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of antiviral nucleosides
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Abstract

Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive

potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV,

HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other

emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to

toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations

for assessing toxicity liability before entering animal toxicity studies.
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Nucleoside analogs were first studied as antimetabo-
lites in the 1950s by George Hitchings and Gertrude
Elion.1 Their work led to the discovery of treatments
for leukemia, gout, hyperuricemia, and parasitic proto-
zoan infection, as well as an immunosuppressant for
organ transplant. These efforts paved the way for the
discovery of a series of nucleoside analogs as antitumor
agents in the 1970s, some of which, such as ara-C and
gemcitabine (Figure 1), are still in use today.2,3 Many
of these antitumor nucleoside analogs showed antiviral
activity, but none of them possessed an adequate clin-
ical safety profile for antiviral use until Acyclovir
(Figure 1) was discovered for the treatment of herpes
simplex virus (HSV) infection, a breakthrough that
started a new era in antiviral therapy.1 Acyclovir’s
remarkable safety profile stemmed from two proper-
ties: (1) activation of the compound to its monophos-
phate (MP) only occurs in virus-infected cells, since this
process relies on a viral thymidine kinase; and (2) acy-
clovir 5’-triphosphate (TP) selectively inhibits viral
DNA polymerase over host DNA polymerase a.4

Follow on generations of HSV nucleoside antivirals
(penciclovir and ganciclovir, Figure 1) and prodrugs
were developed to improve potency and resistance
profiles.5

The HIV/AIDS epidemic in the 1980s presented
unprecedented demand for effective antivirals.

In 1986, azidothymidine (AZT, zidovudine, Figure 1),
a chain-terminating inhibitor of HIV-1 reverse tran-

scriptase (RT), was approved, signifying the first step

towards control of this devastating disease. The first

generation of nucleoside analogs for HIV was effica-

cious, but these compounds also showed considerable
toxicity, including cardiomyopathy (AZT, ddI, and

ddC, Figure 1), peripheral neuropathy (d4T, ddI, and

ddC), sensorineural deafness (ddC), lactic acidosis

(AZT, ddI, and d4T), diabetes (ddI), and cytopenia
(AZT).6,7 The toxicity of ddC and AZT was associated

with inhibition of mitochondria DNA synthesis in cell

culture8–10 and in patient tissue samples.11 Later on,

detailed kinetic studies of HIV nucleosides using
recombinant human mitochondrial DNA polymerase

(Pol c) demonstrated the importance of selective inhi-

bition of on-target HIV-1 RT over that of the off-target

human Pol c.7,12 Unfortunately, this knowledge came

10 years too late to inform the 1993 Phase II clinical
trial of FIAU in patients infected with HBV, where 7

out of 15 patients developed severe liver toxicity and
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lactic acidosis, and 5 of these patients died.13 Follow-

up biochemical, cellular, and in vivo studies showed

that FIAU was readily incorporated into mitochondri-

al DNA, leading to a decrease in mtDNA abundance

and thus rendering the mitochondria dysfunction-

al.14,15 The prevalence of mitochondrial toxicity asso-

ciated with 20-deoxy nucleoside analogs led to the

FDA’s recommendation to test drug candidates in a

set of mitochondrial toxicity assays including Pol c
inhibition, lactic acid formation, mitochondrial DNA

content, and glucose utilization.16 With the use of these

tests, the second-generation antiviral nucleoside/tide

analogs such as 3TC, FTC, and tenofovir were shown

to be poor substrates of Pol c and demonstrated signif-

icantly improved clinical safety profiles.
Despite our collective knowledge of nucleoside analog-

associated mitochondrial toxicity, safety concerns contin-

ued in the discovery of HCV antivirals. A number of HCV

nucleoside/tide analogs failed in Phase II due to toxicity or

association with a toxic analog. These include valopicita-

bine (NM283, gastrointestinal toxicity, Figure 1),17

balapiravir (R1626, hematologic toxicity, Figure 1),17

BMS-986094 (cardiac and kidney toxicity, Figure 1),18

IDX184 (clinical hold due to association with

Figure 1. Chemical structures of compounds discussed in this review.
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BMS-986094, Figure 1),19 and PSI-938 (liver toxicity,
Figure 1).17 With the exception of PSI-938, the TP
forms of these compounds are substrates of mitochon-
drial RNA polymerase (POLRMT). Balapiravir is a
specific mitochondria toxin, inhibits POLRMT,
reduces mitochondrial protein synthesis, and eventual-
ly decreases mitochondrial respiration.20,21 Our data
showed that 20CMeG-TP is incorporated into RNA
by POLRMT, decreases mitochondria protein synthe-
sis, and decreases mitochondrial cellular respira-
tion.20,22 Furthermore, Jin et al. demonstrated that
the toxicity of BMS-986094 is directly correlated to
its 20CMeGMP nucleotide moiety rather than the
naphthalene-phosphorylamino propanoate prodrug
moiety.21 Interestingly, when compared to selective
mitochondria inhibitors such as ddC, 4-azidoC, and
chloramphenicol (Figure 1), the inhibition profile of
BMS-986094 is distinctly different for mitochondrial
protein synthesis and respiration, indicating it may
hit other off-targets such as RNA polymerase I.20 As
of today, the only approved nucleotide prodrug for the
treatment of HCV is sofosbuvir (Figure 1), a 20F,
20CMe uridine prodrug that is well tolerated in
patients.23 The TP form of sofosbuvir showed no inhi-
bition of any of the human polymerases tested and is a
poor substrate of POLRMT.20 The relevance of
POLRMT inhibition as a marker for nucleotide toxic-
ity has been further supported by works from multiple
groups.20,21,22,24 A clear outlier is PSI-938, a 20F,
20CMe guanosine prodrug, which showed liver toxicity
in clinical trials but is a poor substrate of POLMRT
and showed no toxicity in any of the in vitro studies
conducted so far.20

Host polymerases have been generally regarded as
the primary off-targets for this class of compounds.
However, the observed toxicities tend to be highly
unpredictable.7,25 These may be attributed to complex
uptake, distribution, and accumulation of different
compound in different organs. For example, three
closely related analogs, FIAU, FMAU, and FIAC
(Figure 1), showed distinctly different toxicities in ani-
mals and human. FIAU showed no toxicity in non-
clinical animal species including mice, rats, dogs, and
monkeys, but conflicting toxicity findings from two
separate studies in woodchucks.15,26 In contrast,
FIAU-induced hepatotoxicity was observed in clinical
trials in week 13 and beyond under potentially much
lower exposures than the animal models.15,26 In addi-
tion, FMAU, a metabolite of FIAU, was tested in a
Phase I clinical trial for the treatment of murine leuke-
mia. It caused severe neurologic toxicity and two
deaths among eight patients after 8–10 days of treat-
ment. Toxicity, primarily hematopoietic, was observed
with FIAC, the cytidine analog and known metabolic
precursor of FIAU, when used to treat HSV and

vesicular stomatitis virus infection.26 Interestingly,
while the more recent HCV nucleotide antivirals, e.g.
BMS-986094, PSI-938, and VX-135 (also known as
ALS-2200, Figure 1) were all liver-targeting nucleotide
prodrugs and the administration of PSI-938 and VX-
135 resulted in liver toxicity,27,28 BMS-986094 showed
cardiovascular and renal toxicity.29

It is worthwhile mentioning that antiviral nucleo-
sides could also exert toxicity through disruption of
natural NTP pools. AZT only showed modest inhibi-
tion of mitochondrial DNA polymerase7 but is a com-
petitive inhibitor of thymidine kinase 2-catalized
phosphorylation of thymidine to TMP.30 Ribavirin is
a poor substrate for mitochondrial RNA polymerase,22

but it reduces the size of the guanosine triphosphate
(GTP) pool via inhibition of inosine MP
dehydrogenase.31

As one might expect, there are many possible ways
that a nucleoside/tide analog can elicit toxicity that are
still beyond our knowledge. In this review, we focus on
the host polymerase mechanism-based toxicity and
summarize different biochemical and cellular assays
to evaluate potential toxicity liabilities, and the
strength and limitations of each method.

Biochemical evaluations

As most nucleoside/tides analogs need to be trans-
formed into 5’-TP to exert on-target and off-target
effects, their TP forms are necessary for elucidating
these mechanisms (Table 1). The typical initial enzy-
matic assay for polymerases is a radioactivity-based
polymerization assay, in which the inhibition by
nucleotides is measured as an IC50 value. The inhibi-
tion IC50 assays can be easily adapted to a 96-well filter
binding assay, and multiple compounds can be
accessed simultaneously. However, based on inhibition
studies alone, one cannot establish whether the nucle-
otide was actually incorporated. Therefore, a single
nucleotide incorporation (SNI) assay can be particu-
larly useful to determine if a NTP analog actually
served as a substrate for the polymerases. Under a
high concentration of NTP analogs (e.g. 500 mM
ribose nucleotide TP (rNTP) or 50–100 mM 20-deoxyri-
bose nucleotide TP (dNTP)), the relative rate of incor-
poration of an analog can be compared to that of its
natural NTP counterpart. For further mechanistic
insight, a pre-steady state kinetic analysis of the NTP
incorporation offers detailed kinetic parameters such as
pre-steady state polymerization rate constant kpol and
NTP dissociation constant Kd. In these studies, incor-
poration rates are studied using multiple time points
and nucleotide concentrations, often using quench-
flow techniques, making these studies reagent- and
time-consuming. Finally, the mechanism of a
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nucleotide analog-derived enzyme inhibition can be

revealed by an elongation assay, in which a stable elon-

gation complex is formed, and the incorporation of the

next few natural NTPs is measured. Normally, an NTP

analog can be characterized into one of the three

groups: chain-terminators, delayed chain-terminators,

or stably incorporated analogs. Stably incorporated

NTP analogs are difficult to study for toxicity as they

could lead to little or no quantitative changes in DNA,

RNA, or protein expression.36

The quality of the above-mentioned biochemical

assays relies heavily on the availability of high quality

TP active forms, which can be time- and resource-

consuming to synthesize, and the TP salts are subject

to degradation overtime. At times, certain inorganic

contaminants could lead to apparent inhibition of

polymerases.

Cellular evaluations

Toxicity is cell line-dependent

Due to their mechanism of action, nucleoside analogs
are generally evaluated for 5–8 days in both replicating
laboratory-adapted cell lines and non-replicating prima-
ry cells.18 A standard readout is the effect of compound
on the ATP level within the cells. We found that among
20þ laboratory-adapted cells we tested, prostate cancer-
derived PC-3 cells and T-cell leukemia-derived MT4
cells are generally the most sensitive to toxins, and are
significantly more sensitive than HepG2 cells, a widely
used cell line for in vitro toxicity studies. In addition, we
found that laboratory-adapted cells are as useful for
detecting potential toxicity liabilities as primary cells.

In certain cases, testing in a specific cell assay is
warranted. For example, a number of the

Table 1. Biochemical and cellular assays to evaluate general and mitochondria toxicities of nucleoside/tide analogs.

Types of assays Assay Assay design and references Platform

Biochemical IC50 and Ki Inhibition of a host polymerase for DNA or RNA

synthesis.32,33 The concentrations of natural

dNTP or NTP are set near their corresponding

Km.

Radiometric filter-

binding

SNI Incorporation of a single NTP analog by host

polymerases using a set of primer/template

with defined sequence at a high concentration

of NTP analogs.32,33

Radiometric PAGE

Elongation Further incorporation of natural NTPs after

incorporation of a NTP analog.20,22 Used to

determine if a NTP analog caused chain

termination.

Radiometric PAGE

Pre-steady state Detailed kinetic studies for the incorporation of a

NTP analog to measure the rate constant of

incorporation kpol (s
�1) and binding affinity Kd

(mM).7

Radiometric PAGE

Cellular Viability After 5–10 day compound treatment, cell viability

is measured by ATP level (CellTiterGlo),

mitochondrial health (MTT/XTT), or other

indicators.34

Plate reader

Mitochondrial DNA

content

After 14-day compound treatment in HepG2

cells, levels of the mitochondria-encoded

cytochrome b gene are normalized to the

levels of nuclear-encoded DNA b-actin gene.35

PCR

Mitochondria protein

synthesis

After 5-day compound treatment in PC-3 cells,

levels of mitochondria DNA-encoded protein

COX-1 and nuclear DNA-encoded protein

SDH-A are measured.32

In-Cell ELISA

Cellular respiration After 3-day compound treatment in PC-3 cells,

cells are subjected to a Mito Stress Test and the

mitochondrial spare respiration capacity was

measured.20

SeahorseTM XFe96

Cellular Flux

SNI: single nucleotide incorporation; NTP: nucleotide triphosphate; PAGE: polyacrylamide gel electrophoresis; PCR: polymerase chain reaction.
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first-generation HIV nucleoside analogs showed mye-

losuppressive effects. As a result, the FDA recom-

mended evaluating this toxicity on the growth of

human bone marrow progenitor cells in colony forma-

tion assays.37

The importance of measuring cellular TP levels

A nucleoside/tide analog’s cytotoxicity is often directly

related to its cellular level of the active TP metabolite.

BMS-986094 and IDX184 are both 20CMe guanosine

nucleotide prodrugs, but the former formed >37-fold

higher TP, and this correlated with its significantly

higher toxicity.18 Some nucleoside analogs are poorly

phosphorylated in cells, such as balapiravir. Even

though it is a specific inhibitor of POLRMT, balapir-

avir showed little or no toxicity in a large panel of cell

lines and primary cells tested, but development of this

compound was stopped at Phase II due to toxicity.

Evaluation of mitochondrial toxicity

As shown in Table 1, we employed three mitochondria-

focused cell-based assays to evaluate potential mito-

chondrial toxicity. The mitochondrial DNA content

assay has been widely used to study 20-deoxy nucleoside
analogs, but it does not assess the effect of ribose nucle-

oside/tide analogs on mitochrondrial RNA synthe-

sis.20,29 ddC serves as a good positive control and

HepG2 cells seem to be an ideal cell line for this assay.
The mitochondrial protein synthesis assay has been

useful to evaluate ribonucleoside/tide analogs. In this

assay, the levels of two proteins are measured simulta-

neously: the mitochondrial DNA-encoded protein

cytochrome c oxidase 1 (COX-1) and a nuclear

DNA-encoded protein succinate dehydrogenase A

(SDH-A).32 For data analysis, we found that compar-

ing the individual levels of the COX-1 and SDH-A

proteins to the untreated DMSO control yielded

more reproducible data than using the ratio of COX-

1:SDH-A. Chloramphenicol, a specific inhibitor of

mitochondrial protein synthesis, is used as the positive

control.
Since the 1950s, mitochondrial respiration has been

regarded as the “gold standard” for the measurement

of mitochondrial function.38 It has been used extensive-

ly to study mitochondrial toxins that directly impair

the electron transport chain but has not been used to

study the nucleoside/tide analogs until recently.39–42

This assay provides a sensitive functional readout and

does not require knowledge of the mechanism of

action.20 A complete loss of mitochondrial respiration

capacity can be detected before any change in the cel-

lular ATP level, and this phenomenon has been

observed for inhibitors with diverse molecular targets

including ddC (inhibitor of mitochondrial DNA syn-

thesis), 40-azido cytidine (inhibitor of mitochondrial

RNA synthesis), and chloramphenicol (inhibitor of

mitochondrial protein synthesis). For compounds that

show both mitochondrial and general toxicity (such as

BMS-986094), this method makes it possible to identify

whether mitochondria toxicity occurs at a lower drug

concentration.20 For both mitochondrial protein and

respiration assays, we found that PC-3 cells offer

higher sensitivity and reproducibility than HepG2

cells.20

An assay with limited predictive value: The

glucose–galactose CC50 assay

When faced with mitochondria damage, cells are

known to switch to glycolysis to generate ATP; there-

fore the glucose–galactose CC50 assay has been widely

used to detect mitochondria toxicity.43 In the absence

of glucose, the galactose-adapted cells are forced to rely

heavily on mitochondrial OXPHOS and thus would

show a �3-fold decrease in CC50.
44 However, the pre-

dictivity of this assay was challenged by Hyne’s 2013

report showing that this assay only detected 2–5% of

the 200 potential mitochondrial toxins tested.44,45 Even

though no nucleoside/tide analogs were included in

Hyne’s study, it is consistent with our finding from

testing >30 clinically relevant nucleoside/tide analogs.

None of the known mitochondrial toxins such as ddC,

FIAU, or 40-azido C showed enhanced cytotoxicity in

galactose-adapted cells.

Evaluation of toxicity in animal studies

Research and development of a significant number of

nucleoside/tide analogs were terminated in the pre-

clinical stage due to toxicity in the animal models;

though only a few were reported24,46,47 and mitochon-

drial toxicity was indicated or suspected. To date, due

to a number of factors outlined above, mitochondrial

toxicity has been difficult to detect in animal species

and correlation to humans is at best tenuous.48

Potentially, animal models with genetic mitochondrial

abnormalities or humanized animals may be more sen-

sitive to nucleoside/tide toxicity. For example, mice

models with genetic mitochondrial abnormalities such

as heterozygous superoxide dismutase 2 knockout

(Sodþ/�) mice were more susceptible to mitochondria

toxins than the wild-type animals.49 Recently, Xu et al.

reported FIAU-induced liver toxicity in chimeric TK-

NOG mice grafted with humanized livers.50 Animal

models like these may improve our ability to detect

nucleoside toxicity.
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A comment on therapeutic window

As viral diseases vary greatly in duration and severity,

the safety threshold of an antiviral nucleoside/tide

needs to be considered in the context of its efficacy

and treatment duration. For example, compounds to

treat acute and deadly viral infections such as Ebola

would likely have different safety criteria than drugs

used to control chronic infections such as HIV-1 and

HBV. Existing nucleoside/tides are routinely screened

against emerging viruses, and it is possible that a com-

pound that failed to achieve an adequate therapeutic

window against one virus may be suitable for treating

other viral infections.

Summary

Anti-viral nucleoside/tide analogs target the viral DNA

and RNA replication machinery, and this mechanism

makes them potential inhibitors of host DNA and

RNA synthesis as well, especially mitochondrial

DNA and RNA synthesis. Mitochondrial toxicity man-

ifests in multiple forms in vivo and underlies many

clinical-stage failures and has been difficult to detect

in animal studies. Over the past 30 years, a battery of

in vitro tests for mitochondrial toxicity has evolved and

continues to expand, allowing for improved early

detection of mitochondrial liability. As for any drug

molecule, the actual toxicity liability cannot be assessed

fully until tested in animal toxicity studies and eventu-

ally in human clinical trials. Nevertheless, we believe

that employing the proper biochemical and cellular

assays early on will have a meaningful impact on reduc-

ing pre-clinical and clinical toxicity liability for this

class of compounds.
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