignant tumor, as it can provide oxygen and nutrients required
for tumor growth (Bergers and Benjamin, 2003; Baeriswyl and
Christofori, 2009; Bielenberg and Zetter, 2015). The activation
of the angiogenic switch can occur in both viral and non-
viral cancers, but in the former, oncoviral factors are to some
extent responsible for tilting the balance toward the induction of
angiogenesis (Figure 1).

The angiogenic process begins with the activation of
endothelial cells. This process can be intercellularly initiated from
the tumor cells by the transcription factors hypoxia-inducible
factors (HIF) 1 and 2 (Krock et al., 2011). First, as a tumor
grows, the tumor microenvironment becomes hypoxic allowing
the stabilization of HIF-1α. During normoxic conditions, prolyl-
hydroxylases (PHDs) hydrolyze HIF-1α, which can then be
recognized by the von Hippel–Lindau (VHL) tumor suppressor.
This leads to the ubiquitin-mediated degradation of HIF-1α.
However, in the absence of oxygen (or during oncogenic
activation), PHDs cannot hydrolyze HIF-1α, which result in
HIF-1α translocating to the nucleus and dimerizing with HIF-
1β to activate the HIF-responsive element (HRE)-containing
promoters. Several pro- and anti-angiogenic factors including
vascular endothelial growth factor (VEGF), fibroblast growth
factors (FGF), platelet-derived growth factor (PDGF), and several

FIGURE 1 | Epstein–Barr virus and KSHV induce an angiogenic switch. Both
viruses activate pro-angiogenic factors and repress anti-angiogenic factors to
activate the angiogenic switch promoting vessel formation and enhancing
tumorigenesis.

interleukins (IL) such as IL-6 and IL-8 are induced by HIF-1
(Krock et al., 2011).

Following the induction of expression, these pro-angiogenic
factors are secreted from the tumor cells and intercellularly
bind and activate their respective receptors in endothelial cells
(Figure 2). Activation of the receptors such as VEGFR-2, FGFR,
and Tie-2, stimulate the modulation of several signaling pathways
including phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-
activated protein kinase (MAPK)/extracellular-regulated kinase
(ERK), and Janus kinase (JAK)/signal transducer and activator
of transcription (STAT; Cross and Claesson-Welsh, 2001). This
in turn further enhance angiogenesis by promoting cell survival,
proliferation, and invasion (Cross and Claesson-Welsh, 2001).

In addition to the tumor cells, the endothelial sprouting cells
forming the new vessels induce the expression and activation of
pro-migratory factors such as matrix metalloproteinase enzymes
(MMPs; described below). MMPs degrade extracellular matrix
components and facilitate cell movement. The expansion and cell
movement allow for the branching of blood vessels. Importantly,
the secretion of pro-angiogenic factors by the tumor cells can
also act as an attractant for the proliferating endothelial cells
and recruitment of immune cells (Weis and Cheresh, 2011).
Following the formation of the new blood vessel, pericytes
are recruited and attached to newly matured endothelial cells
(Weis and Cheresh, 2011).

However, due to the fast and uncontrolled growth,
and continuous stimulation associated with pathological
angiogenesis, these tumorigenic blood vessels acquire an
aberrant morphology that includes excessive branching with
defective basement membrane and uneven pericyte coverage
(Azzi et al., 2013). These effects contribute to the tortuosity and
leakiness of tumor-associated blood vessels facilitating metastasis
(Azzi et al., 2013). Furthermore, the expansion of these new
blood vessels allows for the formation of networks with existing
vessels in a process known as anastomosis.

Two of the seven human oncoviruses, EBV and KSHV, belong
to the subfamily of Gammaherpesvirinae. Both viruses have been
identified as the etiologic agents of several malignancies that are
dependent on the expression of pro-angiogenic factors. Though
KSHV was discovered just 25 years ago, KSHV, as a potent
inducer of angiogenesis, has been described to a greater extent
than has EBV since Kaposi’s sarcoma, the cancer associated with
KSHV, is one of the most angiogenic human tumors and is
driven by KSHV-infected endothelial cells. In this review, we
will describe the current knowledge of how both viruses, as a
whole or via their proteins and non-coding RNAs, modulate
angiogenic processes and how these might contribute to virus-
induced tumorigenesis.

EPSTEIN–BARR VIRUS

Epstein–Barr virus (EBV) is a ubiquitous γ-1 herpesvirus
that infects approximately 95% of the world’s population.
EBV is associated with several malignancies that include
B-, T-, and Natural Killer-cell lymphomas, post-transplant
lymphoproliferative disease (PTLD), endemic Burkitt’s
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FIGURE 2 | Major cellular pathways converge to promote angiogenic processes. The cellular receptors PDGFR, VEGFR-2, and CXCR-1, are activated upon
ligand-binding and mediates activation of major signaling pathways such as MAPK/ERK, PI3K/Akt, PLCγ/PKC, and JAK/STAT. The activation of these pathways
results in the transcription of pro-angiogenic genes that can promote cell migration, invasion, and angiogenesis in autocrine and paracrine manners.

lymphoma, a subset of Hodgkin’s lymphomas, and the epithelial
malignancies nasopharyngeal carcinoma (NPC) and gastric
carcinoma (Young et al., 2016). Similar to other herpesviruses,
EBV infection induces the formation of a viral episome that is
tethered to the host genome and facilitates the establishment of a
latent lifecycle.

Epstein–Barr virus induces different latency programs in
infected cells. For example, in vitro, EBV infection transforms
resting B-cells into immortalized lymphoblastoid cell lines (LCLs)
that expresses several viral genes including all six Epstein–Barr
nuclear antigens (EBNAs), latent membrane protein (LMP) 1,
LMP2A and 2B, and EBV-encoded RNAs (EBER) 1 and 2. This
type of latency, known as latency III, promotes the proliferation
of the infected B-cells, allowing the replication of not only the
host genome but also the viral episome. In vivo, latency III
is associated with PTLD and diffuse large B-cell lymphomas
(Young et al., 2016). This EBV-mediated proliferation mimics
B-cell development in which cells enter the germinal center, but
it is highly immunogenic. Instead, a less immunogenic latency

program (latency II), as seen in the EBV-associated classical
Hodgkin’s lymphoma, consists in the expression of EBNA1,
LMP1, LMP2A and 2B, and EBER1–2. Importantly, this type of
latency is also seen in the EBV-induced epithelial cancers, NPC,
and gastric carcinomas.

Memory B-cells are thought to be the reservoir for EBV, and
in these cells, the virus induces two distinct programs, latency
0 and latency I. In latency 0, which is specific to resting B-cells,
only EBER1–2 are expressed. On the other hand, a dividing
memory B-cell experiences latency I, in which EBER1–2 and
EBNA1 are expressed. The expression of EBNA1 is sufficient for
the replication and maintenance of the viral episome. Burkitt’s
lymphoma shows a latency-I expression profile. A specific latency
pattern is not needed for EBV to induce cell transformation
since the malignant cells show different gene expression profiles
(Young et al., 2016).

Several groups have explored the effect of EBV infection in
inducing angiogenesis. For example, infection of epithelial cells,
the cells of origin for EBV-induced gastric and nasopharyngeal
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carcinomas, induces the formation of vascular mimicry that
correlates with tumor growth (Xiang et al., 2018). Vascular
mimicry is the process by which non-endothelial cells form
tubular networks and allow for blood flow independent of
endothelial cells (Dunleavey and Dudley, 2012). Furthermore,
EBV-positive gastric carcinomas show an aberrant regulation
of epigenetic markers of enhancers associated with angiogenic
processes; these malignancies also display silencing of tumors
suppressors and anti-angiogenic factors such as phosphatase and
tensin homolog (PTEN) and thrombospondin (THBS) 1 (Kang
et al., 2002; Okabe et al., 2017).

Further evidence has demonstrated that EBV-positive NPC
cells are more tumorigenic and angiogenic in vivo than EBV-
negative NPC cells (Ye et al., 2018). EBV is associated with high
levels of VEGF and reduced survival of Hodgkin’s lymphoma
patients (Koh et al., 2018). Angiogenic processes are also involved
in the development of B-cell lymphomas in mice caused by
the engraftment of EBV-transformed LCLs (Woodford et al.,
2004). These studies outline a role for EBV in inducing pro-
angiogenic processes that enhance tumorigenesis. Elucidating the
process by which the individual viral proteins and non-coding
RNAs modulate angiogenesis is essential for developing effective
therapies. We describe a few of these viral factors below.

Latent Membrane Protein 1
A major oncogenic protein of EBV is LMP1. LMP1 has
transforming properties in cultured cell lines, and it is expressed
in most EBV-associated cancers (Wang et al., 1985). LMP1,
a mimic of cellular CD40, is a constitutively active member
of the tumor necrosis factor receptor (TNFR) family with the
ability to activate signaling pathways including NF-κB, PI3K/Akt,
MAPK/ERK, JAK/STAT, and c-Jun N-terminal kinase (JNK)
(Figure 3; Mosialos et al., 1995; Devergne et al., 1996; Gires et al.,
1999; Dawson et al., 2003; Mainou et al., 2005). Activation of these
pathways has multiple effects in the infected cells, including the
modulation of apoptosis, cell migration, cell cycle progression,
and angiogenesis (Table 1). One line of evidence that LMP1
is involved in inducing angiogenesis can be demonstrated by
introducing LMP1 into LMP1-negative NPC cells. The co-culture
of LMP1-expressing NPC and human umbilical vein endothelial
cells (HUVECs) induces the formation of endothelial cell tubular
structures on Matrigel, demonstrating the contribution of the
viral protein to the angiogenic process (Yang et al., 2015).

In NPC tumor tissues, VEGF is highly expressed, and it
correlates with microvessel density (Wakisaka et al., 1999;
Guang-Wu et al., 2000; Qian et al., 2000). Moreover, through the
activation of VEGF/VEGFR-1, LMP1 induces vascular mimicry,
which is associated with poorer prognosis (Xu et al., 2018).
Additionally, in diffuse large B-cell lymphoma patients, EBV
infection, and VEGF-A expression associates with aggressive
subtypes and shorter survival times (Paydas et al., 2008). As
mentioned in the introduction, induction of HIF proteins and
VEGF is one of the essential steps for the promotion of
angiogenesis; thus, it is not surprising that several signaling
pathways converge to induce the expression and stabilization
of these proteins (Carmeliet, 2005; Krock et al., 2011). In
nasopharyngeal epithelial cells, LMP1 induces the expression

of HIF-1α and VEGF by activating MAPK/ERK, JNKs and
JAK/STAT signaling pathways (Gires et al., 1999; Wakisaka et al.,
2004; Wang et al., 2010; Yang et al., 2015). Thus, LMP1 activates
multiple signaling pathways to induce VEGF, which is usually
associated with more aggressive disease.

Furthermore, LMP1 induces the production of reactive
oxygen species (ROS) such as H2O2, which mediates the
stabilization and translocation of HIF-1α (Chandel et al., 2000;
Wakisaka et al., 2004). Moreover, LMP1 induces the activation of
HIF-1α and PI3K/Akt through the expression of the chemokine
(C-C motif) ligand (CCL) 5 (also known as RANTES; Buettner
et al., 2007; Ma et al., 2018). Also, LMP1 can upregulate the
levels of the E3 ubiquitin ligase Siah-1 (Kondo et al., 2006),
which targets the HIF-1α negative regulators’ PHDs 1 and 3 for
degradation (Nakayama et al., 2004). Therefore, LMP1 increases
the levels of HIF-1α not only by promoting its expression but
also by downregulating the repressors involved in the control
of HIF-1α.

For proper induction of angiogenesis, LMP1 requires the
activation of NF-κB. The activation of NF-κB is mediated
by LMP1’s C-terminal-activating regions, CTAR1 and CTAR2,
which can constitutively associate with tumor necrosis factor
receptor-associated factors (TRAFs). This interaction leads to the
activation of the NF-κB signaling cascade, which promotes the
expression of genes with multiple functions, including induction
of angiogenesis. One angiogenic factor induced by LMP1 that
requires NF-κB is cyclooxygenase-2 (COX-2). Activation of
COX-2 in LMP1-expressing NPC cells leads to an increase in the
production of the angiogenic factors prostaglandin E2 (PGE2)
and VEGF (Murono et al., 2001). Furthermore, in NPC tissues,
the expression of COX-2 correlates with LMP1, whereas LMP1-
negative NPC infrequently expresses COX-2 (Murono et al.,
2001; Fendri et al., 2008).

Similar to COX-2, the expression of IL-8 is, to some extent,
dependent on NF-κB as the NF-κB-binding sites in the IL-8
promoter are necessary for LMP1-induced expression (Yoshizaki
et al., 2001). Interleukin-8 (also known as CXCL-8) is a
proinflammatory chemokine that has the pro-angiogenic activity
of activating CXCR-1 (Figure 2; Koch et al., 1992; Waugh and
Wilson, 2008; Shi and Wei, 2016). Importantly, the expression of
LMP1 also correlates with IL-8 in NPC tumor tissues, and it is
associated with the formation of microvessels and poor prognosis
in NPC patients (Xie et al., 2010).

Furthermore, LMP1 induces the expression of the pro-
angiogenic factors FGF-2 and epidermal growth factor (EGF)
receptor (EGFR) (Miller et al., 1995; Wakisaka et al., 2002;
Thornburg and Raab-Traub, 2007; Kung and Raab-Traub, 2008;
Lo et al., 2015). This induction is also mediated through
the activation of NF-κB, and the activation of FGF-2/FGFR-1
signaling is important for the transformation of NPC cells (Lo
et al., 2015). FGF-2, which can also be present in LMP1-induced
exosomes, can act in both paracrine and autocrine manners to
induce the expression and secretion of VEGF, promoting the
activation of endothelial cells (Seghezzi et al., 1998; Ceccarelli
et al., 2007). In addition to NF-κB, STAT-3, and protein kinase
C gamma (PKCγ) are essential for the LMP1-CTAR1-induced
augmentation of EGFR activation (Kung and Raab-Traub, 2008).
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TABLE 1 | Major pro- and anti-angiogenic factors modulated by EBV viral factors.

Major Pro-angiogenic Factors Viral Protein Cell Type Reference

COX-2 LMP1 Epithelial Murono et al., 2001

EBNA3C Lymphoblastoid Kaul et al., 2006

CCL-2/MCP-1
LMP1 Epithelial Buettner et al., 2007

CCL-5/Rantes

CXCL-8/IL-8 EBNA1 Epithelial O’Neil et al., 2008

LMP1 Epithelial Yoshizaki et al., 2001

EGF/EGFR LMP1 Epithelial Miller et al., 1995; Kung and Raab-Traub, 2008

FGF-2/FGFR LMP1 Epithelial Wakisaka et al., 2002; Lo et al., 2015

HIF
LMP1 Epithelial Wakisaka et al., 2004

EBNA1 Epithelial O’Neil et al., 2008

IL-6 LMP1 Epithelial Eliopoulos et al., 1997

MMP-1
LMP1 Epithelial Kondo et al., 2005

MMP-3

MMP-9 LMP1 Epithelial Takeshita et al., 1999

LMP2A Epithelial Lan et al., 2012

VEGF

LMP1 Epithelial Murono et al., 2001

EBNA1 Epithelial O’Neil et al., 2008

LMP2A Epithelial Morrison et al., 2003

EBER B-cells Koh et al., 2018

Major Anti-angiogenic Factor Viral Factor Cell Type Reference

TIMP-1 BZLF1 Lymphoblastoid Guedez et al., 2001; Lin et al., 2015

It is possible that through the activation of EGFR in NPC
cells, EBV enhances calcium signaling that promotes VEGF
expression (Ye et al., 2018). Together, these studies suggest
that induction of both FGFR and EGFR contributes to LMP1-
mediated angiogenesis.

An additional pro-angiogenic growth factor that LMP1
induces in epithelial cells is the hepatocyte growth factor receptor
(HGFR, also known as c-Met). The LMP1-induced expression of
c-Met is mediated through activation of the Ets-1 transcription
factor (Horikawa et al., 2001). The expression of c-Met, LMP1,
and Ets-1 are correlated in NPC tumor tissues. c-Met plays
an important role in both angiogenesis and metastasis, and it
is usually associated with poor prognosis (Ding et al., 2003;
You and McDonald, 2008). Activation of c-Met in endothelial
cells can lead to an increase of VEGF and suppression of the
anti-angiogenic protein THBS-1, thus enhancing the angiogenic
process (Zhang et al., 2003). In EBV-positive gastric carcinomas,
the overexpression of c-Met may contribute to angiogenesis.
However, the EBV protein that induces c-Met may not be LMP1,

as it is rarely expressed in these cells (Kijima et al., 2002; Luo et al.,
2006). Thus, EBV, through LMP1 and other viral genes, induces
several growth factor receptors that contribute to the promotion
of angiogenesis.

Matrix metalloproteinase enzymes (MMPs) are a group
of zinc-containing endopeptidases capable of degrading ECM
components and mediating pericyte detachment from vessels
undergoing angiogenesis (Rundhaug, 2005). This group of
proteins is essential for angiogenesis, but they also play a
critical role in metastasis by cleaving the ectodomain of vascular
endothelial (VE)-cadherin that maintains cell-cell adhesions
(Shiomi and Okada, 2003). The expression of MMP-9 is induced
by the CTAR1–2 domains of LMP1 (Yoshizaki et al., 1998;
Takeshita et al., 1999). Importantly, the NF-κB and AP-1
binding sites of the MMP-9 promoter are necessary for MMP-
9 expression, suggesting the involvement of both pathways. In
addition to MMP-9, MMP-1 is also highly expressed in NPC
and modulated by LMP1 (Lu et al., 2003; Kondo et al., 2005).
Interestingly, a polymorphism in the MMP-1 promoter of NPC
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cells creates an Ets binding site, and its high expression is
associated with poor prognosis (Kondo et al., 2005). In addition
to increasing MMP-1 levels directly, LMP1 can also increase the
production of MMP-3, which cleaves and consequently activates
MMP-1. Expression of both MMP-1 and MMP-3 is dependent on
AP-1, and Ets transcription factors, as mutations to their binding
sites or co-expression of double-negative mutants perturb their
expression (Kondo et al., 2005).

LMP1 also induces the expression of other pro-migratory
factors. Among these, is Twist, which increases cell migration and
drives the epithelial-mesenchymal transition (Horikawa et al.,
2007). Clinical samples show a high correlation between Twist
and LMP1 expression in metastatic NPC (Horikawa et al., 2007).
In addition to being a master regulator in embryogenesis (a
process that requires extensive pro-angiogenic activity), Twist
has been shown to mediate angiogenesis in an in vivo model of
breast cancer (Mironchik et al., 2005). In NPC tissues, LMP1
induces the receptor for advanced glycation end products (RAGE;
Tsuji et al., 2008). High microvessel counts, as determined by
von Willebrand factor (vWF) staining, are associated with high
levels of RAGE, LMP1, and lymph node metastasis, suggesting
a role for RAGE in EBV-induced angiogenesis (Yamagishi et al.,

1997; Tsuji et al., 2008). Furthermore, LMP1 promotes the
expression of the soluble TNFR Decoy receptor (Dcr) 3, which
in endothelial cells promotes angiogenesis by inhibiting TNF-
like molecule 1A (TL1A; Ho et al., 2009). The expression of
Dcr3 in NPC cells is associated with increased cell migration and
invasion (Ho et al., 2009). In order for proper angiogenesis to
occur, cells must migrate and invade through the extracellular
matrix, and LMP1 induces the expression of several factors that
facilitate this process.

Tumor viruses such as EBV can induce the secretion of
exosomes that facilitate intercellular communication (Keryer-
Bibens et al., 2006; Meckes et al., 2010). Exosomes are 40- to 100-
nm secreted endosomal vesicles containing proteins, mRNAs,
and microRNAs that can influence the tumor microenvironment
(Schorey and Bhatnagar, 2008). Exosomes released from LMP1-
positive NPC cells contain LMP1, cellular miRNAs, EBERs,
signal transduction proteins and HIF-1α (Ceccarelli et al.,
2007; Meckes et al., 2010; Aga et al., 2014; Yoon et al.,
2016). The enclosed proteins maintain their activity and can
increase the pathogenicity of the recipient cells (e.g., endothelial
cells) by promoting processes such as migration, invasion, and
angiogenesis (Meckes et al., 2010). Retinal pigmental epithelial

FIGURE 3 | Epstein–Barr virus proteins and miRNAs promote angiogenesis by activating several cellular signaling pathways. The viral transmembrane proteins
LMP1 and LMP2A promote the activation of several signaling pathways including MAPK/ERK, PI3K/Akt, PLCγ/PKC, and JAK/STAT. EBNA1 directly promotes
activation of pro-angiogenic genes and transcription factors such as AP-1. The BART miRNA targets the negative regulator of PI3K/Akt, PTEN. Activation of these
signaling pathways results in the promotion of pro-survival and pro-angiogenic factors.
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cells grown in the presence of exosomes from the EBV-positive
B-cell line Raji have higher levels of VEGF which was due in part
to the cellular miR-155 contained in those vesicles (Yoon et al.,
2016). It has been demonstrated that LMP1 induces expression
of miR-155 by activating NF-κB signaling (Gatto et al., 2008; Lu
et al., 2008). Secretion of exosomes provides a mechanism by
which viral cancers can influence the conditions of the tumor
microenvironment without the need for viral propagation.

Altogether, these studies support a model in which LMP1
promotes the activation of an arsenal of factors that contribute
to EBV-induced angiogenesis.

Latent Membrane Protein 2A
The transmembrane protein LMP2A is expressed during latency
II and III and induces ligand-independent activation of the Src
and Syk family of proteins by mimicking an active B-cell receptor
(Portis and Longnecker, 2004). This interaction mediates the
activation of Ras, PI3K, and JNK (Figure 3). Consequently,
expression of LMP2A in murine B-cells drives the expression of
genes promoting cell proliferation and survival that are common
in EBV-positive Hodgkin’s lymphoma cells (Portis et al., 2003).
These observations suggest that LMP2A may play a significant
role in Hodgkin’s lymphoma development. Similarly, epithelial
cells expressing LMP2A have higher PI3K/Akt and Wnt signaling
activity, which can result in the expression of VEGF (Morrison
et al., 2003). Notch activation, which has been shown to have
pro-angiogenic effects, can be promoted by LMP2A-mediated
induction of Notch ligand Delta and transcription factor Hes-
1 (Sakakibara and Tosato, 2009). In addition to LMP1, LMP2A
also contributes to vascular mimicry of EBV-infected epithelial
cells. However, in contrast to LMP1, LMP2A-mediated induction
of vascular mimicry is independent of VEGF but relies on HIF-1α

through the activation of PI3K/Akt signaling (Xiang et al., 2018).
Additionally, LMP2A promotes the invasiveness of NPC cells
through the ERK-dependent expression of MMP-9 (Lan et al.,
2012). Thus, LMP2A contributes to EBV-induced angiogenesis
and may be an essential player for lymphomagenesis.

EBV Nuclear Antigen 1
The EBV nuclear antigen (EBNA) 1 is an essential protein
necessary for viral maintenance and replication (reviewed in
Wilson et al., 2018). It plays the essential role of tethering
the viral episome to the host genome and acting as a
modulator of expression of viral and cellular genes (Wood
et al., 2007; Frappier, 2015). Through the modulation of
gene expression, EBNA1 enhances STAT-1 activation and
interferes with transforming growth factor (TGF)-β signaling
as TGF-β1-responsive genes are repressed in EBNA1-expressing
cells (Wood et al., 2007). Furthermore, EBNA1 promotes
the activation of the AP-1 transcription factor in epithelial
cells, resulting in the expression of its pro-angiogenic target
genes including IL-8, VEGF, and HIF-1α (O’Neil et al.,
2008). The expression and secretion of IL-8 and VEGF
from EBNA-1 expressing epithelial cells induces angiogenic
phenotypes in an intercellular manner (O’Neil et al., 2008).
Thus, in addition to being essential for viral maintenance,

EBNA1 is also involved in the modulation of the pro-
angiogenic process.

EBV Nuclear Antigen 3
EBNA3 contains three spliced variants (A, B, and C) that are
encoded in tandem and expressed during latency III. These
variants are a family of transcription co-regulators that do
not bind directly to DNA but instead use other proteins to
modulate transcription. For example, EBNA3C interacts with
the nucleoside diphosphate kinase (Nm23-H1) to induce the
expression of the pro-angiogenic factor COX-2 in an NF-κB-
dependent manner (Kaul et al., 2006). Importantly, expression
of EBNA3C alone does not increase the levels of COX-
2, demonstrating the requirement for an additional cofactor.
EBNA3C also modulates JAK/STAT signaling by upregulating
STAT-3 expression and downregulating the negative regulator
of STAT-3, protein inhibitor of activated STAT 1 (PIAS-
1; Zhao et al., 2011). Although not much is known about
EBNA3 and angiogenesis, these studies have demonstrated a
possible role of the viral protein in contributing to EBV-
induced tumorigenesis.

EBV Non-coding RNAs
The EBV-encoded small RNAs (EBERs) 1 and 2 are highly
abundant viral transcripts in latently infected cells that are used
for the detection of EBV-infected tissues (reviewed in Iwakiri
and Takada, 2010). Although they are not essential for the
in vitro transformation of B-cells, several studies have shown
that they are involved in preventing apoptosis while promoting
cell proliferation, tumor growth, and possible angiogenesis
(Swaminathan et al., 1991; Laing et al., 2002; Nanbo et al.,
2002; Iwakiri et al., 2003). With regards to angiogenesis, EBER
expression has been directly correlated to VEGF expression in
Hodgkin’s lymphoma patients (Koh et al., 2018). Importantly,
EBER-containing exosomes secreted from NPC cells can be
transferred to surrounding endothelial cells and singularly induce
the expression of vascular cell adhesion molecule (VCAM) 1,
which promotes angiogenic processes in in vitro and in vivo
models (Cheng et al., 2019).

Epstein–Barr virus encodes at least 48 mature miRNAs from
two different regions of the viral genome. Four are produced
from the BamHI fragment H rightward reading frame (BHRF)
1 gene and the rest from BamHI fragment A rightward transcript
(BART; Chen et al., 2010). EBV miRNAs can target both
cellular and viral mRNAs to modulate the host immune response
and maintain viral latency (reviewed in Wang et al., 2018).
Additionally, several lines of evidence suggest that miRNAs
are involved in promoting survival and tumorigenesis. In NPC
cells, the miR BART1 targets both AMP-activated protein kinase
(AMPK) α1 and PTEN, which results in the activation of
downstream targets including mammalian target of rapamycin
(mTOR) and MAPK/ERK (Cai et al., 2015; Lyu et al., 2018).
Activation of these pathways promotes epithelial to mesenchymal
transition and enhances glycolysis, cell migration, invasion, and
angiogenesis. Altogether, these studies demonstrate that both
EBERs and EBV miRNAs might contribute to EBV-induced
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angiogenesis by acting in a paracrine manner or by suppressing
tumor suppressors.

BZLF1 and BRLF1
The BZLF1 (Zta) and BRLF1 (Rta) viral transcription factors
are two lytic proteins essential for the induction of the lytic
cycle. Although both genes are dispensable for immortalization
of primary B-cells in vitro, they are important for promoting
tumor growth of LCLs in severe combined immunodeficient mice
(Hong et al., 2005a). In contrast to LCLs infected with WT EBV,
cells infected with BZLF1- or BRLF1-deleted virus have lower
levels of VEGF secretion, and supernatant from these cells has
reduced ability to promote tubule formation in endothelial cells
(Hong et al., 2005b). Even though most EBV-associated tumor
cells have the virus in latent form, it is not uncommon to find a
small subset of lytically infected cells. Several lines of evidence
have suggested that this small percentage of cells is necessary
for proper tumor formation, as they contribute in a paracrine
manner by secreting growth factors (Ma et al., 2011; McHugh
et al., 2017; Cohen et al., 2018).

In addition to promoting VEGF, BZLF1 induces the
expression of tissue inhibitor of metalloproteinase (TIMP)
1, which is involved in the modulation of MMPs but also
plays a role in viral tumorigenesis by acting as an anti-
apoptotic protein (Guedez et al., 2001; Lin et al., 2015).
Thus, these two lytic proteins may contribute to EBV-induced
tumorigenesis by modulating the expression of factors involved
in angiogenesis.

KAPOSI’S SARCOMA-ASSOCIATED
HERPESVIRUS

Kaposi’s sarcoma-associated herpesvirus is a γ-2 herpesvirus
associated with three human malignancies: the endothelial
cell-driven cancer Kaposi’s sarcoma (KS) and two B-cell
lymphoproliferative diseases: Multicentric Castleman’s disease
(MCD) and primary effusion lymphoma (PEL). Like EBV, KSHV
infection is lifelong, and diseases mostly arise in the context of
immunosuppression (Dittmer and Damania, 2016). Following
infection, the viruses establish a latent cycle expressing only
a handful of genes. The latency locus includes open reading
frame (ORF)71, ORF72, ORF73, ORF K12, and miRNAs. Upon
induction of lytic replication, which is controlled by the protein
product of ORF50, transcription of the viral genome occurs in
an orderly fashion (Dittmer and Damania, 2016). As discussed
with regard to EBV, although KSHV-associated tumor cells are
latently infected, a subset of them undergo lytic replication,
which is hypothesized to contribute to viral tumorigenesis by
providing growth factors in a paracrine manner (Mesri et al.,
2014). Many of these pro-tumorigenic factors are directly linked
to the induction of angiogenic processes (Dimaio and Lagunoff,
2012; Purushothaman et al., 2016).

Initial studies in KS and PEL illustrated the importance
of tumor cells in inducing VEGF and VEGFR (Brown et al.,
1996; Cornali et al., 1996; Flore et al., 1998; Aoki and Tosato,
1999; Masood et al., 2002). VEGF can enhance the infectivity

of the virus, and its expression is increased as early as
30 min post-infection, suggesting a role in mediating infection
(Sivakumar et al., 2008). Following infection, KSHV triggers
the reactivation of silenced genes such as PAX2. Generally
restricted to embryogenesis, KSHV-mediated induction of PAX2
leads to the expression of CCL-2 and Akt, which contributes
to the angiogenic and invasiveness potential of endothelial cells
(Fonsato et al., 2008). Furthermore, KSHV-infected endothelial
cells have increased PI3K/Akt activity, which is a major
contributor to viral-induced tubule formation (Wang and
Damania, 2008). Additionally, KSHV-infected endothelial cells
express and secrete many other pro-angiogenic factors. Some of
these proteins include HIF-1α, HIF-2α, IL-8, GRO-α, CCL-2, and
angiopoietin-2 (Table 2; Lane et al., 2002; Carroll et al., 2006;
Caselli et al., 2007, 2012; Ye et al., 2007; Fonsato et al., 2008).

The demand for oxygen and nutrients during angiogenesis
triggers ROS, which in turn contributes to the pathological
process (Kim and Byzova, 2014). Consequently, KSHV
tumor cells rely on the production of ROS, as treatment
with antioxidants represses pro-angiogenic factors and decreases
the formation of KS-like tumors in mice (Ma et al., 2009, 2013).
For example, in an NF-κB-dependent but HIF-1α-independent
manner, ROS and hypoxic conditions induce the expression
of galectin-1, driving angiogenic phenotypes in KS-like
tumors (Croci et al., 2012). Moreover, the redox functions of
apurinic/apyrimidinic endonuclease (APE) 1, which can affect
several types of transcription factors, are involved in KSHV-
induced angiogenesis (Zhong et al., 2017). Thus, the production
of ROS by KSHV-infected endothelial cells is needed for the
formation of KS-like tumors and their vasculature.

Kaposi’s sarcoma-associated herpesvirus infection of
endothelial cells promotes the expression of integrin subunits β1
and β3 (Dyson et al., 2007; DiMaio et al., 2011). In endothelial
cells, integrins (e.g., αVβ1 and αVβ3) play a role in KSHV entry
by binding to glycoprotein B (Kumar and Chandran, 2016).
Activation of integrins such as αVβ3 induces phosphorylation of
focal adhesion kinase (FAK) and tyrosine kinase Src, promoting
the release of stored angiogenin (Ang) 2 (Ye et al., 2013). Ang-2
plays an essential role in the vasculature of KSHV tumors by
serving as a ligand for the tyrosine kinase receptor Tie-2 (Yu
et al., 2016). Activation of Tie-2 enhances VEGF signaling and
induces activation of PI3K/Akt and MAPK/ERK pathways
(Thurston and Daly, 2012). Thus, in endothelial cells, integrins
facilitate viral binding and entry, and they are also involved in
cell migration and angiogenesis.

Furthermore, KSHV infection of endothelial cells promotes
cell migration through the induction of MMP-1, MMP-2, and
MMP-9 (Qian et al., 2007). This process is facilitated in part by
the KSHV-induced activation of the AP-1 transcription factor.
The disruption of cell-cell junctions enables cell migration, and in
endothelial cells promotes vascular permeability. KSHV induces
this process by modulating the expression or phosphorylation of
VE-cadherin (Samaniego et al., 1998; Qian et al., 2008; Guilluy
et al., 2011). Importantly, the viral proteins K1, K5, and vGPCR
are significant contributors to these processes during both latent
and lytic phases (Figure 4; Mansouri et al., 2008; Dwyer et al.,
2011; Guilluy et al., 2011).
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TABLE 2 | Major pro- and anti-angiogenic factors modulated by KSHV viral factors

Major Pro-angiogenic Factor Viral Factor Cell Type Reference

Angiogenins LANA Endothelial Sadagopan et al., 2009

vGPCR

Angiopoietin-2 vIL-6 Lymphatic Vart et al., 2007

vGPCR Endothelial

ANGPTL-4 vGPCR Endothelial Ma et al., 2010; Hu et al., 2011

COX-2 vFLIP Endothelial Sharma-Walia et al., 2012

CCL-2/MCP-1 vIL-6 Endothelial Giffin et al., 2015

CCL-3/MIP-1α
vGPCR Epithelial Montaner et al., 2004

CCL-4/MIP-1β

CXCL-1/Gro-α vGPCR Epithelial Montaner et al., 2004

CXCL-8/IL-8 vGPCR Epithelial Montaner et al., 2004

K15 Epithelial Brinkmann et al., 2007

CXCL-12/SDF-1 vGPCR Epithelial Montaner et al., 2004

EGFL-7 LANA Endothelial Thakker et al., 2018

FGF-2/FGFR vIL-6 Fibroblast Zhou et al., 2013

HIF

LANA Various Cai et al., 2007

vIRF3 Endothelial Shin et al., 2008

vGPCR Fibroblast Sodhi et al., 2000

IL-6

vGPCR Epithelial Montaner et al., 2004

K15 Epithelial Brinkmann et al., 2007

vIL-6 Various Mori et al., 2000

MMP-1 K15 Epithelial Brinkmann et al., 2007

MMP-2 vGPCR Endothelial Shan et al., 2007

MMP-9 K1 Endothelial Wang et al., 2004

PDGF/PDGFR vGPCR Endothelial Cavallin et al., 2018

VEGF

vGPCR Fibroblast Sodhi et al., 2000

K1 Endothelial and Epithelial Wang et al., 2004

K15 Epithelial Brinkmann et al., 2007

vIL-6 Fibroblast Aoki et al., 1999

vIRF3 Endothelial Shin et al., 2008

miRNA Endothelial Li et al., 2016b

Major Anti-angiogenic Factor Viral Factor Cell Type Reference

THBS-1 miRNAs Epithelial and B-cells Samols et al., 2007

TIMP-2 vGPCR Endothelial Shan et al., 2007
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FIGURE 4 | Several KSHV proteins and miRNAs promote angiogenesis by activating cellular signaling pathways. The viral factors LANA, vFLIP, Kaposin B, vIRF-3,
and the miRNAs miR-K12 induces activation of major transcription factors such as HIF-1α, NF-κB, AP-1, and STAT-3. Additionally, the viral proteins K1, K15, vGPCR,
vIL-6, and vPK cooperate in the activation of multiple signaling pathways promoting expression of angiogenic factors resulting in stronger viral tumorigenesis.

The ability of KSHV to infect a variety of cells, including
endothelial and B-cells, is the starting point for a strong
induction of angiogenic events facilitating tumor growth. As
endothelial cells are the major components of blood vessels,
manipulation and transformation of these cells is predicted to
enhance viral tumorigenicity by, in part, promoting angiogenesis.
Endothelial cells express several KSHV entry receptors including,
integrins, xCT, and the tyrosine kinase receptor EphrinA2
(EphA2; reviewed in Kumar and Chandran, 2016). Viral binding
to these receptors leads to the formation of signaling complexes
promoting the interaction with PI3K, FAK, Src, and c-Cbl,
thereby activating these signaling pathways (Chakraborty et al.,
2012; Dutta et al., 2013). This process does not only allow for
viral entry, but it is also predicted to modulate pro-angiogenic
signaling as EphA2 is known to crosstalk with VEGF signaling
(Barquilla and Pasquale, 2015).

In just a couple of decades, researchers have identified several
viral factors, expressed during both latent and lytic cycles, that are
involved in modulating angiogenesis and may represent viable
targets against KSHV-associated malignancies. Next, we will
review the current knowledge of how individual genes contribute
to the angiogenic process.

Latency-Associated Nuclear Antigen
The latency-associated nuclear antigen (LANA), encoded by
ORF73 and homologous to EBNA1, is a major latency protein
that tethers the KSHV episome to the host genome, allowing
viral replication during regular cellular division (reviewed in
Weidner-Glunde et al., 2017). LANA utilizes several mechanisms
to promote angiogenesis, including inhibiting tumor suppressors
and miRNAs to promote activation of transcription factors that
modulate pro-angiogenic proteins.

The LANA-mediated inhibition of the VHL and p53 tumor
suppressors promotes the stabilization of HIF-1α (Cai et al., 2006,
2007). LANA also stabilizes the Notch effector Hey-1, preventing
its degradation, and facilitating Notch signaling (Wang et al.,
2014). Furthermore, LANA sequesters death-associated protein
6 (Daxx), allowing Ets-1 to modulate the expression of the pro-
angiogenic factors VEGFR-1, VEGFR-2, and epidermal growth
factor-like domain 7 (EGFL-7; Murakami et al., 2006; Thakker
et al., 2018). Another mechanism by which LANA enhances
the expression of the transcription factors Ets-1 and Ets-2
is repression of cellular miRNAs miR-221 and miR-222 (Wu
et al., 2011). This process contributes to the expression of pro-
angiogenic genes.
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Moreover, LANA increases the expression and secretion
of Ang-2 and the extracellular matrix metalloproteinase
inducer (EMMPRIN; also known as CD147), which promotes
invasiveness by activating signaling pathways such as PI3K/Akt
and MAPK/ERK (Sadagopan et al., 2009; Qin et al., 2010; Dai
et al., 2012). In KSHV-infected endothelial cells, EMMPRIN
also induces the metalloproteinases ADAMTS-1 (a disintegrin
and metalloproteinase with thrombospondin motifs) and
ADAMTS-9, and the pro-angiogenic protein heme-oxygenase
(HO) 1 (Dai et al., 2016a,b). To conclude, LANA plays at
least two essential roles in KSHV-infected cells: ensuring the
maintenance of latency and promoting viral tumorigenesis in
part by inducing angiogenesis.

vFLIP and vCyclin
ORF71 and ORF72 are expressed together as they are located in
a bicistronic mRNA and code for the viral FLICE (FADD-like
interferon converting enzyme)-like inhibitory protein (vFLIP)
and the cyclin D homolog, vCyclin, respectively (Dittmer
et al., 1998). Both genes are expressed during latency, and
their proteins modulate pro-survival and cell proliferation
pathways. Introduction of vFLIP in endothelial cells modulates
the expression of a number of genes that are essential for blood
vessel development (Punj et al., 2009). Importantly, vFLIP can
directly interact with IκB kinase (IKK) α, IKKβ, and IKKγ/ NF-
κB essential modulator (NEMO) complexes, promoting IκBα

destruction and thus NF-κB activation (Field et al., 2003;
Guasparri et al., 2004). Additionally, it was recently demonstrated
that vFLIP uses an alternative pathway to induce the activation of
NF-κB by promoting the degradation of the histone deacetylase
complex components SAP-18 and histone deacetylase (HDAC)
1, which target p65 for deacetylation (Ding et al., 2019).
Importantly, activation of NF-κB is essential for vFLIP-induced
endothelial cell migration, invasion, and angiogenesis (Ding et al.,
2019). In an NF-κB-dependent manner, and in coordination with
LANA, vFLIP increases expression of the epigenetic modifier
EZH2, which in turn modulates the pro-angiogenic factor
Ephrin-B2 (He et al., 2012).

Furthermore, in endothelial cells, vFLIP plays an essential
role in KSHV-induced expression and secretion of COX-2 and
PGE2 (Sharma-Walia et al., 2006, 2010; George Paul et al., 2010).
This induction of COX-2 not only requires NF-κB but is also
dependent on PI3K/Akt and p38/MAPK (Sharma-Walia et al.,
2012). Finally, both vFLIP and vCyclin can induce expression
of the host microRNA cluster miR-17/92, which targets Smad-
2 and perturbs TGF-β signaling (Choi H. S. et al., 2015). This
process is hypothesized to modulate viral-induced angiogenesis
as, paradoxically, TGF-β has both pro- and anti-angiogenic
functions (Principe et al., 2014). Although not much is known
about the role of vCyclin in angiogenesis, these studies have
demonstrated that mostly through the activation of NF-κB, vFLIP
is important for KSHV-induced angiogenesis.

Kaposins
The ORF K14 encodes Kaposin A, while Kaposins B and
C transcription begins upstream of ORF K14. Kaposins A
and C have not been thoroughly studied, although it has

been shown that Kaposin A has oncogenic potential as it
can induce focus formation in Rat-3 and NIH3T3 cells and
form tumors in nude mice (Kliche et al., 2001; Chen X.
et al., 2009). Additionally, the expression of Kaposin B results
in the activation of pro-inflammatory and pro-angiogenic
signaling involving p38/MK-2 and STAT-3 (McCormick and
Ganem, 2005; King, 2013). Importantly, activation of p38/MK-
2 promotes the accumulation of AU-rich element-containing
mRNAs, including prospero homeobox protein 1 (PROX-
1; Yoo et al., 2010). Consequently, this process allows for
the stabilization of PROX-1 mRNA, which contributes to
KSHV-induced lymphatic reprogramming of blood endothelial
cells (Hong et al., 2004). Another mechanism by which
Kaposin B modulates angiogenesis involves inactivation of the
host miRNAs miR-221 and miR-222 in a c-Myc-dependent
manner (Chang et al., 2016). As mentioned above, these two
miRNAs target the transcription factors Ets-1 and Ets-2. To
conclude, these studies highlight the roles of the Kaposins in
mediating viral-induced pathogenesis and possibly contributing
to tumor angiogenesis.

KSHV MicroRNAs
Kaposi’s sarcoma-associated herpesvirus encodes 12 precursor
microRNAs that are processed into at least 25 mature miRNAs
that target viral and host mRNAs to maintain latency while
also promoting tumorigenesis (Cai et al., 2005; Pfeffer et al.,
2005; Samols et al., 2005). These miRNAs are expressed during
latency and are abundant in KSHV-associated malignancies
(Marshall et al., 2007; O’Hara et al., 2009a,b). In order to promote
angiogenesis, several miRNAs target cellular anti-angiogenic and
anti-proliferative proteins such as THBS-1 (Samols et al., 2007;
Gallaher et al., 2013). KS tumor tissues show low levels of THBS-
1, and several miRNAs have been identified to target its transcript,
resulting in a reduction in TGF-β activity (Taraboletti et al., 1999;
Samols et al., 2007).

Moreover, the KSHV miRNA K12-6-5p targets the breakpoint
cluster region, enhancing Rac-1 activity, and promoting tubule
formation (Ramalingam et al., 2015). Rac-1 belongs to the Rho
family of GTPases involved in angiogenesis and reorganization
of the cytoskeleton. Additionally, miRNA K12-6-5p targets the
metastasis suppressor CD82, allowing c-Met to be activated,
and induces endothelial cell invasion and angiogenesis (Li
et al., 2017). In addition to the viral proteins known to
activate the PI3K/Akt pathway (Bhatt and Damania, 2012),
KSHV miR-K12-3 targets G protein-coupled receptor kinase
2 (GRK-2), promoting the activation of CXCR-2/Akt (Li
et al., 2016a). This increase in Akt activity enhances the
invasiveness and angiogenic potential of endothelial cells (Li
et al., 2016a). Furthermore, KSHV miRNAs modulate the
activation of the JAK/STAT signaling pathway. For example,
expression of miR-K12-6-3p promotes the degradation of SH3
domain-binding glutamic acid-rich protein (SH3BGR), relieving
STAT-3 repression and allowing nuclear translocation and
expression of pro-angiogenic genes such as MMP-13, VEGF-
A, and VEGFR-2 (Li et al., 2016b). Together, these studies
illustrate the mechanisms that a handful of viral miRNAs utilize
to promote tumorigenesis.
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K1
The ORF K1 is located on the extreme left end of the KSHV
genome (reviewed in Sousa-Squiavinato et al., 2015). It is
an immunoreceptor tyrosine-based activation motif (ITAM)-
containing transmembrane glycoprotein with transforming
capacities, able to immortalize endothelial cells (Lee et al.,
1998; Wang et al., 2006). Through its ITAM, K1 recruits
SH2-containing proteins such as Syk and phosphoinositide
phospholipase C (PLC) γ-1 and induces their constitutive
activation (Figure 4; Lagunoff et al., 1999; Lee et al., 2005).
Expression of K1 in endothelial cells leads to an increase in
activation of the PI3K/Akt pathway, resulting in the secretion
of VEGF and consequently angiogenic activity (Tomlinson
and Damania, 2004; Wang et al., 2004). Additionally, K1
can synergize with the HIV protein Nef to induce the
expression of cellular miR-718, which targets PTEN and thus
promotes the activation of the PI3K/Akt pathway, inducing
angiogenesis in both in vitro and in vivo models (Xue
et al., 2014). Similarly, through the modulation of another
cellular miRNA, miR-891a-5p, K1 synergizes with HIV-1 Tat
to promote angiogenic processes by activating NF-κB signaling
(Yao et al., 2015). Thus, K1 activation of several signaling
pathways, chiefly PI3K/Akt, promotes the angiogenic activity of
endothelial cells.

K15
Located at the right end of the viral genome, ORF K15 encodes
a transmembrane protein composed of eight alternatively
spliced exons (Choi et al., 2000). K15 is a functional
homolog to EBV’s LMP2A, and its expression modulates
pro-angiogenic cytokines and chemokines such as IL-6, IL-
8, and CCL-20 (Brinkmann et al., 2007; Bala et al., 2012).
The cytoplasmic tail of K15 contains SH2- and SH3-binding
motifs that recruit and constitutively activate PLCγ-1 (Glenn
et al., 1999). Moreover, K15 activates signaling pathways
involving Ras, JNK, NF-κB and the transcription factors AP-
1 and nuclear factor of activated T-cells (NFAT) (Figure 4;
Brinkmann et al., 2003; Cho et al., 2008). Recruitment of
PLCγ-1 and activation of NFAT are essential for K15 to
induce pro-angiogenic phenotypes such as endothelial cell
tubule formation (Bala et al., 2012; Gramolelli et al., 2015).
This angiogenic process involves the expression of regulator
of calcineurin (RCAN) 1, which is induced explicitly by
K15 via activation of calcineurin (Bala et al., 2012). In
sum, several studies have suggested that most of the pro-
angiogenic signaling induced by K15 is mediated through the
activation of NFAT.

Viral Interleukin-6
The ORF K2 encodes viral interleukin-6 (vIL-6), and its
expression can be detected at low levels during latency but
increases upon lytic replication. As the name indicates, vIL-6 is
the viral homolog of human IL-6, and they share some properties
such as the ability to induce activation of the JAK/STAT
signaling pathway (Moore et al., 1996; Molden et al., 1997;
Neipel et al., 1997; Nicholas et al., 1997; Chen D. et al., 2009).

However, in contrast to hIL-6, which requires both parts of
the IL-6 receptor (IL-6R; gp80 and gp130), vIL-6 can induce
signaling through gp130 in the absence of IL-6Rα (gp80). This
allows the viral protein to constitutively activate the pathway
promoting cell proliferation, migration, and angiogenesis (Aoki
et al., 1999; Chen D. et al., 2009; Giffin et al., 2014, 2015;
Wu et al., 2014). The involvement of vIL-6 in mediating
angiogenesis was demonstrated when vIL-6-expressing NIH3T3
cells formed highly vascularized tumors in nude mice (Aoki
et al., 1999). vIL-6 is an important player in the pathogenesis
of Multicentric Castleman’s disease (MCD), as the viral cytokine
can be detected in the serum of patients, induce MCD-like
disease in mice, and promote secretion of hIL-6, a significant
contributor to the disease (Mori et al., 2000; Aoki et al., 2001;
Suthaus et al., 2012).

vIL-6 is sufficient, but not necessary, for KSHV-induced
differentiation of blood to lymphatic endothelial cells (Morris
et al., 2012). Importantly, the induction of the lymphatic
markers PROX-1, VEGFR-3, and podoplanin (PDPN), expressed
in KS tumor cells, requires the activation of both JAK/STAT
and PI3K/Akt pathways (Morris et al., 2012). Moreover,
in addition to the KSHV proteins mentioned above, vIL-6
also represses TGF-β2 signaling to levels seen with KSHV
infection (DiMaio et al., 2014). The suppression of TGF-β2
is essential for viral-induced tubule formation (DiMaio et al.,
2014). Similar to K1, vIL-6 has been found to synergize
with HIV-1 proteins Tat and Nef to promote angiogenesis
through activation of the PI3K/Akt pathway (Zhou et al.,
2013; Zhu et al., 2014). vIL-6 is also involved in promoting
endothelial cell migration, and possible angiogenesis, by
activating proteins such as carcinoembryonic antigen-related
adhesion molecule (CECAM) 1, hypoxia-upregulated protein
(HYOU) 1, DNA methyltransferase (DNMT) 1, and CCL-2
(Giffin et al., 2014, 2015; Wu et al., 2014). In conclusion,
a multitude of studies using both in vitro and in vivo
models have demonstrated the highly pro-angiogenic functions
of vIL-6 and how this viral protein might contribute to
KSHV-associated malignancies.

Viral G-Protein Coupled Receptor
ORF74 encodes the early lytic protein viral G-protein coupled
receptor (vGPCR), the viral homolog to cellular CXCR-1
(Cesarman et al., 1996; Arvanitakis et al., 1997). Activation of the
IL-8 receptor CXCR-1 is widely known to be pro-angiogenic in
endothelial cells (Figure 2; Li et al., 2003). vGPCR activates major
signaling pathways including p38, JNK, PI3K/Akt, MEK/ERK,
JAK/STAT, and Wnt/β-cat, and the transcription factors AP-
1, CREB, NFAT and NF-κB (Figure 4; Bais et al., 1998;
Sodhi et al., 2000; Cannon et al., 2003; Burger et al., 2005;
Angelova et al., 2014; Wong and Damania, 2017). Activation
of these signaling pathways leads to the vGPCR-mediated
secretion of pro-angiogenic factors such as IL-6, IL-8, GRO-
α, CCL-3, CCL-4, stromal cell-derived factor 1 (SDF-1β), and
VEGF (Montaner et al., 2004). In contrast to VEGF, whose
expression is mainly dependent on HIF-1α, secretion of the
other cytokines is dependent on the GTPase Rac-1 (Sodhi
et al., 2000; Schwarz and Murphy, 2001; Montaner et al., 2004).
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In addition to the above-mentioned signaling pathways, the
Hippo pathway has recently been highlighted as an important
contributor to angiogenesis (Kim et al., 2017; Boopathy and
Hong, 2019). vGPCR activates the downstream mediators of the
Hippo pathway, Yes-associated proteins (YAP)/Tafazzin (TAZ),
which in turn may facilitate the angiogenic process by mediating
VEGFR signaling and expression of angiopoietin-2 (Choi H. J.
et al., 2015; Liu et al., 2015).

Viral G-protein coupled receptor immortalizes HUVECs and
induces the expression of VEGFR-2, which is vital for the
survival of these cells (Montaner et al., 2001; Bais et al., 2003).
Furthermore, vGPCR transforms NIH3T3 cells and promotes
the formation of highly vascularized tumors in nude mice (Bais
et al., 1998). Secreted factors from vGPCR-expressing cells,
especially VEGF, induce tubule formation in endothelial cells,
suggesting the involvement of paracrine signaling in promoting
angiogenesis (Bais et al., 2003). Finally, conditioned media
from vGPCR-expressing cells induce the expression in HUVECs
of pyruvate kinase 2 (PKM-2), which acts as a coactivator
of HIF-1 to promote aerobic glycolysis and tubule formation
(Ma et al., 2015).

As a potent inducer of angiogenic processes, vGPCR
modulates the expression of other pro-angiogenic proteins
such as Ang-2, which is necessary for the survival of KSHV-
infected endothelial cells, and angiopoietin-like (ANGPTL) 4,
which promotes angiogenesis and vascular permeability in
endothelial cells (Sadagopan et al., 2009; Ma et al., 2010;
Hu et al., 2011). Additionally, in coordination with vIL-6
and dependent on MEK/ERK signaling, vGPCR induces the
expression of angiopoietin-2 in lymphatic endothelial cells (Vart
et al., 2007). Furthermore, through activation of Src, vGPCR
induces membrane type (MT) 1-MMPs and represses TIMP-2,
resulting in an increase of MMP-2 and arterial endothelial-cell
tubule formation (Shan et al., 2007). Taken together, these studies
demonstrate that vGPCR is a potent inducer of pro-angiogenic
processes, and thus, it is expected to contribute significantly to
KSHV-associated malignancies.

Viral Interferon Regulatory Factors
Kaposi’s sarcoma-associated herpesvirus encodes four viral
homologs to cellular interferon regulatory factors (IRFs)
(reviewed in Jacobs and Damania, 2011). They play an essential
role in inhibiting their cellular counterparts’ innate function.
Although it is likely that all four vIRFs contribute to the
pathogenesis of KSHV, especially by modulating Notch and TGF-
β/Smad signaling, only vIRF3 has been identified to have a
role in promoting angiogenesis (Jacobs and Damania, 2011).
vIRF-3, also known as LANA-2, is a latently expressed protein
that interacts with HIF-1α, promoting its stabilization and
pro-angiogenic signaling including the expression of VEGF
(Figure 4; Rivas et al., 2001; Shin et al., 2008). Furthermore,
vIRF-3 can also interact with HDAC-5, sequestering it in the
nucleus, and inducing expression of the lymphatic markers
PDPN and PROX-1 (Lee et al., 2018). These markers, which
are also induced in KSHV-infected endothelial cells, contribute
to the spindle-shape form characteristic of KS (Lee et al.,
2018). Finally, vIRF-3 is necessary for KSHV-induced lymphatic

endothelial cell tubule formation and sprouting (Lee et al.,
2018). Thus, in addition, to playing a role in repressing
host antiviral response, vIRFs may contribute to KSHV-
induced angiogenesis.

Viral CC Chemokine Ligands
Kaposi’s sarcoma-associated herpesvirus encodes three CC
chemokine ligands (CCLs), vCCL-1 (ORF K6), vCCL-2
(ORF K4), and vCCL-3 (ORF K4.1; Nicholas et al., 1997).
These were previously known as viral macrophage inhibitory
proteins (vMIPs). These viral proteins can interact with
cellular CC-chemokine receptors and inhibit their signaling.
All three vCCLs have been found to induce pro-angiogenic
phenotypes in both in vitro and in vivo models (Boshoff
et al., 1997; Stine et al., 2000; Cherqui et al., 2007). In
particular, vCCL2 has been identified as capable of binding
to multiple chemokine receptors, thus able to act on several
cell types (Szpakowska and Chevigne, 2016). Therefore, vCCLs
may play an essential role in the tumor microenvironment
not only by acting on virus-infected cells but also by
recruiting immune cells.

Viral Protein Kinase
The viral protein kinase (vPK) encoded by ORF36 is one of
two kinases expressed by KSHV (Park et al., 2000). The other
kinase is the homolog of cellular thymidine kinase encoded
by ORF21. The expression of vPK is detected mostly during
lytic replication, although it can also be detected in the absence
of full lytic replication. This expression during latency is
hypothesized to occur during hypoxic conditions as HIF proteins
upregulate vPK expression via HIF response elements located
at the promoter of the ORF34–37 cluster (Haque et al., 2006).
Notably, vPK activates the JNK pathway by phosphorylating
mitogen-activated protein kinase kinase (MKK)-4 and MKK-7
(Hamza et al., 2004).

Furthermore, vPK mimics the activity of the cellular protein
S6 kinase β1 (P70S6K1), promoting protein synthesis by
activating ribosomal protein S6 and eukaryotic initiation
factor 4B (EIF4B; Bhatt et al., 2016). Both S6 and EIF4B
are downstream components of the PI3K/Akt pathway that
promote translation of HIF-1α, enhancing angiogenesis
(Karar and Maity, 2011). Importantly, expression of vPK
augments anchorage-independent growth and promotes
endothelial cell tubule formation (Bhatt et al., 2016). In addition
to its oncogenicity in vitro, vPK expressed in transgenic
mice generates a hyperproliferation of B-cells and a higher
incidence of B-cell non-Hodgkin’s lymphomas (Anders et al.,
2018). Together, these studies demonstrate a tumorigenic
role for this viral kinase and its possible involvement in
promoting angiogenesis.

IN VIVO MODELS TO STUDY EBV- AND
KSHV-INDUCED ANGIOGENESIS

The lack of tropism for murine cells by both EBV and
KSHV has required the development of methods to study
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viral-induced malignancies in vivo. Most in vivo studies rely
on the engraftment of tumor or viral protein-expressing cells
into mice, or transgenic mice expressing the viral proteins.
Another approach to study the viruses in vivo involves the
humanization of the mice, which makes the animal permissive
for viral infection. These studies have proven to be useful
for the characterization of viral proteins and RNAs, especially
in the context of lymphomagenesis. Several recent reviews
published elsewhere had discussed these in vivo models in detail
(Dittmer et al., 2015; Fujiwara et al., 2015; Ahmed and Baiocchi,
2016; Purushothaman et al., 2016; Munz, 2017; Fujiwara, 2018;
Bravo Cruz and Damania, 2019).

Transgenic mice expressing viral proteins such as KSHV
vGPCR demonstrates the involvement of this protein in inducing
highly angiogenic KS-like lesions (Holst et al., 2001; Guo et al.,
2003). Furthermore, conditional transgenic mice have also been
created, allowing for the doxycycline-inducible expression of
viral genes (Jensen et al., 2005; Grisotto et al., 2006). To
restrict the expression to specific cell types, such as endothelial
cells, the Tie2-tva transgenic mice was developed. This mouse
model expresses the avian leukosis virus (ALV) receptor,
Tva, under a Tie2 promoter restricting the expression of the
receptor to endothelial cells (Montaner et al., 2003). These
cells are permissive to infection with ALV-derived retroviruses
expressing a viral gene of interest. Similar to the previous model,
expression of vGPCR in these cells also led to the formation
of highly angiogenic KS-like lesions (Montaner et al., 2003;
Sodhi et al., 2004, 2006).

The models to study EBV-induced angiogenesis in vivo
have not been developed to the same extent as with KSHV.
Most of these models consist of the injection of EBV-positive
NPC cells or EBV-transformed LCLs into immunocompromised
mice (Hong et al., 2005b; Smith et al., 2011; Yang et al.,
2015; Ma et al., 2018; Ye et al., 2018). Although these
models have not been extensively used for angiogenic studies,
they have provided vital knowledge with regards to pro-
tumorigenic viral factors.

Two cell lines used for in vitro and also in vivo studies
are the telomerase-immortalized vein endothelial (TIVE)
cells or the BAC36-transfected murine cells (mECK36),
which are suitable models due to their ability to grow and
resemble KS in vivo (An et al., 2006; Mutlu et al., 2007).
These models allow for the characterization of essential
cellular and viral factors that contribute to tumorigenesis and
also for the testing of possible therapeutic compounds. For
studying PEL, several cell lines, notably BCBL-1, injected into
immunocompromised mice give rise to tumors. Even though
this model induces the formation of a solid tumor, cells produce
an accumulation of ascites resembling PEL and allowing for
the studies of anti-tumorigenic compounds. Furthermore,
patient-derived xenografts were recently established to
study NPC (Lin et al., 2018). Altogether, these technological
advances have provided suitable tools to study viral-induced
malignancies in animals.

The chicken chorioallantoic membrane (CAM) assay has
been widely used to study angiogenesis in vivo. This assay
is simplistic due to the nature of the highly vascularized

extraembryonic membrane following the fertilization of the egg
(Nowak-Sliwinska et al., 2014). Cells, proteins, or compounds can
be incorporated into the membrane allowing for the assessment
of the effect of these factors in mediating angiogenesis. The
whole embryo can be removed from the eggshell and placed on
a petri dish to facilitate the imaging process. In fact, this method
has been used by several groups to demonstrate KSHV-induced
angiogenesis (Stine et al., 2000; Zhou et al., 2013; Zhu et al., 2014).
Thus, the CAM assay provides a cost-effective approach to study
angiogenesis in an in vivo context.

TARGETING ANGIOGENESIS IN EBV-
AND KSHV-ASSOCIATED
MALIGNANCIES

Research into EBV- and KSHV-induced angiogenesis has
suggested an essential role for this process in viral tumorigenesis.
As discussed above, virus infection or expression of viral
proteins and non-coding RNAs have already been identified as
contributing to this process. These studies have paved the way for
several clinical trials of compounds with anti-angiogenic activity
to treat viral malignancies, particularly KS and NPC.

Since the mid-2000s, several inhibitors with anti-angiogenic
activity, including chemical and biological agents, have been
clinically approved for different types of cancers (Ribeiro et al.,
2018). These include the VEGF inhibitor bevacizumab (Avastin),
VEGFR-2 antagonist ramucirumab (Cyramza) and several
receptor tyrosine kinase (RTK) inhibitors that target VEGFRs,
c-Met, and PDGFR, such as sunitinib (Sutent) and cabozantinib
(Cabometyx). Also, the immunomodulatory compounds
thalidomide (Immunoprin) and lenalidomide (Revlimid) used
to treat multiple myeloma show anti-angiogenic activity by
targeting angiogenic inducers such as IL-6, NF-κB, COX-2, and
VEGF (Ribeiro et al., 2018).

Several of these inhibitors have been tested or are currently
undergoing clinical trials against EBV- and KSHV-associated
malignancies. For example, the switch of immunosuppressant
from cyclosporin A to the mTOR inhibitor rapamycin (Sirolimus)
elicited KS regression in transplant patients, and it is now the
first line of treatment for transplant KS (Stallone et al., 2005).
The PI3K/Akt/mTOR pathway has proven to be vital for KS
and PEL, and several inhibitors have proven to be efficacious
in pre-clinical studies (Sin et al., 2007; Bhatt et al., 2010; Roy
et al., 2013). Furthermore, Uldrick et al. (2012) reported that
out of 16 KS patients treated with bevacizumab, 31% showed
complete or partial response. However, in another small group of
patients, although well tolerated, intralesional administration of
bevacizumab had no significant effect against upper respiratory
tract KS (Ablanedo-Terrazas et al., 2015). Thus, targeting VEGF
with bevacizumab has a moderate effect against KS.

Additionally, targeting the receptor tyrosine kinases, c-kit,
and PDGFR, with the inhibitor imatinib (Gleevec), provided a
long-term benefit to a third of patients suffering from the most
aggressive KS subtype, AIDS-KS (Koon et al., 2014). Moreover, 16
of 22 KS patients that were treated with pomalidomide responded
well and rapidly to the treatment (Polizzotto et al., 2016).
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Additionally, several of these immunomodulatory compounds
that show anti-tumorigenic and anti-angiogenic activity are
currently being studied for treatment against KSHV- and EBV-
associated lymphomas (NCT02911142). Furthermore, the anti-
IL-6 antibody siltuximab (Sylvant) has been FDA approved for
idiopathic MCD, and the anti-IL-6R (gp80) antibody tocilizumab
(Actemra) is currently been tested in KSHV-associated MCD
patients (NCT01441063; van Rhee et al., 2014).

In NPC patients, the addition of bevacizumab to standard
chemoradiation proved to be safe and suggested that the
treatment might delay the progression of the disease (Lee
et al., 2012). Furthermore, the combination of the recombinant
endostatin (Endostar), which inhibits VEGF, with gemcitabine
and cisplatin increased the overall survival of metastatic-
NPC patients (Jin et al., 2018). In contrast, the use of the
EGFR inhibitor erlotinib (Tarceva) as maintenance following
gemcitabine plus platinum-based chemotherapy was ineffective
in recurrent or metastatic NPC patients (You et al., 2012). Thus,
the addition of these anti-angiogenic compounds in combination
with standard chemotherapy may become a standard treatment
for NPC patients.

Importantly, apart from the anti-VEGF therapies, most
of these therapeutics were not developed as anti-angiogenic.
Nevertheless, their effect in reducing angiogenesis is predicted
to be a product of inhibiting pathways known to contribute
to angiogenic processes. Thus, these clinical studies have
highlighted the potential benefit of several different therapeutic
approaches that may contribute to reducing pro-angiogenic
mechanisms. Consequently, more studies are currently
underway and as new anti-angiogenic therapeutic approaches
are developed, we can expect that patients suffering from EBV-
and KSHV-associated malignancies will eventually benefit from
these treatments.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Angiogenesis is one of the hallmarks of cancer, and the ability
of a tumor to hijack this process for its benefit facilitates growth
and enhances its ability to metastasize (Hanahan and Weinberg,
2011). Viral cancers are not an exception (Mesri et al., 2014). Two
of the seven known human oncoviruses, EBV and KSHV, belong
to the Gammaherpesvirinae subfamily. Both viruses are linked
to several malignancies, including both solid and liquid tumors.
Importantly, both viruses are known to have pro-angiogenic
activity that enhances their tumorigenesis.

Most of the research into EBV- and KSHV-induced
angiogenesis has been accomplished just in the last two
decades. However, several viral factors, especially in KSHV, have
already been identified as playing a direct and substantial role in
modulating pro-angiogenic processes, leading to clinical trials
using anti-angiogenic inhibitors. The fact that the induction of
angiogenesis is not restricted to a single viral factor suggests
the importance of this process in mediating viral pathogenesis.
Specifically, both latent and lytic proteins are involved in this
process, supporting the hypothesis that paracrine signaling is

vital for these viral-induced malignancies. In KSHV-associated
malignancies, the current knowledge points to lytic proteins
such as vGPCR and vIL-6 to be amongst the most potent
pro-angiogenic inducers. However, in the context of EBV
tumorigenesis, the latent protein LMP1, appears to be the
major pro-angiogenic factor. Interestingly, EBV encodes a
constitutively active GPCR known as BILF1 that has not been
exhaustively studied, although it is known that it can induce
tumors in nude mice (Paulsen et al., 2005; Lyngaa et al., 2010).
It would be of significant interest to determine whether BILF1
contributes to EBV-induced angiogenesis.

The emerging field of non-coding RNAs, which includes
both cellular and viral miRNAs, long non-coding (lnc) RNAs,
and circular (circ) RNAs, may be significant contributors to
angiogenesis (Khorshidi et al., 2016). As discussed above, EBV
and KSHV express miRNAs that have been demonstrated
to be involved in mediating angiogenesis. Recently, a few
cellular lncRNAs have been identified to be regulated during
hypoxia and contributing to tumor angiogenesis (Yu and Wang,
2018). Additionally, circRNAs may also be important players in
regulating this pathological process (Su et al., 2019). As both
viruses, EBV and KSHV, express these types of non-coding
RNAs, it would be of significant interest to determine whether,
in addition to miRNAs, the other non-coding RNAs contribute
to viral-induced angiogenesis (Tagawa et al., 2018; Toptan
et al., 2018; Ungerleider et al., 2018, 2019). Importantly, the
development of animal models, including mouse and zebrafish,
are promising methods for the in vivo characterization of these
non-coding RNAs (Feyder and Goff, 2016).

Furthermore, new techniques to study angiogenesis in vitro
are currently being developed. One such tool consists of
the “organ-on-chip” technology that allows for the study of
vascularized microtumors (VMT) using real-time fluorescence
microscopy (Sobrino et al., 2016). This in vitro 3D model may
become useful not only for studying the vasculature but also
for the screening of compounds with anti-angiogenic potential
against viral-induced malignancies. These assays, in coordination
with the development of new therapeutics targeting cellular
pathways involved in angiogenesis, may provide a positive
outlook for patients suffering from EBV- or KSHV-associated
malignancies. This is vital given that most clinical trials with
anti-angiogenic compounds have only been partially effective,
raising the question on why cancers that appear to be highly
dependent on angiogenesis such as KS can still be, to some
extent, resistant to this type of therapy. A major hypothesis
arises from the fact that viral factors induce a multitude of
oncogenic processes besides angiogenesis. These include the
induction of cell proliferation and inhibition of apoptosis. Thus,
targeting multiple cellular pathways or combining inhibitors
against both cellular and viral proteins is hypothesized to
reduce the development of resistance, which is not uncommon
with single-agent treatments. We predict that in the near
future, research into EBV- and KSHV-induced angiogenesis will
further delineate the mechanisms by which cellular and viral
factors cooperate to modulate the pathological process, and thus
provide additional treatment targets to improve the patient’s
quality of life.
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